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Meniere’s disease (MD) is a rare disorder characterized by episodic vertigo, sensorineural 
hearing loss, tinnitus, and aural fullness. It is associated with a fluid imbalance between 
the secretion of endolymph in the cochlear duct and its reabsorption into the subarach-
noid space, leading to an accumulation of endolymph in the inner ear. Epidemiological 
evidence, including familial aggregation, indicates a genetic contribution and a consistent 
association with autoimmune diseases (AD). We conducted a case–control study in two 
phases using an immune genotyping array in a total of 420 patients with bilateral MD and 
1,630 controls. We have identified the first locus, at 6p21.33, suggesting an association 
with bilateral MD [meta-analysis leading signal rs4947296, OR = 2.089 (1.661–2.627); 
p = 1.39 × 10−09]. Gene expression profiles of homozygous genotype-selected peripheral 
blood mononuclear cells (PBMCs) demonstrated that this region is a trans-expression 
quantitative trait locus (eQTL) in PBMCs. Signaling analysis predicted several tumor 
necrosis factor-related pathways, the TWEAK/Fn14 pathway being the top candidate 
(p = 2.42 × 10−11). This pathway is involved in the modulation of inflammation in several 
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human AD, including multiple sclerosis, systemic lupus erythematosus, or rheumatoid 
arthritis. In vitro studies with genotype-selected lymphoblastoid cells from patients 
with MD suggest that this trans-eQTL may regulate cellular proliferation in lymphoid 
cells through the TWEAK/Fn14 pathway by increasing the translation of NF-κB. Taken 
together; these findings suggest that the carriers of the risk genotype may develop an 
NF-κB-mediated inflammatory response in MD.

Keywords: TnFrsF12a, nFKB1, TWeaK/Fn14 pathway, nF-κB signaling, vertigo, sensorineural hearing loss, 
Meniere’s disease

inTrODUcTiOn

Meniere’s disease [MD (MIM 156000)] is an inner ear syndrome 
characterized by recurrent attacks of vertigo associated with 
concurrent ipsilateral aural symptoms, such as fluctuating sen-
sorineural hearing loss (SNHL), tinnitus, or aural pressure (1, 2). 
MD is associated with a fluid imbalance between the secretion 
of endolymph in the cochlear duct and the reabsorption into the 
subarachnoid space, leading to an accumulation of endolymph 
termed endolymphatic hydrops (3), but the underlying molecular 
mechanism remains unknown.

Epidemiological evidences support a genetic contribution 
in MD including: (a) a higher prevalence of MD in Caucasians 
over other ethnicities (4) and (b) familial clustering, as familial 
MD occurs in 6–10% of patients with MD in European and 
Asian-descent populations, respectively, and it has a high sibling 
recurrence risk ratio (λs  =  24–45) (5, 6). Early case–control 
studies in small series using candidate genes suggested an 
association with HLA class II genes in different populations (7); 
however these studies have not been replicated (8). By contrast, 
a genomic approach using whole-exome sequencing in families 
with autosomal-dominant MD and autoimmune background has 
identified rare variants with potential pathogenic effects in the 
FAM136A, DTNA, PRKCB, DPT, and SEMA3D genes (9–11). 
Although these candidate genes for familial MD should be 
confirmed in sporadic and more families with MD, they start to 
anticipate genetic heterogeneity.

Different studies have described a MD association with sev-
eral autoimmune diseases (AD), such as rheumatoid arthritis, 
systemic lupus erythematous (SLE), or psoriasis (12, 13). Based 
on the results of proteomic studies performed in small series of 
patients, autoimmunity has been proposed as a potential cause 
of MD (14, 15). However, elevated immune complexes were 
only found in 7% of patients with MD (16), and there is no 
consistent immunological biomarker for the diagnosis of MD. 
Therefore, the evidence to support the hypothesis of autoim-
munity is limited. The TWEAK/Fn14 pathway is involved in 
the modulation of inflammation in several chronic AD, includ-
ing multiple sclerosis, SLE, rheumatoid arthritis, or ulcerative 
colitis (17). However, this pathway has not been investigated in 
SNHL or MD.

Nuclear factor kappa B (NF-κB) is a family of transcription 
factors, which regulate immune and inflammatory responses. In 
the latent state, NF-κB is inhibited in the cytosol by IκB (inhibitor 
of NF-κB) proteins. Upon stimulation of innate immune recep-
tors such as cytokines or toll-like receptors, a series of membrane 

proximal events lead to the activation of IκB kinases (IKK). 
Phosphorylation of IκBs releases NF-κB, which translocates to 
the nucleus to regulate gene transcription (18).

Bilateral involvement in MD (BMD) may occur in 20–47% 
of patients after 10 years of follow-up (19). Most patients begin 
with vertigo and hearing loss in one ear, and hearing loss can 
appear in the second ear several years later, but a significant 
number of individuals show simultaneous SNHL. Autoimmune 
inner ear disease (AIED) is a rare disorder defined by recurrent 
episodes of bilateral SNHL progressing over a period of several 
weeks or months (20). Vestibular symptoms may be present in 
50% of patients and systemic autoimmune disease coexists in 30% 
of patients (21). This audiovestibular phenotype overlaps with 
BMD and it may not be possible to distinguish AIED and MD. In 
some cases, AIED may begin as sudden unilateral SNHL involv-
ing rapidly the second ear. Although the mechanism of AIED 
is not well understood, these patients show elevated levels of 
proinflammatory cytokines, including IL-1β and TNFα (22), and 
may respond to steroid therapy or anakinra (23). Furthermore, 
autoimmune endolymphatic hydrops was described in patients 
with Cogan syndrome and polyarteritis nodosa and it was found 
in 50% of patients with AIED.

