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Interferons (IFNs), which were discovered a half century ago, are a group of secreted 
proteins that play key roles in innate immunity against viral infection. The major sig-
naling pathway activated by IFNs is the Janus kinase/signal transducer and activator 
of transcription (JAK/STAT) pathway, which leads to the expression of IFN-stimulated 
genes (ISGs), including many antiviral effectors. Viruses have evolved various strategies 
with which to antagonize the JAK/STAT pathway to influence viral virulence and patho-
genesis. In recent years, notable progress has been made to better understand the 
JAK/STAT pathway activated by IFNs and antagonized by viruses. In this review, recent 
progress in research of the JAK/STAT pathway activated by type I IFNs, non-canonical 
STAT activation, viral antagonism of the JAK/STAT pathway, removing of the JAK/STAT 
antagonist from viral genome for attenuation, and the potential pathogenesis roles of 
tyrosine phosphorylation-independent non-canonical STATs activation during virus 
infection are discussed in detail. We expect that this review will provide new insight into 
the understanding the complexity of the interplay between JAK/STAT signaling and viral 
antagonism.

Keywords: interferons, Janus kinase/signal transducer and activator of transcription signaling, Janus kinases, 
signal transducer and activator of transcriptions, viral antagonism, viral attenuation

iNTRODUCTiON

Interferons (IFNs) are a group of secreted proteins that play key roles in host antiviral immunity. 
IFNs are typically induced by the activation of host pattern-recognition receptors (PRRs), mainly 
RIG-I-like receptors (RLR) and toll-like receptors (TLR), during viral infection (1, 2). To date, 
three types of IFNs (I, II, and III) have been identified. Type I IFNs (referred to as IFNs in this 
review) compose the largest IFN family (3). Type II IFNs comprise only IFN-γ, which is unrelated 
to type I IFNs because it uses different receptors and is encoded by a different chromosomal locus 
(3, 4). Type III IFNs were recently discovered and comprise IFN-λ1, IFN-λ2, IFN-λ3, and IFN-λ4 
(4, 5). IFN-λ signals through a unique receptor but activates the same pathway as that of type I 
IFNs (4, 6, 7). The classification of different IFN types along with their corresponding receptors 
is summarized in Table 1.
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FigURe 1 | Protein domains of Janus kinase (JAK) and signal transducer and activator of transcription (STAT). (A) Structure illustration of structural and functional 
domains in JAK. JAKs share seven regions of high homology [Janus homology domains (JHD) 1–7], JHD1 has been shown to encode the kinase while JHD2 
represents a pseudo-kinase domain to regulate JH1 catalytic activity. (B) Structure illustration of structural and functional domains in STAT. All STATs share six 
conserved domains, including an N-terminal domain, a coiled-coil domain, the DNA-binding domain, a linker domain, an Src homology 2 (SH2) domain, and 
C-terminal transactivation domain. See text for details.

TABle 1 | Classifications of interferons (IFNs) and their receptors.

Type Subtype Receptor

Type I IFN-α (13 subtypes) IFNAR1 and IFNAR2
IFN-β, IFN-ε, IFN-κ, and IFN-ω
IFN-δ (swine), IFN-τ (ruminant), and IFN-ζ (mice)

Type II IFN-γ IFNGR1 and IFNGR2

Type III IFN-λ1, IFN-λ2, IFN-λ3, and IFN-λ4 IFNLR1 and IL-10R2
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All types of IFNs are capable to activate the Janus kinase/signal 
transducer and activator of transcription (JAK/STAT) pathway. 
In this review, recent progress of canonical or non-canonical 
activation JAK/STAT pathway, viral antagonism of the JAK/
STAT pathway, removing of the JAK/STAT antagonist from viral 
genome for virus attenuation, and the potential pathogenesis 
roles of tyrosine phosphorylation-independent non-canonical 
STATs activation during virus infection are discussed in detail 
to provide new insight to understand the interplay between JAK/
STAT signaling and viral antagonism.

iFN-ACTivATeD CANONiCAl JAK/STAT 
PATHwAY

Like other cytokines, IFNs bind their receptors and lead to the 
activation of certain signaling pathways, mainly the JAK/STAT 
pathway (8). Based on analysis of the flanking 5′-regions of genes 
locus in response to IFN, an IFN-stimulated response element 
(ISRE) was identified (9, 10). Probing the lysate of IFN-treated 
cells using ISREs, a cellular factor (named ISGF3) consisting of 
four preexisting proteins with sizes of 48, 84, 91, and 113 kDa 
was identified (10). Three of the four proteins with sizes of 91, 
84, and 113  kDa were thought to belong to the same protein 
family and are currently known as STAT1α, STAT1β, and STAT2, 
respectively. The 48-kDa protein was later renamed interferon 
regulatory factor 9 (IRF9) (11). The size differences of STAT1α and 
STAT1β are due to alternative splicing of the same gene product 

(12). Moreover, the involvement of a kinase in IFN-α-induced 
IFN-stimulated gene (ISG) expression led to the discovery of the 
JAK family and STAT phosphorylation (13).

There are four members of the JAK family: JAK1, JAK2, JAK3, 
and tyrosine kinase 2 (TYK2). They are all characterized as hav-
ing a C-terminal catalytic domain and a related, but enzymati-
cally inactive, pseudo-kinase or kinase-like domain (14). They 
also share sequence similarity in five additional domains in the 
N-terminal region (15). The seven domains are now called Janus 
homology domains (JHD) 7 to 1 from the N- to C-terminal region 
of the JAKs (15). The four JHDs in N-terminal regions of JAKs 
(JHD7 to JHD4) are also called band 4.1 domains (C-terminus 
of JAKs) due to their homology to the band 4.1/ezrin–radixin–
moesin protein family (16). The band 4.1 domains and Src 
homology 2 (SH2) domain (JHD5) are responsible for receptor 
binding (17). The pseudo-kinase domain (JHD2) is thought to 
regulate the kinase activity of JAKs via an interaction with the 
kinase domain (JHD1) (18).

The STAT family in mammalian hosts has seven members: 
STAT1, 2, 3, 4, 5A, 5B, and 6 (19). Sequence analysis shows 
remarkable similarity among the STAT genes, with the excep-
tion of STAT2 (19). All STATs share a very similar structure: an 
N-terminal domain, a coiled-coil domain, a DNA-binding domain 
(DBD), a linker domain, an SH2 domain, and a transactivation 
domain (TAD) (20). Schematic illustration of JAKs and STAT 
protein structure is listed as Figure 1. However, isoforms result-
ing from similar patterns of RNA splicing or protein proteolytic 
processing were reported for all STATs except STAT2 (21–24). 
These STAT isoforms lack the C-terminal TAD domain, which 
implies a regulatory role for STAT activation (22, 25, 26).

