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The goal of immunization is to produce both a flood of antibodies to neutralize antigen 
and memory cells to accelerate the secondary response. To enhance the generation 
of memory B cells, we examined the effect of co-engaging BCR and toll-like receptor 
(TLR) 7 receptors by immunizing mice with a hapten-protein antigen, NP-CGG, and a 
ligand, R837 (imiquimod). During the early and late primary responses, there was no 
augmentation with R837 on the number of germinal center B cells or serum antibody. 
However, in the niche of germinal centers, R837 increased somatic hypermutation in 
the canonical VH1-72 gene that encodes NP-specific antibody. Increased mutation 
was not due to enhanced expression of activation-induced deaminase, but was likely 
a result of selection for high-affinity B  cells with altered codons in the gene. This 
correlated with the appearance of antigen-specific B cells with a memory phenotype, 
which was intrinsic to TLR7 on B cells. To determine if these memory cells produced 
a recall response after a secondary challenge, spleen cells from mice that were immu-
nized with NP-CGG and R837 were adoptively transferred into muMT recipients, and 
boosted with NP-CGG. Cells from mice that initially received both antigen and R837 
generated a robust increase in germinal center B cells, plasmablasts, plasma cells, 
and serum antibody, compared with their cohorts who received antigen alone. These 
results support the use of co-immunization with TLR7 ligands to promote vigorous 
memory B cell responses to protein antigens.

Keywords: memory B cell, Bcr, toll-like receptor 7, germinal center, somatic hypermutation, vaccine

inTrODUcTiOn

Upon infection, the humoral response initiates a germinal center reaction which produces high-
affinity antibodies and memory B cells. While antibodies play a crucial role in immediate clearance 
of pathogens, memory B cells protect upon re-encounter with pathogens. B cells can be activated 
through both the immunoglobulin receptor (BCR) and toll-like receptors (TLRs). TLRs, which 
are expressed in B cells, dendritic cells, macrophages, and neutrophils have been shown to affect 
antibody secretion and memory formation (1, 2). Some specific TLRs are TLR4 which responds 
to lipopolysaccharide (LPS), TLR7 which recognizes single-strand RNA, and TLR9 which binds 
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CpG DNA. All three signal through the MYD88 adaptor protein, 
which is upregulated in germinal center B cells after TLR signal-
ing (3). Stimulation through MYD88, TLR7, or TLR9 promotes 
autoimmune diseases, presumably by binding to RNA (TLR7), 
or DNA (TLR9) released from apoptotic cells (4–9). However, 
there is controversy over whether activation through TLR4 
enhances antibody responses. In MYD88-deficient mice, an 
early report (10) showed that there was less antibody produced 
during a primary immunization with protein antigen and LPS, 
whereas later reports (3, 11, 12) indicated that antibody levels in 
MYD88-deficient mice were relatively normal after B cells were 
concomitantly stimulated with antigen and TLR4 ligands. Thus, 
it is not clear if immunization protocols using TLR4 agonists as 
adjuvants are beneficial.

In contrast, immunization with viruses which engage both 
BCR and TLR7 has been shown to magnify the humoral immune 
response. Studies utilizing mouse viruses, like Friend and 
lymphocytic choriomeningitis, reported that TLR7 signaling in 
B cells was necessary for viral clearance (13–15). Immunization 
with virus generated a robust antibody response and germinal 
center formation, which was absent in Tlr7−/− mice. While these 
studies indicated the importance of co-engagement of BCR and 
TLR7, the complex nature of viral antigens containing both 
protein and single-strand RNA complicated interpretations of 
how the increase was generated. Interestingly, co-stimulation of 
both TLR4 and TLR7 generated synergistic increases in antibody 
and memory B  cells, compared with activation through either 
TLR alone (16). However, the question of whether a simple TLR7 
agonist can amplify the response to protein antigens is poorly 
understood, particularly at the memory cell level. To address this 
conundrum, we used a reductionist approach of immunizing 
mice with a well-defined protein antigen (4-hydroxy-3-nitro-
phenyl)acetyl-chicken gamma globulin (NP-CGG) (17, 18), 
in the absence or presence of R837, also known as imiquimod. 
Imiquimod, an imidazaquinoline amine analog similar to 
guanosine, has anti-viral activity by activating immune cells 
via TLR7 (19). We observed no effect of BCR and TLR7 co-
stimulation during the early and late primary responses in terms 
of frequency of germinal center B cells and antibody secretion. 
However, within germinal centers, R837 coordinated an increase 
in somatic hypermutation and cells with high-affinity mutations, 
which correlated with an expanded production of memory cells. 
During antigen recall, these memory B  cells were surprisingly 
robust in magnifying the response, leading to increased germinal 
center cells, plasmablasts, plasma cells, and serum antibody after 
antigen challenge.