The aim of this study was to identify susceptibility loci using 
the Immunochip genotyping array to define a subset of patients 
with MD, which may have an autoimmune dysfunction. Here,  
we found a locus in 6p21.33 and we demonstrated that it regu-
lates gene expression in the tumor necrosis factor (TNF)-like 
weak inducer of apoptosis (TWEAK)/Fn14 pathway and induces 
translation of NF-κB in lymphoid cells.

MaTerials anD MeThODs

ethics approval statement
The study protocol PI13/1242, with reference 01-2014, was 
approved by the ethic Committee for clinical research of all the 
recruiting centers. All participants gave written informed con-
sent. The work was performed according to the principles of the 
Declaration of Helsinki of 1975 (as revised in 2013) (24).

case Definition and sample Population
Meniere’s disease cases were diagnosed according to the 
clinical guidelines defined by the Committee on Hearing and 
Equilibrium of the American Academy of Otolaryngology Head 
and Neck Surgery (AAO-HNS) (25). All familial cases were 
excluded.
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The genotyping of the replication cohort was performed 
with the TaqMan SNP assay in an ABI 7500 Fast Real-Time 
PCR System (Life Techonologies, Carlsbad, CA, USA). The 
alleles were determined using the SDS 2.2.1 software (Applied 
Biosystems, Foster City, CA, USA). We used PCA to identify 
population substructure. Furthermore, a representative sample 
of SNVs genotyped by the Immunochip was validated also 
by Taqman assays in 165 individuals. The correlation coef-
ficient between both methods was 98%. Genotype calling 
was performed in all samples with the Genotyping Module 
(v1.8.4) of the Genome Studio Data Analysis Software. NCBI 
Build 36 (hg18) mapping was used (Illumina manifest file 
Immuno_BeadChip_11419691_B.bpm). Data were converted 
into the human Build hg38 using.1

Quality controls were performed, for each set of samples and 
SNVs separately, using Genome Studio Data Analysis Software 
and PLINK software (version 1.07) (28). After all QC, 189 
patients with bilateral SNHL and 735 controls remained for 
further statistical analyses. We have evaluated the association 
between each SNV and patients with unilateral or bilateral MD.

gene expression assay in PBMcs
Peripheral blood mononuclear cells were isolated from peripheral 
blood of patients with the main genotypes of SNVs rs4947296 
by Ficoll gradients (Biowest, Nuaillé, France). After RNA extrac-
tion, gene expression levels were quantified using the Illumina 
HumanHT-12 v4 Expression BeadChip (Illumina Inc., San Diego, 
CA, USA). Probe intensity data were analyzed using Illumina’s 
GenomeStudio software (Gene Expression Module) to determine 
the gene expression levels according to negative control probes 
for background correction and quantile normalization using 
negative and positive control probes. Probes with detection 
p-values < 0.05 in less than 10% of samples were filtered, and rep-
licated genes were removed using the median value. Differential 
expression analysis between samples was performed using the R 
limma package. Furthermore, we evaluated if the expression of 
the genes located at <1 Mb distance from the locus and the MHC 
region were affected by rs4947296 (p < 0.05).

Data from the expression array can be accessed at the Gene 
Expression Omnibus under accession number GSE77865.

Bioinformatics analysis
Signaling pathway analysis was performed using Ingenuity 
Pathways Analysis (IPA®, Qiagen, Venlo, Netherlands2) soft-
ware. Core analysis tool was executed using the differentially 
expressed gene (DEG) with an adjusted p-value cutoff of 0.001. 
The most significant pathway was the “TWEAK Signaling 
pathway.” Pathway enrichment analysis was performed with 
MetaCore (GeneGo3) (29), using the DEG with the enrichment 
p-value cutoff of 0.001. The three enriched canonical pathways 
“apoptosis and survival Apoptotic TNF-family pathways,” “sig-
nal transduction NF-κB activation pathways,” and “apoptosis 
and survival Anti-apoptotic TNFs-NF-κB-Bcl-2 pathway” were 

1 https://genome.ucsc.edu/cgi-bin/hgLiftOver.
2 http://www.ingenuity.com/products/ipa.
3 https://portal.genego.com/.

The initial cohort consisted of 681 cases of MD (492 unilat-
eral and 189 bilateral SNHL) and 735 unrelated controls. The 
replication cohort was drawn from an independent group of 240 
bilateral cases and 895 Iberian controls of European ancestry. 
The samples included in the discovery cohort were partially 
overlapped with a preliminary study previously published (26).

The diagnosis protocol included a complete neuro-otological  
evaluation including otoscopy, a pure-tone audiometry, nysta-
gmus examination and caloric testing, and a brain MRI to 
exclude other possible causes of neurological symptoms. 
Patients were monitored with serial audiograms and the fol-
lowing clinical variables were studied in our series: gender, 
age, hearing stage, duration of the disease, bilateral SNHL, age 
of onset, type of headache, history of autoimmune disease, 
smoking, Tumarkin crisis, and the functional scale of the 
AAO-HNS. Hearing stage was calculated with the audiogram 
obtained the day of inclusion for each patient with definite 
MD and was defined as the mean of four-tone average of 0.5, 
1, 2, and 3 kHz according to the AAO-HNS criteria: stage 1, 
≤25 dB HL; stage 2, 26–40 dB HL; stage 3, 41–70 dB HL; and 
stage 4, >70 dB HL.

Dna and rna extraction
DNA was isolated from peripheral blood using the QIAamp 
DNA Mini Kit (Qiagen, Venlo, Netherlands), according to the 
manufacturer’s instructions. The concentration of genomic DNA 
was measured using the Qubit dsDNA BR Assay Kit (Invitrogen, 
ThermoFisher Scientific, Waltham, MA, USA) and concentra-
tions were standardized to 50 ng/mL for genotyping, the quality 
was determined by Nanodrop 2,000 C (ThermoFisher Scientific, 
Waltham, MA, USA).