Janus kinases are generally non-covalently associated with the 
cytoplasmic tail of specific receptors. Upon cytokine binding, 
receptor dimerization or oligomerization leads to JAK apposi-
tion and autophosphorylation on tyrosine residues, releasing 
their intrinsic catalytic activity. Tyrosine phosphorylation of 
cytokine-receptor cytoplasmic domains by activated JAKs then 
provides binding sites for the SH2 domains of the STAT proteins. 
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TABle 2 | Signal transducer and activator of transcription (STATs) for different 
cytokine signaling.

Type Cytokines

STAT1 Type I, type II, and type III interferons (IFNs)

STAT2 Type I, type II, and type III IFNs

STAT3 IL-6 (IL-6, IL-11, IL-31, LIF, CNTF, CLC/CLF, NP, CT1, 
and OSM) and IL-10 (IL-10, IL-19, IL-20, IL-22, IL-24, 
and IL-26) families, G-CSF, leptin, IL-21, and IL-27

STAT4 IL-12

STAT5A and STAT5B IL-3 family (IL-3, IL-5, and GM-CSF), IL-2 family (IL-2, 
IL-7, TSLP, IL-9, IL-15, and IL-21), growth hormone, 
Epo (erythropoietin), and Tpo (thrombopoietin)

STAT6 IL-4 and IL-13
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The STATs are then recruited to the JAKs, whereupon they 
are phosphorylated at a tyrosine residue (near residue 700 of 
their 750–850 aa-long sequence) (15). Upon activation, STAT/
STAT interactions occur immediately through reciprocal SH2 
interactions (27). All STATs are able to form homodimers, and 
the formation of STAT heterodimers is different depending on 
cytokines activating upstream signaling (15, 28).

STAT1 and STAT2 are the major players in type I IFN-mediated 
signaling (28). Other complexes induced by type I IFNs include 
STAT1–STAT1, STAT3–STAT3, STAT4–STAT4, STAT5–STAT5, 
and STAT6–STAT6 homodimers as well as STAT1–STAT3, 
STAT1–STAT4, STAT1–STAT5, STAT2–STAT3, and STAT5–
STAT6 heterodimers (28). Karyopherin α1 (KPNA1) is the 
essential importin for the nuclear transport of phosphorylated 
STAT1 (29). STAT1 possesses a non-classical NLS, and KPNA1 
binds between two STAT1 monomers, with two major binding 
determinants in the SH2 and DBDs (30). In addition to mediating 
IFN signaling, STATs are also responsible for transducing signals 
for several families of cytokines (Table 2).

TYROSiNe PHOSPHORYlATiON-
iNDePeNDeNT NON-CANONiCAl STAT 
ACTivATiON

The phosphorylation of tyrosine residues (near residue 700) in 
STATs is generally considered an essential step in the canonical 
activation of the JAK/STAT pathway induced by IFN or other 
cytokines (31). However, STATs can also be phosphorylated on 
serine residues in the C-terminal TAD (31). Initially, phospho-
rylation of serine residue in the TAD domain was considered 
to contribute to the maximal transcriptional activity of STAT in 
addition to tyrosine-dependent STAT activation (32). However, 
in recent years, STATs without tyrosine phosphorylation have 
been found to undergo continuous nuclear import/export and to 
contribute to alternative gene expression as non-canonical STAT 
activation (33, 34). It was shown that EBV the can specifically 
promote the expression of several ISGs including STAT1 without 
stimulating IFN induction or JAK/STAT activation but depends 
its early lytic nuclear protein SM protein (35). This observation 
challenges the canonical model of STATs activation, which 
generally views expression of ISGs as a consequence of STATs 
activation requires tyrosine phosphorylation.

Moreover, it has been demonstrated that unphosphorylated 
STAT1 and STAT2 with IRF9 can form unphosphorylated ISGF3 
(U-ISGF3) (36). U-ISGF3 formation requires high levels of 
IRF9, STAT1, and STAT2 without tyrosine phosphorylation, and 
U-ISGF3 could also be induced by low level IFN-β. It was pro-
posed that phosphorylated ISGF3 drives the first rapid-response 
phase, while U-ISGF3 drives the second prolonged response by 
binding to distinct ISREs, which are different from the ISREs in 
the rapid phase (36). Moreover, recent reports also demonstrated 
that U-ISGF3 drives the constitutive expression of ISGs to protect 
against viral infection under homeostatic conditions (37, 38). In 
addition to U-STAT1 and U-ISGF3, tyrosine unphosphorylated 
form of STAT as transcription activator has been reported for other 
STATs as well and is proposed to play roles in cytokine signaling, cell 
proliferation, hematopoietic differentiation, and cancer prognosis 
(34, 39–43). Moreover, it appears that unphosphorylated STATs 
other than STAT1/2 can form homodimers or heterodimers (41).

In addition to unphosphorylated STATs, mono-phosphorylation  
of the serine residues of different STATs has been reported (as serine 
phosphorylation of the TAD without tyrosine phosphorylation) 
in recent years (31, 44), which represents a novel non-canonical 
pathway of STAT activation (45). Unlike JAKs inducing tyrosine 
phosphorylation, the kinase involved in the serine phospho-
rylation of STATs is still unclear and might be involve the p38 
MAPK pathway or occur via ERK or cyclin-dependent kinase 8 
(CDK8) (31, 46–48). Serine mono-phosphorylation of STAT1 has 
been investigated more often than that of other STATs (49). In a 
mouse model of bacterial infection, a modest gain-of-function 
in antibacterial immunity was found in a STAT1Y701F mutant 
compared with that in Stat1−/− mice (33, 49), suggested that serine 
mono-phosphorylated STAT1 at S727 site might contribute the 
partial restoration of antibacterial immunity in STAT1Y701F 
mutated mice. Notably, a STAT1Y701F mutant partially retained 
NK cell cytotoxicity, in contrast to a complete loss in Stat1−/− mice. 
However, the NK maturation defect in the STAT1Y701F mutant 
was similar to that found in Stat1−/− mice. A single mutation of 
serine phosphorylation (STAT1-S727A) enhances NK  cell cyto-
toxicity against a range of tumor cells (50, 51). In acute myeloid 
leukemia (AML), it appears that serine mono-phosphorylation 
and nuclear translocation of STAT1 were promoted by ERK, with 
certain chemokines and ISGs upregulated by STAT1-S727 (48). 
Moreover, a higher level of serine mono-phosphorylation of STAT5 
was found in AML and appears to be CDK8 dependent (52).