MaTerials anD MeThODs

Mice
C57BL/6J, muMT (B6.129S2-Ighmtm1Cgn/J), and Tlr7−/− 
(B6.129S1Tlr7tm1Flv/J) mice were purchased from Jackson 
Laboratories, and bred in the National Institute on Aging animal 
colony. Mice of both sexes were used at 2–3 months of age. Mice 
were immunized intraperitoneally with 100  µg of 4-hydroxy-
3-nitrophenyl)acetyl conjugated to chicken gamma globulin 

(NP30-CGG, BioSearch Technologies), which was emulsified 
in alum (Thermo Fisher Scientific), and with 30  µg of R837 
(Sigma-Aldrich) in phosphate-buffered saline. Secondary boosts 
contained 50  µg of NP-CGG in alum. Animal protocols were 
reviewed and approved by the Animal Care and Use Committee 
at the NIA.

Flow cytometry
Single cell suspensions were prepared from spleens and stained 
with fluorochrome-conjugated antibodies. Germinal center 
B cells (B220+GL7+) were stained with FITC-labeled anti-B220 
(RA3-6B2; Thermo Fisher Scientific) and Alexa Fluor 647-labeled 
anti-GL7 (GL7; BioLegend). Plasmablasts (B220+CD138+) and 
plasma cells (B220−CD138+) were stained with FITC anti-B220 
and APC-labeled anti-CD138 (281-2; BioLegend). Mutated 
memory cells (NIP+B220+CD80+CD35lo) were visualized with 
FITC-labeled NIP15-bovine serum albumin (BSA) (Biosearch 
Technologies), PerCP-labeled B220 (RA3-6B2; Biolegend), 
PE-labeled CD80 (16-10A1; BD Biosciences), and BV 421-labeled 
anti-CD21/35 (7E9; Biolegend).

elisa
Microtiter plates were coated with NP30-BSA or NP2-human 
serum albumin (HSA) (Biosearch Technologies). Serum from 
unimmunized, day 14, or day 40 immunized mice was serially 
diluted fourfold, and used at a dilution of 1:25,600. Anti-NP 
antibodies were detected with goat anti-mouse IgG1 as described 
(20). Serum from muMT recipients after adoptive transfer was 
diluted 1:8 and tested against NP30-BSA. Higher dilutions did 
not give a signal above background, and the limited amount of 
antibody precluded analysis of binding to NP2-HSA.

Vh1-72 Mutations and aiD Transcripts
RNA was extracted from day 14 germinal center B cells, and cDNA 
was synthesized using SuperScript III Reverse Transcriptase 
(Thermo Fisher Scientific). The rearranged VH1-72 gene joined 
to Cγ1 was amplified using Taq polymerase (Takara Bio USA) 
with the following nested primers: first set (leader), VH1-72 
forward 5′ CATGCTCTTCTTGGCAGCAACAGC and Cγ1 
(first exon) reverse 5′ GTGCACACCGCTGGACAGGGATCC, 
and second set: (framework region 1) VH1-72 forward 5′ 
CAGGTCCAACTGCAGCAG and Cγ1 (first exon) reverse 5′ 
AGTTTGGGCAGCAGA. The PCR products were cloned and 
sequenced; only sequences with unique CDR3 joins and muta-
tions were counted. AID was measured by qPCR as described (21).