Total RNA was obtained from peripheral blood mononu-
clear cells (PBMC) using the High Pure RNA Isolation Kit 
(Hoffmann-La Roche, Basel, Switzerland) following the manu-
facturer’s protocols. The quantity and quality of total RNA were 
determined using the RNA Nano assay on the Agilent 2100 
Bioanalyzer (Agilent Technologies, Waldbronn, Germany).

genotyping and Quality controls (Qc)
DNA samples were genotyped by the Immunochip, a custom 
genotyping array which includes loci previously associated 
with 12 autoimmune disorders (27). Clusters were manually 
inspected and verified, and SNPs with poor clustering quality 
metrics were removed (call frequency <0.98, cluster separation 
<0.4, and GenCall scores <0.15). Further, the SNPs that did not 
meet the following criteria were excluded: minor allele frequency 
(MAF) <5%, Hardy–Weinberg equilibrium <10−4 in controls, 
non-random differential missing data rate test between cases and 
controls <10−5, and missing-genotype rate <0.5%. All markers 
in chromosome X were also excluded. After QC, 96,899 single 
nucleotide variants (SNVs) remained with a MAF >5% for sta-
tistical analysis.

Samples with a genotype success rate of <90% and increased 
heterozygosity rate (<0.18 and >0.45) were excluded from the 
analysis. Finally, genetic outliers determined by principal-
component analysis (PCA) were removed from the analysis (>3 
SD around the mean).
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TaBle 1 | Primer sequences for quantitative RT-PCR.

gene Forward primers reverse primers

NFKB1 5′-GAAGCACGAATGACAGAGGC-3′ 5′-GCTTGGCGGATTAGCTCTTTT-3′
TNFRSF12A 5′-CTGGCTCCAGAACAGAAAGG-3′ 5′-GGGCCTAGTGTCAAGTCTGC-3′
LFA-1 5′-TTGGGGTTTGAAGAAGTCTCAG-3′ 5′-GTGCCTCCCATTGAAGATGT-3′
ICAM-1 5′-GATTCTGACGAAGCCAGAGG-3′ 5′-CCGGGTCTGGTTCTTGTGTA-3′
Hypoxanthine phosphoribosyltransferase 1 5′-TGACACTGGCAAAACAATGCA-3′ 5′-GGTCCTTTTCACCAGCAAGCT-3′
FOS 5′-GGGGCAAGGTGGAACAGTTAT-3′ 5′-CCGCTTGGAGTGTATCAGTCA-3′
BIRC3 5′-AAGCTACCTCTCAGCCTACTTT-3′ 5′-CCACTGTTTTCTGTACCCGGA-3′
FADD 5′-GTGGCTGACCTGGTACAAGAG-3′ 5′-GGTAGATGCGTCTGAGTTCCAT-3′
NFKBIE 5′-TCTGGCATTGAGTCTCTGCG-3′ 5′-AGGAGCCATAGGTGGAATCAG-3′
CASP3 5′- GTACAGATGTCGATGCAGCAA-3′ 5′- GCACACAAACAAAACTGCTCC-3′
CASP6 5′- CGATGTGCCAGTCATTCCTTT-3′ 5′- GCTGCATCCACCTCAGTTATG-3′
CASP9 5′- CAGAGATTCGCAAACCAGAGG-3′ 5′- CACCGACATCACCAAATCCTC-3′
APAF1 5′- GCCCTGCTCATCTGATTCATG-3′ 5′- TCTCACTGACTGCACAATCCT-3′
CYCS 5′- AAGACTGGGCCAAATCTCCAT-3′ 5′- TCTGCCCTTTCTTCCTTCTTCT-3′
IKBKG 5′- GATCTCAAACAGCAGCTCCAG-3′ 5′- AGTCCGCCTTGTAGATATCCG-3′
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retrieved and the shortest paths from Fn14 (TNFRSF12A) to 
NF-κB genes were extracted. The shortest paths were visualized 
in Cytoscape ver. 2.7.0 (30).

cell culture
Peripheral blood mononuclear cells were seeded at a density 
of 5  ×  106  cells/mL in RPMI 1640 (Thermo Fisher Scientific, 
Waltham, MA, USA) containing 20% Fetal Bovine Serum (FBS, 
Biowest, Nuaillé, France) and Epstein–Barr virus at 1:1 ratio was 
added to generate lymphoblasts. Cells were placed in an incuba-
tor maintained at 37°C with 7% CO2 and cultured in RPMI 1640 
supplemented with 10% FBS, non-essential amino acids, and 
sodium pyruvate.

Cell viability and proliferation assays were performed in 
lymphoblastoid cell lines (LCL) to investigate the effect of the 
rs4947296 homozygous conditional genotypes. Five thousand 
cells were plated in 96-well plates and incubated at different 
TWEAK (PeproTech, London, UK) concentrations to examine 
the effect over both cell lines (0, 50, 100, 250, and 500 ng/mL) 
(31). Proliferation rate was measured at 24, 48, and 72 h. At each 
time point, 20 µL of PrestoBlue™ (Life Technologies, Carlsbad, 
CA, USA) was added to each well and cultured at 37°C for 4 h. 
After that, the absorbance of the supernatant was measured at 
570  nm in a Tecan Infinite Nanoquant M200 Pro absorbance 
microplate reader. Blank controls were performed for each 
measure using medium and PrestoBlue™ (Life Technologies, 
Carlsbad, CA, USA). Cell viability assay was performed using 
Trypan blue staining (Thermo Fisher Scientific, Waltham, MA, 
USA). The size of the clusters was measured using the area (μm2) 
of 200 clusters for each genotype by ImageJ software (ImageJ,  
U. S. National Institutes of Health).

Quantitative rT-Pcr (qPcr)
Quantitative RT-PCR was performed using the Brilliant III Ultra-
Fast SYBR® Green qPCR Master Mix (Agilent Technologies, 
Santa Clara, CA, USA) and an ABI 7900 HT Fast real-time PCR 
Systems (Life Technologies, ThermoFisher Scientific, Waltham, 
MA, USA) using primers listed in Table  1. Hypoxanthine 

phosphoribosyltransferase 1 was used as housekeeping gene. 
Technical triplicates were performed to reduce experimental 
errors. The fold change for each gene was obtained using the 
comparative CT method (32). Statistical analyses were performed 
using Student’s t-test. A p value < 0.05 was considered statistically 
significant.