The involvement of STAT2 in non-canonical STAT activa-
tion is also interesting. Phosphorylation of STAT2 at serine 
734 appears to negatively regulate the IFN-α-induced antiviral 
response (53). However, when IFN stimulation is lacking, STAT2 
(unphosphorylated form) constitutively binds to activated STAT1, 
thus specifically precluding the nuclear translocation of STAT1 in 
response to IFN-γ, IL-6, and IL-27 (54). Moreover, STAT2 can 
form an ISGF3-like complex with IRF9 in the absence of STAT1 
to evoke a prolonged ISGF3-like transcriptional response and 
antiviral activity (55).

The current understanding of tyrosine phosphorylation- 
independent non-canonical STAT activation is still limited, and 
more investigation is needed. The existing literature presents investi-
gations of U-STAT that mainly focus on tyrosine phosphorylation 
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and rarely on serine phosphorylation (38, 56, 57). However, it is not 
known whether the function of the serine mono-phosphorylation 
of STATs correlates with U-STATs or the transcription complex 
such as U-ISGF3 (44). It is also unclear whether U-STATs and 
serine mono-phosphorylated STATs are functionally equal or 
whether they actually have unique functions. Therefore, the func-
tions of U-STATs and serine mono-phosphorylated STATs should 
be delineated in future studies. Moreover, except for serine phos-
phorylation in the TAD domain of STATs, more phosphorylation 
sites in STATs have been reported, such as serine 287, threonine 
(T) 800, and T597 in STAT2 (58–60). The functions of these novel 
phosphorylation sites and their correlation with non-canonical 
STAT activation will be further explored in the next decade.

RegUlATiON OF THe JAK/STAT 
PATHwAY

Protein Regulators of the JAK/STAT 
Pathway
As they are essential mediators of cytokine or hormone signaling, 
the activation of STATs is tightly regulated. The suppressor of 
cytokine signaling (SOCS) family comprises well-defined regula-
tor of the JAK/STAT pathway (61), including SOCS1 to SOCS7 
and CIS (cytokine-induced SH2 containing protein) (62). All 
SOCS proteins share a common structure with an SH2 domain 
and a C-terminal SOCS box domain (62). The SOCS box domain 
is critical for the proteasome-mediated degradation of SOCS-
associated proteins (62). Meanwhile, SOCS1 and SOCS3 contain 
an additional kinase inhibitory region for the inhibition of kinase 
activity (63). Therefore, SOCS members inhibit JAK/STAT via 
various routes, such as blocking STAT recruitment to the cytokine 
receptor, targeting STATs for proteasome degradation, binding to 
JAKs, and targeting JAKs for proteasome degradation (64–66).

In addition to the well-defined SOCS family, JAK/STAT 
signaling can also be regulated by cysteine-based protein tyrosine 
phosphatases (PTPs), such as by the dephosphorylation of pTyr 
residues in the JAK/TYK activation loop or phosphorylation 
sites in the cytoplasmic domains of the cytokine receptors (67). 
However, the specificity and detailed mechanism of the PTP-
mediated regulation of JAK/STAT still require further investiga-
tion. The protein inhibitor of activated STATs (PIASs) is another 
class of JAK/STAT regulators but is proposed to have more a 
complicated function due to their function as SUMO E3 ligases 
(68–70). The SUMOylation of STATs by PIAS has also been iden-
tified as a modulatory mechanism (71, 72). It was demonstrated 
that the SUMOylation of STAT1 obstructs the phosphorylation of 
a proximal tyrosine residue, which leads to semi-phosphorylated 
STAT dimers, which competes with their fully phosphorylated 
counterparts and interferes with the JAK/STAT pathway (72).

Posttranslational Modification  
(PTM) of STATs
In addition to the SUMOylation of STATs by PIAS, other PTMs 
have been suggested to regulate STAT activation both positively 
and negatively (73). The acetylation of STAT1, STAT2, STAT3, 
STAT5b, and STAT6 has been identified and reviewed elsewhere 

(74). The acetylation of STATs is dependent on the balance between 
histone deacetylases (HDACs) and histone acetyltransferases, such 
as CBP/p300 (74). Generally, the acetylation of STATs increases  
the DNA-binding affinity and promotes transcription activation 
and STAT dimerization, as acetylation of STATs can occur at vari-
ous lysine residues located in different domains (74, 75). Moreover, 
it is interesting that SUMOylation and acetylation can occur on the 
same lysine residue in STAT5 (lysine 696) and are mutually exclu-
sive with each other (76, 77), which suggests that SUMOylation 
and acetylation might maintain a balance in STAT function.

The arginine- and lysine-based methylation of STATs is another 
method of regulating STAT activation (78), but it is complicated 
by both negative and positive roles for STAT activation. Arg-31 
methylation was shown to be required for STAT1 transcriptional 
activation (79). However, a later study reported that the inhibition 
of STAT1 arginine methylation at Arg-31 results in a prolonged 
half-life of STAT1 tyrosine phosphorylation (80), which suggests 
that Arg-31 methylation negatively regulates STAT1 activation. 
Moreover, methylation at Arg-27 of STAT6 is necessary for opti-
mal STAT6 phosphorylation, nuclear translocation, and DNA-
binding activity (81). Recently, a new methylation site in STAT1 
(Lys-525) was identified that is required for STAT1-mediated 
antiviral immunity (82). Moreover, STAT3 is reversibly methyl-
ated on Lys-140 and Lys-180 by the histone methyl transferases 
SET9 and EZH2, respectively (83, 84). Mass spectroscopy analysis 
shows that unphosphorylated STAT3 (U-STAT3) is acetylated on 
Lys-685, and the integrity of Lys-685 is required for the expres-
sion of most U-STAT3-dependent genes (85).

In addition to methylation and acetylation, ISGylation—the 
conjugation of targets by interferon stimulated gene 15 (ISG15, 
an ubiquitin-like protein)—has been shown to positively regulate 
IFN signaling (86, 87). An earlier study revealed that mice lacking 
UBP43, a protease that removes ISG15 from conjugated targets, 
are hypersensitive to type I IFN (88). A recent study suggested 
that ISGylation of STAT1 increases the stability of STAT1 and 
prevents the premature termination of the immune response in 
LPS-stimulated microglia (89).