adoptive Transfers
For antigen-specific mutated memory cells arising during 
the primary response, naïve splenic B  cells from C57BL/6 or 
Tlr7−/− mice were collected by negative selection with anti-CD43 
and anti-CD11b magnetic beads (Miltenyi Biotec). 15–30 × 106 
B cells in 100 µl were injected into muMT recipients via tail-vein 
injection, and mice were immunized 1 day later with NP-CGG 
or NP-CGG plus R837. Recipient spleens were harvested 14 days 
later and gated on B220+NIP+ cells; the CD80+CD35lo population 
of antigen-specific cells was then analyzed. For memory recall 
transfer of spleen cells, C57BL/6 mice were immunized with 
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FigUre 1 | Toll-like receptor 7 signaling did not affect the frequency of splenic B cells during the early (day 14) and late (day 40) primary responses to NP-CGG as 
measured by flow cytometry. Mice were either unimmunized (black circles), immunized with NP-CGG (white circles), or immunized with NP-CGG plus R837 (red 
squares). (a) Germinal center B cells. (B) Plasmablasts. (c) Plasma cells. Each symbol represents the value from a single mouse, with four independent experiments 
of one to five mice each. Bar indicates mean; p-value determined by two-tailed Student’s t-test; ns, non-significant.
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NP-CGG in the absence or presence of R837. Forty days later, 
15–30 × 106 total spleen cells from the immunized mice in 100 µl 
were injected into muMT mice via tail-vein injection. One day 
after transfer, muMT recipients were boosted with NP-CGG. Five 
days following immunization, muMT mice were sacrificed, and 
spleens and sera were analyzed.

resUlTs

Tlr7 signaling Did not increase germinal 
center B cells or antibody secretion 
during early and late Primary  
responses to nP-cgg
To investigate if co-stimulation of BCR and TLR7 enhanced B cell 
responses, mice were analyzed at several time points after immu-
nization. The data in Figure 1 summarize results from days 14 to 

40, which measured the effect during the early and late phases of 
a primary immunization. Analyses were also made at days 5 and 
28, and showed no difference when R837 was included (data not 
shown). Similarly, long-lived plasma cells in bone marrow were 
analyzed by ELISPOT on days 5, 14, 28, and 40, and there was 
no difference when R837 was included (data not shown). After 
immunization, antigen-activated B  cells enter germinal centers 
to divide, undergo mutation, and selection, and then become 
plasmablasts and plasma cells which secrete antibody. For ger-
minal center B cells (B220+GL7+), immunization with NP-CGG 
alone produced a robust response on day 14 as quantified by flow 
cytometry, and by day 40, the number of cells decreased by about 
50% (Figure 1A). However, there was no significant difference 
on either day when R837 was included in the immunization. 
For splenic plasmablasts (B220+CD138+), immunization did 
not generate an increase in cell numbers by day 14. By day 40, 
the numbers were modestly increased but were not augmented 
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FigUre 2 | Effect of R837 on serum NP-specific IgG1 as measured by ELISA on days 14 and 40. (a) Serial dilutions of antibody binding to NP30-bovine serum 
albumin (BSA) or NP2-human serum albumin. Blue arrows mark the chosen dilution used for subsequent experiments. Circles and squares represent the average of 
individual samples with three to six independent experiments of two to three mice each. Error bars represent SD. (B) High- and low-affinity antibody binding to NP30. 
Each symbol represents serum from a single mouse. Triangles, sera from unimmunized mice. Bar indicates mean; p-value measured by two-tailed Student’s t-test; 
ns, non-significant. (c) High-affinity antibody binding to NP2. (D) Ratio of NP2/NP30 values.
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by R837 (Figure 1B). For splenic plasma cells (B220−CD138+), 
immunization with NP-CGG alone produced an increase on day 
14, which was not enhanced by R837. The plasma cell count then 
waned by day 40 for both immunizations (Figure 1C).

For antibodies, NP-specific IgG1 was measured by ELISA in 
serum taken on days 14 and 40. As shown in Figure 2A, serum 