Western Blot
Protein extraction was carried out by acetone precipitation (33). 
Protein concentration was determined by Bradford protein assay 
(Bio-Rad Laboratories, Hercules, CA, USA) and total protein was 
stored at −80°C. Sixty micrograms of total proteins were sepa-
rated by molecular weight in a poliacrilamyde gel [Criterion™ 
TGX™ Precast Gels (Bio-Rad Laboratories, Hercules, CA, 
USA)] and transferred to a Trans-Blot® Turbo™ Midi PVDF 
membrane by Trans-Blot® Turbo™ Transfer System (Bio-Rad 
Laboratories, Hercules, CA, USA). The membrane was incu-
bated with primary antibody against NF-κB p105/p50 (Abcam, 
Cambridge, UK; #ab7971, 1:400) overnight at 4°C and a chicken 
polyclonal antibody against GAPDH (EMD Millipore, #AB2302, 
1:1,000). Then, the membrane was incubated with secondary 
antibodies for 1 h at room temperature. A goat anti-rabbit (R&D 
Systems, #HAF008, 1:3,000) and a rabbit anti-chicken (Sigma-
Aldrich, #A9046-1ML, 1:9,000) were used, respectively. After 
that, the membrane was developed using Clarity™ Western 
ECL Substrate (Bio-Rad Laboratories, Hercules, CA, USA) and 
the images were obtained using the ImageQuant LAS4000 (GE 
Healthcare Life Science). ImageJ software (NIH, USA) was used 
for the quantification.

confocal image analysis of Whole  
Mount lcls
Selected LCLs were obtained from patients with MD according 
to the genotype. LCLs undergoing TWEAK treatment (250 ng/
mL) for 48 h were fixed using fresh methanol: DMSO (4:1) and 
stored at −20°C until used. LCLs were then rehydrated, blocked, 
stained, and mounted as previously described (34). Primary 
antibodies were used as follows: a mouse monoclonal antibody 
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TaBle 2 | Clinical features of patients with sporadic Meniere’s disease.

Variables Bilateral 
(n = 420)

Unilateral 
(n = 1,031)

p-Value

Age of onset, mean (SD) 45.23 (13.6) 47.24 (12.1) 0.263
Gender (% women) 59.3 57.5 0.598
Time course (years),  
mean (SD)

15.16 (9.1) 10.35 (±7.7) 1.50 × 10−06

Affected ear (%) Right (50.9)
Hearing loss at  
diagnosis, mean (SD)

56.96 (16.7) 48.66 (19.1) 2.47 × 10−04

Migraine, n (%) 70 (18.4) 131 (12.8) 0.006
History of autoimmune 
disease, n (%)

63 (19.2) 119 (12.8) 0.004

Smoking, n (%) 81 (21.3) 254 (24.3) 0.422

hearing stage, n (%)
1 7 (2.0) 117 (12.2) 5.00 × 10−06

2 52 (14.9) 232 (24.2)
3 178 (51.0) 471 (49.1)
4 112 (32.1) 140 (14.6)

Hearing stage, mean (SD) 3.13 (0.7) 2.66 (0.8) 2.00 × 10−06

Turmakin crisis, n (%) 85 (29.5) 126 (16.9) 8.00 × 10−06

Functional scale, n (%)
1 37 (12.6) 167 (12.6) 0.008
2 91 (31.0) 332 (37.1)
3 74 (25.2) 185 (20.7)
4 46 (15.6) 126 (14.1)
5 37 (12.6) 71 (7.9)
6 8 (2.7) 13 (2.7)

Numbers in bold represent significant p-values (p < 0.05).
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against Fn14 (Santa Cruz Biotechnology, Dallas, TX, USA; #sc-
56250, 1:50) and a rabbit polyclonal antibody against NF-κB 
p105/p50 (Abcam, Cambridge, UK; #ab7971, 1:50). As secondary 
antibodies, we used Alexa-555-conjugated goat anti-mouse (Life 
Technologies, Carlsbad, CA, USA; #A-21422, 1:500) and Alexa-
633-conjugated goat anti-rabbit (Life Technologies, Carlsbad, CA, 
USA; #A-21071, 1:500), respectively. For nuclei staining, we used 
Hoechst 3342 (Life Technologies, Carlsbad, CA, USA; #H1399, 
1:1,000). A laser scanning confocal microscope LSM 710 (Carl 
Zeiss, Oberköchen, Germany) was used for image collection and 
the Zeiss browser software program ZEN black edition was used 
to acquire and export the data. All images were taken with the 
same laser intensity settings on the microscope and final image 
processing and labeling were performed with ImageJ.

nF-κB p65 Phosphorylation assay
Lymphoblastoid cell lines according to each genotype were plated 
with a density of 1  ×  106cells/mL and treated with TWEAK 
(250  ng/mL) during 48  h at 37°C. After that time, cells were 
centrifuged and resuspended in an appropriate volume of HBSS 
containing 5% FBS (Biowest, Nuaillé, France). Cells were then 
lysed with Cell Lysis Buffer 5× from the NF-κB p65 (Total/
phospho) Multispecies InstantOne™ ELISA Kit (Thermo Fisher 
Scientific, Waltham, MA, USA) and manufacturer’s protocol was 
followed.

statistical analysis
We performed a descriptive statistical analysis for clinical varia-
bles, using SPSS software v.22 (SPSS Inc., Chicago, IL, USA). Data 
are shown as means with their SD. Quantitative variables were 
compared using Student’s unpaired t-test. Qualitative variables 
were compared using crosstabs and Fisher’s exact test. Nominal 
p-values using a 5% level to determine significance are reported. 
Allelic and genotypic frequencies were compared between 
patients and controls by logistic regression test and calculating 
the odds ratios (OR) and 95% confidence intervals using PLINK 
(version 1.07). Genotypes were imputed and implemented in 
IMPUTEv2 using the 1,000 Genomes Phase 3 integrated refer-
ence panel according to a previously described method (35).