The PTM of STATs still requires additional investigation 
because cross talk between methylation, SUMOylation, and acet-
ylation remains unclear. Moreover, a recent study demonstrated 
that the inhibition of HDAC enhances STAT acetylation but 
blocks NF-κB signaling during renal inflammation and fibrosis  
in haplotype Npr1+/− male mice (90). Therefore, cross talk between 
the JAK/STAT pathway and the NF-κB pathway under the same 
PTM conditions is complicated and requires further exploration. 
Although dysregulation of PTMs in STATs during viral infec-
tion has been reported, and modulation of STATs PTM may be 
employed by virus to evade from antiviral responses mediated 
by IFNs (91, 92), there has been little investigation regarding 
whether virus infection can affect the PTMs of STATs to regulate 
the JAK/STAT pathway.

Regulation of the JAK/STAT Pathway via 
Host MicroRNAs (miRNA)
Host miRNAs are small non-coding RNAs ~22 nucleotides in length 
that control gene expression by binding to the 3′-untranslated  
region of a target mRNA, thereby affecting mRNA stability and/or 
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TABle 3 | List of microRNA (miRNA) regulating Janus kinase/signal transducer 
and activator of transcription signaling (JAK/STAT) pathway with confirmed 
targets.

Targets miRNA no. Reference

Interferons 
receptors

miRNA-29a; miRNA-208b; and miRNA-499a-5p (101, 102)

JAK1 miRNA-30c and miRNA-373 (103, 104)
JAK2 miRNA-216a and miRNA-101 (105, 106)
STAT1 miRNA-450a-5p, miRNA-28-5p, miRNA-145,  

miR-146a, miR-150, and miR-223
(107–110)

STAT2 miR-221/222 (111)
STAT3 miR-124 (112)
STAT4 miR-132, miR-212, and miR-200a (113).
STAT5b miR-150 (114)
SOCS2 miRNA-424-5p (115)
SOCS3 miRNA-122 (116)
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translation (93, 94). The regulation of the JAK/STAT cascade by 
miRNA emerges as a novel mechanism for the development and 
progression of many diseases (95). The miRNAs with a confirmed 
target in the JAK/STAT pathway are summarized in Table 3. In 
addition to miRNAs with well-defined targets, certain miRNAs 
with unidentified targets contribute to enhanced or attenuated 
IFN signaling, such as miRNA-26a, miRNA-146a, and miRNA-9 
(96–99). A recent report showed that miRNA-551b-3p binds to 
the STAT3 promoter and promotes STAT3 expression, which 
enhances STAT3-mediated signaling without directly targeting 
mRNA encoding proteins in STAT3 signaling (100), implying 
a novel mechanism for regulating the JAK/STAT pathway via 
miRNA.

Moreover, since most miRNAs as JAK/STAT regulators were 
discovered in cancer cells or other disease conditions (i.e., virus 
infection, apoptosis, and inflammation), it remains unknown if 
these miRNAs represent a universal role for regulating the JAK/
STAT pathway under normal physiological conditions or act 
only under the diseased states. Meanwhile, other non-coding 
RNA molecules, such as long non-coding RNA and circular 
RNA, have been confirmed to play a role in the regulation of the 
innate immune response (117–120). Their roles in regulation of 
the JAK/STAT pathway remain unknown and require further 
investigation.

viRAl iNTeRFeReNCe OF iFN-
ACTivATeD JAK/STAT SigNAliNg

Blocking the Binding of iFNs to Their 
Receptors or Targeting iFNs Receptors
Viruses employ various strategies to antagonize the JAK/STAT 
pathway and facilitate their own replication (Figure 2). The bind-
ing of IFNs to their receptors is the first step in the activation of 
JAK/STAT signaling. Vaccinia virus encodes the secreted protein 
B18R that possesses a region with three immunoglobulin domains 
with high levels of homology to IFNAR1, and B18R is able to 
serve as a soluble receptor to prevent an IFN-mediated antiviral 
effect (121, 122). Similar proteins (ICP27) were identified from 
HSV-1 (123). Although no RNA virus-encoded decoy receptor 

has been identified, measles virus accessory proteins C and V can 
form a complex with IFNAR1 to block the activation of JAK1 
(124). Similarly, the regulator of IFN function protein of Kaposi’s 
sarcoma-associated herpesvirus (KSHV) blocks the IFN response 
by directly interacting with IFNAR (125). Moreover, the latent 
membrane proteins LMP2A and LMP2B of the Epstein–Barr 
virus modulate IFN signaling by accelerating IFNAR turnover 
(126). Meanwhile, influenza A virus NS1 reduces IFNAR expres-
sion at the transcriptional level (127).

Downregulation or Degradation of 
Molecules involved in JAK/STAT Signaling
The downregulation of molecules responsible for IFN-activated 
signal transduction is a common mechanism employed by 
viruses. HCMV can decrease the JAK1 level (128). HSV-1 appears 
to degrade cellular mRNAs, leading to a partial reduction of JAK1 
and STAT2 (129). E1A of adenovirus causes a reduction of STAT1 
and IRF9 (130). HCV degrades STAT1 and STAT3 (131, 132). 
Furthermore, porcine epidemic diarrhea virus targets STAT1 for 
the proteasome-dependent degradation (133).

It appears that most members of the Rubulavirus genus of the 
subfamily Paramyxovirinae have acquired the ability to degrade 
STAT1 or STAT2 by their accessory V protein, which is encoded 
by the P gene (134). The V protein of human parainfluenza virus 
2 causes the degradation of STAT1 and STAT2 (135–138). The 
DENV NS5 protein can also mediate STAT2 degradation via the 
ubiquitin-proteasome pathway (139), consistent with a similar 
report regarding NS5 of the Zika virus (ZIKV), another flavivi-
rus (140, 141). The RSV NS1 protein induces the degradation of 
STAT2 via an elongin-cullin E3 ligase (142). The 3C-like protease 
encoded by porcine deltacoronavirus nsp5 cleaves STAT2 at the 
Q685 and Q758 sites (143).

As a component of ISGF3, IRF9 is also targeted by viruses. 
Rotavirus NSP1 mediates the degradation of IRF9 (144). In  
addition to blocking STAT2 phosphorylation, the varicella-zoster 
virus (VZV) ORF63 product induces the degradation of IRF9 
(145). HCMV reduces the levels of JAK1 and IRF9 in human 
embryonic lung fibroblasts (146).