dilutions were performed after immunization with NP-CGG or 
NP-CGG plus R837. A 1:25,600 dilution was chosen for antibody 
concentrations, which was in the linear range of binding to 
NP30-BSA, which detects high- and low-affinity antibodies, or 
NP2-HSA, which binds to high-affinity antibodies. Immunization 
with NP-CGG produced robust increases in IgG1 antibody at 
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FigUre 3 | Toll-like receptor 7 enhances somatic hypermutation and affinity in germinal centers by day 14. (a) Rearranged VH1-72 sequences joined to Cγ1 from 
germinal center B cells were analyzed for nucleotide mutations. (B) Mutation frequencies are depicted; each symbol represents the frequency from one mouse in 
five to six independent experiments per group. Column indicates mean; p-value measured by two-tailed Student’s t-test. (c) AID mRNA expression. Each symbol 
represents an individual mouse from five independent experiments with two to three mice each. (D) Percent sequences with W33 (low affinity) and L33 (high affinity) 
mutations are shown in a pie chart. p-Value by two-tailed Fisher exact test.
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both time points, but there was no additional effect with R837 
for antibodies binding to NP30-BSA (Figure  2B) or NP2-HSA 
(Figure 2C). However, regardless of TLR7 signaling, there was an 
overall increase in high-affinity antibodies by day 40 compared with 
day 14 as measured by the ratio of NP2/NP30 binding, which has 
been correlated with affinity maturation (22). A comparison of 
ratios with both immunization protocols showed an increase on 
day 40 compared to day 14, suggesting affinity maturation with 
time (Figures 2A,D). Similar results were seen when IgG2c, an 
isotype that requires MYD88 signaling (12, 23), was measured 
(data not shown).

co-stimulation increased somatic 
hypermutation in germinal center B cells
Although the number of germinal center B cells did not change 
with the inclusion of R837, qualitative differences were found in 
their BCRs by day 14. Germinal center B cells were isolated by 
flow cytometry; their purity is periodically assessed and is ~96% 
pure after sorting (24). VH genes in these isolated cells were then 
sequenced. The canonical VH gene for binding to NP in C57BL/6 
mice is VH1-72 using IMGT nomenclature (25), which was for-
merly referred to as VH186.2 (26). Sequencing of the IgG1 recep-
tors revealed a significant increase in somatic hypermutation in 
the VH1-72 exon in B  cells receiving signals from antigen and 
R837 (Figures 3A,B). This was not due to increased AID expres-
sion at this time point (Figure 3C), suggesting that the mutation 
machinery was not altered. Furthermore, the VH1-72 gene can 
undergo a 10-fold increase in affinity with a single amino acid 
substitution from tryptophan to leucine at position 33 (W33L) in 
complementarity-determining region 1 (27, 28). Notably, there 

was a targeted increase in W33L substitutions, indicating selec-
tion for high-affinity receptors (Figure 3D).

Memory generation Depends on Tlr7 
expression in B cells
To assess if the mutated B cells were associated with a memory 
phenotype, naïve B  cells from C57BL/6 and Tlr7−/− mice were 
transferred into muMT recipients, which do not have mature 
B  cells, and immunized with NP-CGG in the absence or pres-
ence of R837 (Figure  4A). After 14  days, splenic B  cells were 
selected with NIP, which binds to antibody better than NP (29), 
and antigen-specific cells were then stained with CD80 and 
CD35 (Figure 4B). The CD80+CD35lo population has been used 
to identify mutated memory cells (30). As shown in Figure 4C,  
signaling through TLR7 in B  cells from C57BL/6 donors was 
required for amplification of mutated memory cells, because the 
increase in cell numbers was obliterated in Tlr7−/− B cells. This 
verified that the enhanced memory response was intrinsic to 
TLR7 on B cells and not on other immune cells.

robust generation of antibody responses 
after Memory recall in r837- 
immunized Mice
The definition of memory is recalling what has been learned. 
To determine if the memory cells identified by surface mark-
ers and flow cytometry described above actually behave in a 
recall-dependent fashion, we immunized C57BL/6 mice with 
NP-CGG in the absence or presence of R837. After 40  days, 
spleen cells were transferred into muMT recipients. One day 
later, the recipients were challenged with NP-CGG, and immune 
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responses were measured after 5  days (Figure  5A). When the 
initial immunization included R837, the secondary response was 
significantly elevated in terms of increased germinal center B cells 
(Figure 5B), plasmablasts (Figure 5C), plasma cells (Figure 5D), 
and total NP-specific IgG1 from serum (Figure 5E). Thus, TLR7 
signaling magnified the recall responses by memory B  cells, 
indicating that these were indeed vigorous B cells compared with 
their counterparts immunized with antigen alone.