Potential interactions between associated loci were also tested 
using the association module in PLINK v1.07. Logistic regression 
analyses were used to estimate the genotype-specific effects of the 
risk alleles.

We selected SNVs for the replication study based on the 
results of the discovery phase and the meta-analysis was per-
formed by SPSS. The functional evaluation of each SNP located 
in candidate loci was performed in  silico using HaploReg,4 
which provides linkage disequilibrium information (r2 and D′ 
measurements) and it allows us to define haplotype blocks in 
each chromosome used (36). Moreover, we used seeQTL5 and 
RegulomeDB6 to annotate regulatory variants of the noncoding 
genome such as enhancers, transcription factors binding sites, 

4 http://www.broadinstitute.org/mammals/haploreg/haploreg.php
5 http://www.bios.unc.edu/research/genomic_software/seeQTL/.
6 http://regulomedb.org/.

their conservation across mammals and their potential effects on 
regulatory motifs (37, 38).

Clinical variables were compared between patients with 
unilateral and BMD by unpaired t test for quantitative variables 
and χ2 test for qualitative variables. P  <  0.05 was considered 
statistically significant.

resUlTs

Bilateral MD is associated with a locus  
in the classical class i subregion of the 
Mhc
Table 2 compares the clinical features of 1,451 patients with uni 
and bilateral SNHL in MD. Patients with bilateral SNHL had a 
longer duration of the disease (p = 1.5 × 10−6), worse hearing loss 
at diagnosis (p = 2.5 × 10−4), worse hearing stage (p = 2 × 10−6), 
higher frequency of AD (p = 4 × 10−3), and higher frequency of 
migraine (p = 6 × 10−3).

Although no significant association was found in patients 
with unilateral MD, two genomic regions at chromosome 2 
and 6 reached confirmatory significance (p-values  <  10−6) in 
the subset of patients with BMD (Figure  1). To perform the 
replication, we selected representative TagSNVs, according to 
the results of the discovery phase in both regions (Table  3). 
The meta-analysis confirmed a suggestive significant associa-
tion with a locus in the classical class I subregion of the MHC 
~9  kb at 6p21.33 (31,081,878–31,090,401), being the leading 
SNV rs4947296; OR  =  2.089 (1.661–2.627); p  =  1.39  ×  10−09. 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
http://www.broadinstitute.org/mammals/haploreg/haploreg.php
http://www.bios.unc.edu/research/genomic_software/seeQTL/
http://regulomedb.org/


FigUre 1 | Two loci associated with bilateral sensorineural hearing loss (SNHL). (a) Manhattan plot for association study findings from Immunochip genotyped 
bilateral cases and controls. (B) Association area at the region on chromosome 2 and (c) association area at the region on chromosome 6. Both (B,c) −logP values 
of single nucleotide variants (SNVs) associated with bilateral SNHL are shown on the left y-axis and the recombination rates expressed in centimorgans (cM) per Mb, 
are shown on the right y-axis. Positions in Mb are on the x-axis (NCBI Build GRCh38). Linkage disequilibrium for each SNV with the top SNV, displayed as a large 
purple diamond, is indicated by its color. The plots were drawn using LocusZoom tool (http://locuszoom.sph.umich.edu/locuszoom/).
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Conditional regression analysis showed no independent associ-
ated signals in chromosome 6, and the association between this 
locus and BMD remained robust when it was adjusted to any 
variant in the region. So, according to rs4947296, we defined the 
homozygous risk genotype as CC and the protective genotype as 
TT for further studies.

The rs4947296 regulates gene expression 
in the TWeaK/Fn14 Pathway in PBMcs
We compared the gene expression profile of PBMCs from 10 
individuals according to the rs4947296 genotype (CC vs. TT). 
We demonstrated that this region is an expression quantitative 

trait locus (eQTL) in mononuclear cells, showing significant dif-
ferences in the expression levels of 973 genes (adjusted p < 0.001, 
Figure 2A; Table S1 in Supplementary Material). Selecting those 
genes showing a differential expression according to the geno-
type, pathway analysis performed by IPA® software, predicted 
the activation of several candidate pathways associated with 
TNF (Table S2 in Supplementary Material). The TWEAK/Fn14 
pathway showed 31 differentially expressed genes (DEG, 88.5%; 
p = 2.42 × 10−11). Moreover, the eQTL was also associated with 
the activation of the Death Receptor signaling pathway with 64 
DEG (68.8%; p = 8.45 × 10−11); TNFR2 signaling pathway with 
26 DEG (86.6%; p = 2.97 × 10−9), and TNRF1 signaling pathway 
with 37 DEG (74%; p = 6.69 × 10−9).
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http://www.frontiersin.org/Immunology/
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The enrichment analysis of canonical pathways in MetaCore 
(adjusted p < 0.001) also resulted in several TNF-related pathways 
for apoptosis and inflammation that contained TWEAK/Fn14 
sub-pathway (Table S3 in Supplementary Material). To gain insight 
into the possible molecular interactions that mediate TWEAK 
signaling to NF-κB, we extracted three enriched canonical path-
ways “apoptosis and survival Apoptotic TNF-family pathways,” 
“signal transduction NF-κB activation pathways,” and “apoptosis 
and survival Anti-apoptotic TNFs-NF-κB-Bcl-2 pathway” from 
MetaCore. The shortest paths from Fn14 (TNFRSF12A) to NFKB1 
genes were extracted (Figure  2B) and visualized in Cytoscape 
v.2.7.0 (30). These shortest paths involved several DEG, including 
BIRC3 and NFKBIE. Although FADD was not among these short-
est paths, it is along the TNFRSF10A-induced path that feeds into 
the TWEAK/Fn14 path, suggesting its complementary role in the 
TWEAK/Fn14 signaling.