Direct interaction with JAK/STAT Signaling 
Molecules
Some viruses encode proteins to interact with both JAKs and 
STATs to inhibit the phosphorylation of STATs. The E6 protein 
of HPV18 (human papilloma virus) interacts with the JH6–JH7 
domains of Tyk2, which are critical for Tyk2 and IFNAR1 inter-
action, to prevent Tyk2 phosphorylation (147). The V protein 
of paramyxovirus and the measles virus binds JAK1 to inhibit 
downstream signaling (148, 149). The accessory factors (V, C, P, 
etc.) expressed by the P gene of paramyxoviruses disrupt STAT 
signaling via various mechanisms, including direct interaction 
with STATs (134). The C protein of the Sendai virus inhibits 
IFN signaling via binding STAT1 to block the formation of a 
heterodimer or homodimer (150). Meanwhile, C protein is able 
to induce its mono-ubiquitination and degradation of STAT1 
(151). Non-structural proteins of severe fever with the throm-
bocytopenia syndrome virus interact with STAT2 and sequester 
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STAT1/STAT2 and STAT1 into viral inclusion bodies to impair 
IFN signaling (152). Moreover, VP24 of the Ebola virus can form 
a complex with STAT1 via a novel, pyramidal fold structure, as 
revealed by structure analysis (153).

Blocking the Phosphorylation of the JAKs 
and STATs
Since the phosphorylation of STAT1 and STAT2 by JAK1 and 
Tyk2 is the key step for their activation, both JAKs and STATs 
are frequently targeted by virally encoded antagonists to inhibit 
their activation. RSV impairs IFN-β-mediated STAT1 signaling 
through the inhibition of TYK2 phosphorylation (154). Similarly, 
VP40 of the Marburg virus antagonizes JAK1 and STAT1 phos-
phorylation (155). All flaviviruses examined to date, including the 
West Nile virus (WNV), Japanese encephalitis virus, Langat virus, 
and Dengue virus, can suppress JAK/STAT signaling by inhibit-
ing JAK phosphorylation (156–159). This suppression blocks the 

downstream phosphorylation of STAT1 and STAT2. In addition, 
some viruses directly target STATs to inhibit phosphorylation. 
HCV NS5A disrupts STAT1 phosphorylation and suppresses 
IFN signaling (160, 161). Rotavirus NSP1 inhibits IFN-mediated 
STAT1 phosphorylation (162).

Viruses also encode specific phosphatases to dephosphorylate 
STAT1 at tyrosine 701 to inhibit IFN signaling. Vaccinia virus 
VH1 blocks both IFN-α- and IFN-γ-stimulated signaling (163), 
and the dimerization of VH1 is essential for its phosphatase activ-
ity on STAT1 (164). Moreover, VH1-like phosphatases have been 
identified from other DNA viruses, such as the highly virulent 
variola virus (Smallpox) and parapoxvirus orf virus, which belong 
to the poxvirus and baculovirus families, respectively (165, 166). 
VZV blocks STAT2 phosphorylation via its ORF63 product 
(145). The HSV-1 immediate-early gene ICP27 downregulates 
STAT1 phosphorylation by retaining STAT1 in the nucleus via 
an unknown mechanism (167).
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Blocking the Formation and Nuclear 
Translocation of iSgF3
Nuclear translocation of the ISGF3 complex is another antagoni-
zing target for viruses. The multifunctional P protein of the rabies 
virus inhibits STAT1 nuclear translocation by directly interacting 
with STAT1 but without affecting STAT1 phosphorylation (168). 
As KPNA1 is the essential importin for the nuclear transport 
of phosphorylated STAT1 (29), it has been frequently targeted. 
VP24 of the Ebola virus is known to bind to KPNA1 to disrupt 
the interaction between phosphorylated STAT1 and KPNA1, 
thereby preventing STAT1 nuclear translocation (169). VP24 
interacts with KPNA1 but not KPNA2, KPNA3, or KPNA4 (169). 
However, a recent report suggested that VP24 binds KPNA5 to 
antagonize IFN signaling (170). Moreover, another study sug-
gested that VP24-karyopherin-α binding affinities differ among 
different Ebola virus species (171), which may contribute to the 
differences in virulence.

The porcine reproductive and respiratory syndrome virus 
(PRRSV) nsp1β protein is another KPNA1 antagonist that 
inhibits IFN signaling (172, 173). However, no direct interaction 
between KPNA1 and nsp1β of PRRSV has been detected (173). 
Instead, nsp1β is able to induce the ubiquitin-mediated degrada-
tion of KPNA1, thus leading to the blockage of ISGF3 nuclear 
transportation (173). The 3Cpro of FMDV contributes to the deg-
radation of KPNA1 in ubiquitination depended manner as that 
of nsp1β of PRRSV to block STAT1/STAT2 nuclear translocation 
(174). Moreover, a recent report demonstrated that enterovirus 
71 suppresses IFN responses by inducing KPNA1 degradation in 
a manner similar to that of PRRSV (175).

In addition, papillomavirus E7 oncoprotein binds to IRF9 to 
block the formation of the ISGF3 complex (176). Moreover, the 
mu2 protein of reovirus blocks the nuclear accumulation of IRF9, 
a novel mechanism for the inhibition of IFN signaling (177).

Targeting Transcription Cofactors  
or Activated iSgF3
The activation of ISG transcription by ISGF3 is the last step 
of IFN signaling and involves transcription cofactors or 
coactivators. In contrast to the upstream steps, virus-mediated 
inhibition of transcription activation of ISGF3 has been less 
investigated. NS1 of a porcine bocavirus inhibits the DNA-
binding activity of ISGF3 by interacting with the DBD of IRF9 
(178). The TAX protein of human T-cell leukemia virus type 1 
competes with ISGF3 for the coactivator CBP/p300, thus inhib-
iting IFN signal transduction (179). Similarly, the tegument 
protein VP16 blocks the recruitment of the coactivator CBP to 
inhibit IFN induction and NF-κB activation (180). Moreover, 
HCV inhibits the binding of ISGF3 to the ISRE element via its 
core protein (181).

Regulation of iFN Signaling by Hijacking 
Host miRNAs or virally encoded miRNAs
The regulation of proteins in the JAK/STAT cascade by miRNAs 
is a novel mechanism involved in the progression of many dis-
eases (95, 182, 183). For example, miR-30c upregulated during 
PRRSV infection dampens signaling by IFNs by targeting JAK1 

(104). For HCV, the upregulation of miRNA-373 suppresses 
JAK1 and IRF9 expression (103). HCV-induced miR-208b 
and miR-499a-5p also dampen type I IFN signaling in HCV-
infected hepatocytes by directly downregulating the expression 
of IFNAR (101). RSV non-structural protein 1 induces miR-29a 
to downregulate IFNAR (102). Human T-cell lymphotropic 
virus type 1 (HTLV-1) downregulates miR-150 and miR-223 to 
promote the expression of STAT1, as constitutive activation of 
STAT1 is required for the continuous proliferation of HTLV-
1-transformed cells (109). Meanwhile, certain miRNAs with 
unidentified targets contribute to enhanced IFN signaling. miR-
26a is such a miRNA (96, 97). Influenza A virus downregulates 
miR-26a to block IFN signaling (184). miR-122 contributes to 
IFN signaling by inhibiting SOCS1 expression. HBV suppresses 
miR-122 to inhibit IFN signaling (116).