DiscUssiOn

To dissect the effect of co-stimulation of B  cells through the 
BCR and TLR7, we systematically examined the primary and 
secondary responses to a simple hapten-carrier antigen and a 
synthetic ligand. During the early and late primary responses, 
co-immunization with NP-CGG and R837 had no measur-
able enhancement on the frequency of germinal center cells or 
antibody-secreting cells. Our results differ from other reports that 

show an augmentation of antibody secretion with TLR7 ligation 
during the primary response to viruses, which could be attributed 
to the context of the antigen as single-strand RNA, and may be 
more intense than stimulation with a synthetic ligand (13–16). 
Likewise, the viral form of a TLR9 ligand was shown to be critical 
for optimal B cell responses, compared with soluble CpG ligand 
with a protein antigen (31). Recent studies have highlighted the 
efficacy of conjugating CpG to cationic lipids to promote B cell 
responses through TLR9 signaling (32, 33). Therefore, the physi-
cal form of the antigen is crucial. Protein antigens with multiple 
arrays of a hapten can crosslink the immunoglobulin receptor  
and negate the necessity for TLR signaling (34), whereas viral anti-
gens with fewer repetitive determinants may rely more on inter-
action between the BCR and TLR. We propose that simply adding 
a ligand like R837 as an adjuvant with protein antigens is not suf-
ficient to amplify B cell responses during primary immunizations. 
A similar conclusion was reached in studies of co-immunization 
with TLR4 ligands and protein antigens (3, 11, 12).

FigUre 4 | Memory generation depends on toll-like receptor 7 signaling in B cells. (a) Splenic B cells from C57BL/6 or Tlr7−/− mice were transferred into muMT 
recipients. One day later, mice were immunized, and spleens were analyzed at 14 days. (B) NIP-binding B cells were gated for mutated memory cells 
(B220+NIP+CD80+CD35lo). (c) Memory B cells from C57BL/6 or Tlr7−/− donors. Each symbol depicts one muMT mouse from four independent experiments  
with two mice each. Bar indicates mean; p-value determined by one-tailed Student’s t-test.
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However, during the secondary response, marked changes  
were observed. Memory cells generated after antigen priming 
alone have previously been shown to respond during recall in 
recipients following adoptive transfer (35–38). Our results 
reported here reveal a novel role for TLR7 signaling to gener-
ate more robust memory B  cells, that can be activated after 
re-encounter with antigen. This is likely a result of favored selec-
tion for mutated B cells with higher affinity for NP. We showed 
that these changes occurred in the niche of germinal centers as 
early as day 14 in the primary response. The increase in somatic 
hypermutation and affinity suggests that the mechanism may 
upregulate MHCII presentation on B cells to vie for T follicular 
helper cells to drive division, survival, and selection into memory 
cell precursors (39–41). Memory formation was intrinsic to TLR7 

on B cells, and demonstrate that increased memory cells can be 
induced through B cell stimulation alone. However, the results do 
not rule out co-engagement of the TLR7 receptor on dendritic cells 
and macrophages in wild-type mice. Thus, our results indicate 
that TLR7 signaling regulates selection in germinal center B cells 
and generates more memory cell precursors during the primary 
response. Although TLR7 co-ligation in the primary stages did 
not preferentially produce high-affinity antibodies in sera com-
pared with immunization with antigen alone, the data suggest 
that the germinal center cells differentiated predominantly into 
memory cell precursors, rather than plasma cells.

Our immunizations were done using alum as an adjuvant, 
which contains no TLR ligands, unlike complete Freund’s or 
monophosphoryl-lipid A adjuvants. Alum is frequently used in 

FigUre 5 | Toll-like receptor 7 signaling augments memory function during recall responses. (a) Immunization and adoptive transfer scheme for secondary 
challenge. Mice were immunized with NP-CGG or NP-CGG plus R837. Forty days later, spleen cells were adoptively transferred into muMT mice. One day after 
transfer, recipients were boosted with NP-CGG, and spleens and sera were analyzed 5 days later. (B) Germinal center cells. (c) Plasmablasts. (D) Plasma cells.  
(e) Serum NP-specific IgG1 bound to NP30-BSA. Each symbol represents a muMT recipient mouse from four independent experiments with one to three mice each. 
Bar indicates mean; p-value determined by two-tailed Student’s t-test.
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human vaccines; likewise R837 is manufactured as imiquimod 
for human use. Although recombinant protein subunits are 
rapidly replacing viral immunogens as vaccines, they are less 
immunogenic (42). It would be advantageous to include a TLR7 
ligand such as R837 with these protein antigens to produce the 
desirable memory population for re-encounter with pathogens.
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