We also validated the gene expression profile of NFKB1, 
TNFRSF12A, BIRC3, FADD, NFKBIE, FOS, CASP3, CASP6, 
APAF1, IKBKG, CYCS, and CASP9 genes in mononuclear cells 
from patients by qPCR, according to the selected genotypes 
(Figure 2C).

TWeaK induces cluster Formation and 
Proliferation in selected lymphoblasts
Lymphoblastoid cell lines proliferate forming clusters with rosette 
morphology due to the expression of adhesion molecules such 
as LFA-1 (leukocyte function antigen 1 encoded by ITGB2 gene) 
also known as CD11a/CD18 and its ligand, ICAM-1 (intercel-
lular adhesion molecule 1, CD54) in the plasma membrane. 
Interestingly, the size of the clusters showed significant differences 
according to the genotype, being smaller for the risk genotype 
(CC: 30,968.88 ± 1,960.45 µm2; TT: 103,921.33 ± 12,720.92 nm, 
p = 5 × 10−7) (Figure 3A).

When we treated the cells with TWEAK at a concentration 
of 250 ng/mL, we observed a marked increase in the size of the 
risk genotype clusters, which was not observed in the protective 
genotype (CC: 125,609.84  ±  17,502.21  µm2, p  =  2  ×  10−6; TT: 
136,132.42 ± 14,785.38 μm2, p = 0.02). This experiment shows 
that TWEAK induces a significant aggregation of LCLs in the 
carriers of the risk genotype.

Next, we compared the effect of TWEAK in the proliferation 
of selected LCLs. So, 250  ng/mL TWEAK increased the pro-
liferation rate after 48  h in both cell lines (CC p  =  0.017, TT, 
p  =  0.013; Figure  3C). This effect suggests the activation of 
the non-canonical NF-κB signaling via Fn14 receptor that we 
confirmed showing an increase expression of TNFRSF12A and 
NFKB1 genes (Figure 3B).

To investigate if the difference in the cluster formation was 
related with the differential expression of cell adhesion molecule 
genes, we measured the mRNA levels of three cell surface mark-
ers in LCLs: the integrin LFA-1 and the adhesion molecule ICAM 
which binds to integrins, as well as tight-junction protein ZO-1 
(TJP1 gene), which interacts directly with actin. We found a signifi-
cant increase in the expression of ITGB2 (p = 5 × 10−6; Figure 3B) 
and in TJP1 (p = 3.2 × 10−5) in the risk genotype, which was not 
observed in the protective genotype. The differences in clusters 

http://www.frontiersin.org/Immunology/
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8

Frejo et al. Fn14 and NFκB in MD

Frontiers in Immunology | www.frontiersin.org December 2017 | Volume 8 | Article 1739

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FigUre 2 | Continued   
Gene expression in peripheral blood mononuclear cells. (a) Heatmap of 973 differentially expressed genes (DEG). Samples and genes (columns and rows, 
respectively) are reordered on the basis of the normalized expression value and give rise to groups of genes and samples with similar expression levels, according to 
the color key. The samples (column) were clustered into two groups according to rs4947296: three individuals with CC genotype (risk) and seven individuals with TT 
genotype (protective). (B) The shortest path from Fn14 (TNFRSF12A) to NFKB genes. DEG in mononuclear cells (adjusted p < 0.001), according to the homozygous 
genotype, were used to predict involved pathways. The network was retrieved from three MetaCore pathways [“apoptosis and survival Apoptotic tumor necrosis 
factor (TNF)-family pathways,” “signal transduction NF-κB activation pathways,” and “apoptosis and survival Anti-apoptotic TNFs-NF-κB-Bcl-2 pathway”] enriched in 
our pathway enrichment analysis. Log fold change is color-coded, where red nodes indicate upregulated genes, whereas blue nodes indicate downregulated genes. 
Activation interactions are indicated by arrow heads, whereas inhibitory interactions are indicated by blunted heads. Black edges indicate physical binding 
interaction, purple edges indicate phosphorylation, and brown edges indicate ubiquitination. Genes with thick purple margin are DEG. (c) Quantitative RT-PCR 
validation of genes involved in the TWEAK/Fn14 pathway (NFKB1, Fn14, BIRC3, FADD, NFKBIE, FOS, APAF1, CASP3, CASP6, CASP9, CYCS, and IKBKG) 
(*p < 0.03, **p < 0.0005).
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size, ITGB2 and TJP1 expression, according to the genotype, are 
consistent with the hypothesis that this eQTL could regulate 
lymphoblasts adhesion and proliferation.

The rs4947296 May regulate 
Phosphorylation in nF-κB p65 subunit  
on serine 536 in lymphoblasts
We measured total and phosphorylated NF-κB p65 on serine 
536 in conditioned LCLs to determine if the variant rs4947296 
had any effect on NF-κB phosphorylation. Non-stimulated 
LCLs with the risk genotype (CC) showed a significantly higher 
amount of total NF-κB when they were compared to cells 
with the protective genotype (TT) at basal levels (Figure 4A, 
p = 0.006). Thus, when we compared risk and protective geno-
types in stimulated LCLs, we also found significant differences 
(p = 0.026). However, rs4947296 did not increase phosphoryla-
tion on S536 in NF-κB p65 subunit in the risk genotype, and 
the stimulation with TWEAK itself, did not increase NF-κB 
p65 phosphorylation in LCL (Figure 4B, for both comparisons, 
p > 0.05).

The rs4947296 Upregulates the  
Translation of nF-κB in lymphoblasts
Non-stimulated LCLs with the risk genotype (CC) showed a 
higher expression of TNFRSF12A and NFKB1 RNA (3.6 ± 0.7 and 
2.7 ± 0.7 fold higher, respectively) when they were compared to 
TT LCLs, confirming the previous results obtained in selected 
PBMC. When we stimulated both cell lines with 250 ng/mL of 
TWEAK, we found no significant differences for TNFRSF12A; 
however, the expression of NFKB1 was significantly increased 
(CC: 10.4 ± 0.8; TT 3.7 ± 0.2, p = 1.4 × 10−4).