Recently, a novel viral-encoded miRNA was shown to regu-
late IFN signaling. Virally encoded miRNA targeting molecules 
involved in IFN induction pathways (RLR and TLR signaling) 
have been reported for years (185–187). However, EBV miRNA 
BART16 is the first virally encoded miRNA that has been shown to 
interfere with type I IFN signaling via targeting the CREB-binding 
protein, a key transcriptional coactivator in EBV-transformed 
B cells and gastric carcinoma cells (188). Because the expression 
of virally encoded miRNAs in herpesvirus or other large DNA 
viruses is common, additional JAK/STAT-antagonizing miRNAs 
from these viruses may be identified in the future.

Hijacking Host Regulators of JAK/STAT 
Signaling
The activation of the JAK/STAT pathway is regulated by the SOCS 
protein family, which can be functionally “hijacked” by viruses to 
promote virus replication (189). The core protein of HCV induces 
SOCS3 expression when overexpressed in HepG2 cells (190). A 
further study confirmed that SOCS3 expression is increased in 
HCV-infected HepG2 cells and in the peripheral lymphocytes 
of HCV-infected individuals (191). Similarly, influenza A virus 
induces SOCS3 expression (192), and RSV upregulates SOCS1 
(193). Furthermore, the Tat protein of HIV-1, a regulatory 
protein for viral transcription enhancement, contributes to the 
immune evasion of HIV by inducing SOCS3 expression (194). 
For DNA viruses, HSV-1 induces the upregulation of SOCS1 in 
keratinocytes (195). HBV X protein increases SOCS3 and protein 
phosphatase 2A (196).

viral Antagonism of Other STATs
In addition to STAT1 and STAT2, the other STATs activated by 
type I IFNs can be inhibited by virus infection, which has been 
less investigated; the role of other STATs in the IFN-mediated 
response still requires further investigation. Among the other 
STATs, STAT3 attracts more attention because both U-STAT3 
and phosphorylated STAT3 are involved in the antiviral response 
activated by IFNs, and STAT3 specifically induces a subset of 
IFN-α-driven ISGs (197). OSM, a member of the IL-6 family, has 
also been shown to induce an antiviral response via activation of 
JAK/STAT3 signaling (34, 198). STAT3 is required for the optimal 
type I IFN response to HSV-1 in mice (199).
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Viruses affecting JAK activation inhibit the phosphorylation 
of STAT3 (200). Influenza A virus NS1 and human metapneu-
movirus impede STAT3 phosphorylation in infected cells and 
simultaneously block type I IFN signaling (127, 201). In addition, 
tyrosine dephosphorylation of STAT3 at position Y705 in SARS 
coronavirus-infected Vero E6 cells was observed (202).

Some viruses directly target STAT3. The HCMV 72-kDa 
immediate-early 1 protein promotes the nuclear localization 
of STAT3 without robust phosphorylation, which disrupts the 
IL-6-induced expression of STAT3-dependent genes (203). 
The V protein of the mumps virus induces STAT3 ubiquitina-
tion and degradation to block IL-6 and v-Src signaling (204). 
Further investigation demonstrated that a single mutation of 
E95D in the V protein disengages its STAT3-targeting abil-
ity (205). The V protein of the measles virus also interferes 
with STAT3 activation via direct interaction (206). The P 
protein of the rabies virus binds activated STAT3 and inhibits 
its nuclear accumulation (207). PRRSV nsp5 induces the 
ubiquitin-mediated degradation of STAT3 to inhibit OSM-
activated JAK/STAT3 signaling (198). HCV promotes STAT3 
ubiquitination and degradation in a similar manner to PRRSV 
(132). Meanwhile, HCV increases SOCS3 expression, which is 
correlated with decreased STAT3 (208).

Less attention has been paid to the virally mediated antago-
nism of STAT4, 5, and 6. Currently, there is no virally encoded 
antagonist identified for these STATs. However, the available data 
suggest an important role for these STATs in the IFN-mediated 
response (209–211). STAT4 promotes IFN induction by block-
ing the CHIP-mediated ubiquitination and degradation of 
RIG-I (212). Moreover, the rs7574865 polymorphism of STAT4  
(GG genotype) is significantly associated with a reduction in 
the sustained virologic response rate in patients receiving IFN 
therapy (213). However, the involvement of STAT4, 5, and 6 in 
IFN signaling still requires further investigation.

JAK/STAT ANTAgONiSTS AND viRUS 
viRUleNCe: iMPliCATiONS FOR viRUS 
ATTeNUATiON

Since the discovery of virally encoded IFN antagonists, it has 
been proposed that JAK/STAT pathway antagonism is a virulence 
factor that might offer a novel route of virus attenuation during 
vaccine development using a modified live virus. Mice lacking 
intact JAK/STAT signaling, such as IFN-receptor or STAT1 
knockout mice, are more susceptible to virus infection than 
wild-type mice (214–217). In addition, in vivo data suggest that a 
fast type I IFN response protects astrocytes from flavivirus (tick-
borne encephalitis virus, JEV, WNV, and ZIKV) infection (218). 
Notably, as reverse genetics technology facilitates the manipula-
tion of virus genomes, point mutations or deletions of JAK/STAT 
antagonists have been explored to reduce viral virulence.

As described earlier, the measles virus P gene (encodes three 
proteins P, V, and C) is the major antagonist that interferes with 
IFN-mediated JAK/STAT signaling (219). Tyrosine 110, valine 
112, and histidine 115 in the shared domain of the P and V 
proteins determine the STAT1-antagonizing function of these 

two proteins (219). A recombinant measles virus with a muta-
tion at tyrosine 110 of the P protein fails to antagonize STAT1. 
Compared with the wild-type measles virus, the mutant virus 
leads to short-lived viremia, without a skin rash and other clinical 
signs in rhesus monkeys, which suggests attenuation.

Similar to these observations from the measles virus, another 
neurotropic virus, Sindbis virus, is capable of suppressing both 
type I and type II IFN-mediated responses by disrupting JAK/
STAT signaling (220). However, two avirulent strains that are 
unable to cause detectable disease in adult mice were shown to 
be relatively inefficient inhibitors of STAT1/2 activation (220). 
Further analysis demonstrated that a single amino acid deter-
minant, the Thr at aa 538 of nsP1 of Sindbis virus, restores the 
STAT1 inhibition of nsP1 when it is introduced into avirulent 
strains and is required for Sindbis virus virulence in vivo (220). 
Moreover, as another well-defined JAK/STAT antagonist, NS5 
from the flavivirus member WNV has been linked to virulence. 
The NS5 protein from a naturally attenuated WNV strain was 
shown to be a poor suppressor of pY-STAT1. Restoration of a 
single residue in NS5 of attenuated WNV to the analogous 
residue in virulent WNV demonstrated efficient inhibition 
of STAT1 activation and conferred the virulence phenotype 
(221). Furthermore, as observed by crystallization, the STAT1 
antagonist VP24 from a virulent Ebola Sudan strain has a novel, 
pyramidal fold structure, which contains a site on a particular 
face of the pyramid exhibits reduced solvent exchange when in 
complex with STAT1 (153). Compared with VP24 from the non-
pathogenic Reston strain, this site is above two highly conserved 
pockets in VP24 that contain key residues previously implicated 
in Ebola virus virulence (153).

One of the most promising examples of virus attenuation 
promisingly based on removing the JAK/STAT antagonist is the 
influenza viruses. As described earlier, NS1 encoded by influenza 
A and B viruses antagonizes IFN-activated JAK/STAT signaling 
at multiple steps. Investigations into generating an attenuated 
influenza virus based on deleting NS1 from the influenza virus 
genome have been ongoing for decades. The complete deletion 
of NS1 from influenza A generates a viable virus, but the virus 
replicates at a much lower level (multiple log reduction of the 
viral titer) than wild type in normal MDCK cells; however, repli-
cation can be partially restored in IFN-deficient Vero cells (222). 
Meanwhile, the NS1-deleted influenza A virus maintains patho-
genicity in STAT1 knockout mice but is no longer pathogenic in 
wild-type mice, suggesting that the attenuation of the influenza 
A virus by NS1 deletion is JAK/STAT dependent (222). Since 
then, more studies have been conducted. As a naturally trun-
cated NS1 variant was identified and highly attenuated in the 
host (222, 223), to avoid over attenuation, partial deletions of 
NS1 (removing the C-terminal effector domain but maintaining 
the N-terminal RNA binding domain of NS1) were conducted 
to generate mutant viruses that maintain an avirulent phenotype 
and evoke a protective immune response in mice (224, 225). 
Similar results were also observed for the influenza viruses in 
other hosts, including pigs, birds, and macaques (226–229). 
In humans, when NS1 was completely deleted from the H1N1 
influenza A virus, the virus was tested in clinical trials and was 
demonstrated to induce higher levels of strain-specific and 
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cross-neutralizing antibodies in a dose-dependent manner 
after one dose of immunization, despite the highly attenuated 
replication-deficient phenotype (230). Therefore, the deletion of 
a JAK/STAT antagonist appears to be a promising approach for 
the rapid attenuation of the virulence phenotype for influenza 
viruses.

While the deletion of a JAK/STAT antagonist for virus attenua-
tion appears to be promising, several issues remain unclear. First, 
most studies that screen for JAK/STAT antagonists from viral 
proteins have relied on the transient expression of a viral protein 
in mammalian cells. The correlation between the genotype of a 
virus-encoded JAK/STAT antagonist and the IFN-antagonizing 
phenotype of an entire virus requires further investigation. As 
a typical example, the comparison of the neurovirulent and 
attenuated variant of JEV in Stat-1-deficient mice demonstrated 
that the attenuated phenotype of JEV is completely lost (231), 
suggesting an important role for the IFN-activated JAK/STAT 
pathway in controlling JEV infection. However, it is notable 
that the NS5 protein (acting as an IFN antagonist among all 
flavivirus) of the attenuated JEV strain maintains its potential for 
antagonizing IFN similar to the neurovirulent strain. Conversely, 
a single Glu to Lys mutation at aa 138 in the JEV envelope protein 
demonstrated both IFN sensitivity and the attenuated phenotype 
in inoculated animals (231). Research from our lab PRRSV 
showed a similar result. The IFN and JAK/STAT antagonist of 
PRRSV was mapped to the first 4 kb of the PRRSV genome, which 
includes the coding region for NSP1α, NSP1β, and NSP2 (232). 
However, one novel PRRSV isolate, A2MC2, which maintains an 
IFN-inducing phenotype and does not block JAK/STAT signaling 
in cell culture, contains an identical sequence for the first 4 kb 
when compared with the PRRSV strain inhibiting IFN induction 
and signaling (232). Therefore, when elucidating the mechanism 
of the JAK/STAT IFN antagonist, data gained from artificial 
overexpression of putative viral JAK/STAT antagonists should be 
carefully reviewed, and its putative role should be further verified 
in virus-infected cells.

Moreover, single amino acid mutation-mediated relief of 
JAK/STAT antagonism and virus attenuation has been reported 
(219, 220). Considering the natural mutation rate of virus rep-
lication, especially for RNA viruses, the restoration of virulence 
from an attenuated phenotype is a significant concern, even if 
multiple amino acid substitutions are introduced. As a typical 
example, after alanine-scanning mutagenesis, PRRSV-NSP1β, 
a well-defined IFN-JAK/STAT antagonist encoded by PRRSV, 
was substituted with alanines to aa 16–20 of nsp1β in mutant 
PRRSV and generated a viable virus with attenuated phenotype 
in  vitro. However, after infecting pigs, the recombinant virus 
exhibited reduced growth at early infection times but quickly 
regained wild-type growth properties as a result of substitutions 
within the mutated sequence (233), suggesting high selection 
pressure toward maintaining the IFN-JAK/STAT inhibitory 
property of the virus in  vivo. Conversely, partial deletion of 
the JAK/STAT antagonist, such as a truncated influenza NS1, 
may be a preferred approach to single or multiple amino acid 
mutations. However, since a viral JAK/STAT antagonist may be 
indispensable for viral replication and deletion of JAK/STAT 
antagonist from viral genome may be lethal, introducing a 

non-lethal but stable deletion for a viable recombinant virus 
requires careful investigation and a deep understanding of viral 
protein function (234).

viRUS-iNDUCeD SeRiNe MONO-
PHOSPHORYlATiON OF STATs AND 
viRAl PATHOgeNeSiS

As discussed in Section “Viral Interference of IFN-Activated JAK/
STAT,” the phosphorylation of tyrosine resides (near residue 700) 
in STATs is generally considered the activation of the canonical 
JAK/STAT pathway (31). However, mono-phosphorylation of 
serine residues of different STATs has been frequently reported 
as non-canonical TAD serine phosphorylation without tyrosine 
phosphorylation (31), which may imply a novel function for 
STATs during virus infection and pathogenesis.