This finding was validated by western blot at protein level 
(Figures 4C,D) finding marginally significant differences when 
comparing risk and protective genotypes at basal levels (p = 0.05), 
but not after stimulation. When we compared each group before 
and after stimulation with 250 ng/mL of TWEAK, we found sig-
nificant differences in the protective genotype (p = 0.017), but not 
in the risk genotype (p = 0.49), in accordance with the findings 
observed in ELISA.

We also performed immunocytochemistry to quantify 
TNFRSF12A and NFKB1 expression at protein level in LCLs by 
confocal microscopy (Figure 5). At basal levels, we found sig-
nificant differences in the translation of Fn14 between both cell 

lines (CC: 78.5 ± 9.6; TT 48.3 ± 3.7, p = 10−3), but no differences 
were found for NF-κB (CC: 56.2 ± 4.2; TT 45.2 ± 3.3, p = 0.06). 
However, TWEAK upregulated the translation of NF-κB sig-
nificantly in the risk LCLs (CC: p  =  0.01; TT: p  =  0.04), but 
it has no effect on Fn14 in neither of LCLs (CC: p = 0.77; TT: 
p = 0.29).

DiscUssiOn

The main finding of this study is that the SNV rs4947296 is asso-
ciated with bilateral MD. This variant is a trans-eQTL in lymphoid 
cells regulating gene expression in several genes in the TWEAK/
Fn14 pathway and it activates NF-κB, probably increasing the 
inflammatory response in MD.

Bilateral MD is a heterogeneous Disorder 
including Five clinical Variants
Bilateral MD is a severe, disabling inner ear condition, whose 
diagnosis usually requires few years of follow-up, since it is based 
on clinical criteria and no biological marker is available for its 
diagnosis (1). Moreover, BMD is a heterogeneous disorder that 
includes several clinical variants. A phenotype-driven cluster 
analysis has defined five subgroups of patients with potentially 
different etiology (39). BMD type 1 and type 2 are defined by 
diachronic or synchronic hearing loss, respectively, without 
migraine or AD; BMD type 3 includes familial MD cases and 
we have excluded them on this study; BMD type 4 is defined by 
migraine as a comorbid condition without AD, and BMD type 5 
includes all patients with a comorbid AD. Since the prevalence of 
BMD is around 25% in our cohort and BMD type 5 is found in 
11% of cases, we could estimate that the prevalence of BMD type 
5 will be ≈1/40,000 individuals. Our results confirm previous 
studies that supported a significant association between BMD, 
migraine and ADs (12, 13). Here, we describe a locus at 6p21.33 
suggesting association with BMD, being the leading signal 
rs4947296.

The Variant rs4947296 associated with 
BMD is a Trans-eQTl and regulates 
several genes in the TWeaK/Fn14 
Pathway
Our results show that rs4947296 is an eQTL in mononuclear 
cells and it regulates the expression of 31/34 genes in the 

http://www.frontiersin.org/Immunology/
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FigUre 3 | Genotype-conditioned lymphoblastoid cell lines (LCL) for 
rs4947296. (a) Proliferation assay of homozygous LCL treated with  
tumor necrosis factor-like weak inducer of apoptosis (TWEAK; 0, 50,  
100, 250, and 500 ng/mL) and measured using PrestoBlue™ (*p < 0.05). 
Comparisons between groups were achieved using a two-sided Student’s 
t-test. (B) Relative gene expression according to the genotype, after 
treatment with 250 ng/mL of TWEAK, p-values: TNFRSF12A = 0.44; 
NFKB1 = 1.36 × 10−4; ICAM = 0.91; LFA-1 = 5 × 10−6; TJP1 = 3.2 × 10−5 
(*p < 1 × 10−4, **p < 5 × 10−6) (c) Cluster size within LCLs with and without 
stimulation (**p = 5 × 10−7, *p = 0.02). CC, risk genotype; TT, protective 
genotype.
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TWEAK/Fn14 signaling pathway (Table S2 in Supplementary 
Material) and 16/51 genes in the signal transduction NF-κB 
activation pathways (Table S3 in Supplementary Material). 
The SNV rs4947296 has been previously described as one the 

most strongly SNV associated with Behcet’s disease (p < 10−12) 
in a GWAS conducted in Korean, Japanese, and Han Chinese 
populations (40–42), as well as associated with Graves’ disease 
in Chinese population (43). Our study confirms that the 
rs4947296 is a trans-eQTL regulating gene expression in the 
Fn14/TWEAK pathway in lymphoid cells, and these findings 
support a role for an abnormal innate immune response in 
the pathophysiology of BMD. The TWEAK/Fn14 pathway has 
been involved in skin autoimmune disorders. So, TWEAK/
Fn14 activation triggers Ro52-mediated photosensitization in 
cutaneous lupus erythematosus and involves the activation of 
NF-κB pathway (44). Furthermore, TWEAK/Fn14 contributes 
to the pathogenesis of bullous pemphigoid by reducing BP180 
of hemidesmosomes and activating ERK and NF-κB pathways 
(45), demonstrating a pathogenic effect on the proteins of 
intercellular junctions.

In addition, TWEAK/Fn14 pathway could also be involved in 
Behcet and Graves’ disease and it could be a potential target for 
therapy is these disorders. So, pleiotropy is a common finding 
in trans-eQTL for autoimmune disorders (46, 47), and SNVs 
in the HLA region showing trans-eQTL effects were 10-fold 
enriched (48).