Although less investigated, virus-induced serine mono-
phosphorylation of STATs with different functions than 
tyrosine-phosphorylated STATs has been reported for both DNA 
and RNA viruses, such as EBV, HIV, and PRRSV (44, 235, 236). 
Based on our literature research, EBV was first reported for its 
ability to induce serine mono-phosphorylation of STAT1 (235). 
EBV-induced serine mono-phosphorylated STAT1 is able to bind 
DNA in EBV-infected cells (235). However, researchers in this 
study postulated that EBV uses serine mono-phosphorylation 
of STAT1 to restrict IFN-stimulated STAT1-DNA binding, 
therefore preventing IFN-activated JAK/STAT signaling. In a 
later study conducted on HIV-1, serine mono-phosphorylation 
of STAT1 and STAT3 was observed in HIV-1-infected human 
brain microvascular endothelial cells and correlated with HIV-
1-induced inflammatory responses and neuropathogenesis (236).

Porcine reproductive and respiratory syndrome virus is known 
for its capability to inhibit both IFN induction and IFN-activated 
JAK/STAT signaling, and several PRRSV antagonists for JAK/
STATs have been identified (172, 198, 237, 238). However, it is 
notable that PRRSV infection promotes the IFN-independent 
serine mono-phosphorylation of STAT1 (S727) via nsp12 and 
is linked to higher expression of proinflammatory cytokines 
in vitro (44). Moreover, mono-phosphorylation of STAT1 (S727) 
is correlated with viral virulence, as a vaccine strain demonstrated 
a minimal effect on pSTAT1-S727 (44). This observation is 
interesting because the PRRSV genome encodes several nsps 
to block both PRR signaling (TLR or RLR) and JAK/STAT 
signaling (238, 239). However, aberrant sustained expression 
of proinflammatory cytokines and chemokines is considered to 
contribute to the virulence of high-pathogenesis PRRSV (240). 
Therefore, it appears that the expression of proinflammatory 
cytokines and chemokines promoted by IFN-independent mono-
phosphorylation of STAT1 offers an alternative explanation for 
the cytokine storm that occurs during PRRSV infection. How-
ever, this speculation requires further investigation.

Research on KSHV also shows that the latent protein kaposin B 
of KSHV promotes the mono-phosphorylation of STAT3 at S727 
in the absence of the phosphorylation of Y705 (241). It appears 
that mono-phosphorylation of STAT3 at S727 is activated by the 
host kinase mitogen-activated protein kinase-activated protein 
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kinase 2 (MK2) and leads to elevation of STAT3-dependent 
genes, including CCL5 (241). Moreover, kaposin B of KSHV 
upregulates inflammatory cytokine levels, which correlates to KS 
pathogenesis (242). This finding is consistent with the putative 
function of serine mono-phosphorylated STAT3 in HIV-1 (236).

To date, serine mono-phosphorylation induced by virus infec-
tion has only been reported in STAT1 and STAT3. The available 
data imply a correlation between serine mono-phosphorylation 
of STATs (STAT1 and STAT3) and the proinflammatory response 
caused by virus infection. It is still unclear whether virus-induced 
serine mono-phosphorylation is common among all STATs or 
restricted to STAT1 and STAT3, since canonical activation of 
STAT1 and STAT3 also induces a proinflammatory response. 
Moreover, it is interesting to determine whether U-ISGF3 carries 
mono-phosphorylated STAT1, as previous reports of U-ISGF3 
only focus on tyrosine phosphorylation, without testing serine 
phosphorylation (36, 38). Together, the correlation of non-
canonical STAT activation, serine mono-phosphorylated STATs, 
and unphosphorylated STATs during viral infection requires 
further study and may yield insights regarding viral pathogenesis, 
such as virally induced cytokine storms.

CONClUSiON AND PeRSPeCTiveS

The induction and signaling of type I IFNs are well-defined, and 
the antagonism of IFN-JAK/STAT pathway by many viruses is 
known. However, many questions about the type I IFN-activated 
JAK/STAT pathway remain unanswered. Although type I IFN 
subtypes appear to be functionally redundant because all type I 
IFNs bind to the same receptors, the differences among type I IFN 
subtypes are still unclear. Although activating the same pathway 
as type I IFNs, the function of type III IFNs requires further study. 
A recent report on Yellow fever virus (YFV) showed that type 
III IFN-mediated signaling is critical for controlling the infection 
of live attenuated YFV in vivo (243). Meanwhile, in HepG2 cells 
with persistent HEV infection, persistent activation of JAK/STAT 
signaling by type III IFNs renders the infected cells refractory to 
exogenous type I IFN treatment, and depletion of the receptors 
for type III IFNs restores IFN responsiveness (244). It would be 
interesting to examine the cross talk between type I and type III 
IFN-mediated signaling.

Although JAK/STAT antagonists have been identified for 
many viruses, for viruses that cause chronic infection, the role 
of type I IFN-activated JAK/STAT signaling in viral pathogenesis 
and virulence is more complicated. It appears that type I IFN-
induced negative regulatory pathways are emerging as key drivers 
of chronic inflammation during chronic virus infection (245). 
During chronic HCV infection, the activation of endogenous 
type I IFN signaling and the elevation of hepatic ISGs contribute 

to HCV persistence (246). Therefore, the role of JAK/STAT in 
chronic viral infection should be reconsidered carefully, since 
the antiviral effects of type I IFNs are primarily manifested in an 
acute infection (247).

Virally encoded antagonists of type I IFN signaling are gener-
ally considered virulence factors that can be explored for virus 
attenuation. Current attenuation methods based on the mutation 
of type I IFN antagonists are still premature. Although reverse 
genetics provide a useful tool to manipulate viral genomic 
sequences, the restoration of a type I IFN-JAK/STAT-antagonizing 
phenotype in a recombinant virus during infection is a concern. 
As a result, a deep understanding of the structure and function 
of virally encoded JAK/STAT antagonists is more important 
than simple identification of JAK/STAT antagonists from viral 
genome. Furthermore, the potential link between virus-induced 
serine mono-phosphorylation of STATs and viral pathogenesis 
suggests that an interplay between viruses and the JAK/STAT 
pathway is more complicated than simply counteraction of each 
other. In the coming decade, we expect that more attention will be 
paid to these aspects to increase our understanding of the type I 
IFN-activated JAK/STAT pathway, the mechanism of viral-coded 
type I IFN antagonists and the role of non-canonical STAT activa-
tion in viral pathogenesis.
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