The Variant rs4947296 regulates  
nF-κB-Mediated inflammation in 
lymphoid cells in BMD
TWEAK is a multifunctional cytokine that regulates multiple 
cellular responses, including angiogenesis, inflammation, cellular 
adhesion, proliferation, or apoptosis (49, 50). TWEAK activates 
signals through its receptor, Fn14, encoded by TNFRSF12A 
gene, which is highly expressed in epithelial cells and induced 
in several human diseases (51). High levels of TWEAK and/or 
Fn14 have also been found to be associated with the pathogenesis 
of rheumatoid arthritis (52), SLE (53), multiple sclerosis (54), 
or neuroinflammation (31). The binding of TWEAK to Fn14 
induces both, an acute activation of the canonical NF-κB pathway 
and a prolonged activation of the non-canonical NF-κB pathway 
(49). Furthermore, the non-canonical NF-κB pathway plays a 
key role in immunity and immune-mediated disorders as SLE 
(49). Our findings using homozygous LCLs demonstrate that 
this eQTL upregulates the expression and translation of NF-κB 
in lymphoid cells and it may influence phosphorylation on S536 
in the transactivation domain of NF-κB p65. Although our results 
were not statistically significant, they showed a trend for the risk 
genotype.

The non-canonical NF-κB pathway relies on the phosphoryl-
ation-induced p100 processing, which is triggered by signaling 
from a subset of TNFR members, including Fn14, TNFR2, 
BAFFR, CD40, LTβR, and RANK (55). Most of these signals 
are regulatory elements of the immune response and support 
the hypothesis that the allelic variants of genes of the immune 
response can modify the clinical course in MD. Previous stud-
ies have suggested that variants in NFKB1 and TLR10 genes are 
modifiers of hearing outcome in patients with uni (26) or BMD 
(56), but the relationship between TLR10 and NF-κB-mediated 
inflammation in MD is not known.
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FigUre 4 | NF-κB transcription factor protein studies in genotype-conditioned lymphoblastoid cell lines (LCLs). (a) Total NF-κB ELISA performed in homozygous 
LCL for rs4947296 at basal levels and after stimulation with TWEAK at 250 ng/mL (*p < 0.02, *p < 0.006). (B) Phosphorylation assay for NF-κB p65 on serine 536  
in homozygous LCL at basal levels and after stimulation with TWEAK at 250 ng/mL. (c) Representative NF-κB western blot of homozygous LCL before and after 
treatment with 250 ng/mL of TWEAK. (D) NF-κB western blot showing significant differences between both genotype cells at basal levels as well as differences 
within the protective genotype cells before and after stimulation (*p < 0.05). CC, risk genotype; TT, protective genotype.
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The site of nF-κB-Mediated inflammation 
in MD remains to be Defined: the Blood–
labyrinth Barrier (BlB), the endolymphatic 
sac, Fibrocytes of the spiral ligament, or/
and the Tight Junctions (TJ) at the reticular 
lamina
This study provide evidences that the risk genotype could be 
used as predictor for bilateral SNHL in MD and our findings 
support an NF-κB-mediated inflammation in MD. In addition, 
this signal is a trans-eQTL and it regulates TWEAK/Fn14 
pathway.

Although TWEAK could induce the abnormal activation 
of this pathway in MD, the site of inflammation is unknown.  
An interesting hypothesis to explore is an inflammatory damage 
of the BLB, given the role of TWEAK in maintaining the blood–
brain barrier (BBB) permeability and regulating the structure 
and function of the neurovascular unit (25) (Figure 6). Recent 
evidences suggest a role for TWEAK/Fn14 pathway in compro-
mising the BBB in neuropsychiatric SLE (57). So, TWEAK/Fn14 
interactions increase the accumulation of inflammatory cells 
in the choroid plexus, disorganizing BBB integrity and induc-
ing neuronal death in  vitro by the NF-κB signaling pathway  
(58, 59), but the role of TWEAK/Fn14 in the regulation of the 
BLB is unexplored.

A second hypothesis is that inflammation may occur in the 
endolymphatic sac, since proteomic studies have found a high 
content of immunoglobulins in the sac (15). The sac is a small 
organ located in the posterior cranial fossa and has a crucial 
role, not only in the maintenance of endolymph composition 
but also in the innate immune response (60). We hypothesize 
that, after exposure to an environmental trigger, the carriers 
of the risk genotype could have an abnormal NF-κB-mediated 
inflammatory response at the endolymphatic sac, causing an 
ionic imbalance in the endolymph leading to the accumulation 
of endolymph at the cochlear duct.

A third hypothesis will involve the increase of NF-κB in fibro-
cytes within the spiral ligament and the spiral limbus after a stress 
stimuli and the release of proinflammatory cytokines. Genetic 
mutations involving spiral ligament cells may lead to SNHL 
(61–63). Immune-mediated and acoustic trauma-mediated hear-
ing impairment may result from the vulnerability of type I and 
type II fibrocytes to acoustic trauma and systemic inflammatory 
stress, respectively (64).

The last hypothesis affects cell adhesion molecules in the 
neuro sensorial epithelium of the cochlea. The strict compartmen-
talization in the inner ear is necessary for normal hearing and is 
achieved by the TJs of the reticular lamina (65). An outstanding 
example for these interactions is established by the tight-junction 
proteins ZO-1, ZO-2, and ZO-3 that connect with the cytoplasmic 
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FigUre 5 | Fn14 and NF-κB expression in homozygous lymphoblastoid cell lines (LCLs). Confocal microscopy images showing representative clusters of LCLs with 
Fn14 and NF-κB immunolabeling after treatment with 250 ng/mL of TWEAK. CC, risk genotype; TT, protective genotype.
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FigUre 6 | Inflammation model in Meniere’s disease (MD). (a) TWEAK/Fn14 pathway activates non-canonical NF-κB signaling in lymphoid cells in MD. (B) Potential 
sites of inflammatory damage are the blood–brain barrier (BBB), the endolymphatic sac, the spiral ligament, and the reticular lamina in the neurosensory epithelium 
of the cochlea.
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