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Inflammation plays a central role in the development of asthma, which is considered an allergic 
disease with a classic Th2 inflammatory profile. However, cytokine IL-17 has been examined 
to better understand the pathophysiology of this disease. Severe asthmatic patients expe-
rience frequent exacerbations, leading to infection, and subsequently show altered levels 
of inflammation that are unlikely to be due to the Th2 immune response alone. This study 
estimates the effects of anti-IL-17 therapy in the pulmonary parenchyma in a murine asthma 
model exacerbated by LPS. BALB/c mice were sensitized with intraperitoneal ovalbumin 
and repeatedly exposed to inhalation with ovalbumin, followed by treatment with or without 
anti-IL-17. Twenty-four hours prior to the end of the 29-day experimental protocol, the two 
groups received LPS (0.1 mg/ml intratracheal OVA-LPS and OVA-LPS IL-17). We subse-
quently evaluated bronchoalveolar lavage fluid, performed a lung tissue morphometric anal-
ysis, and measured IL-6 gene expression. OVA-LPS-treated animals treated with anti-IL-17 
showed decreased pulmonary inflammation, edema, oxidative stress, and extracellular 
matrix remodeling compared to the non-treated OVA and OVA-LPS groups (p < 0.05). The 
anti-IL-17 treatment also decreased the numbers of dendritic cells, FOXP3, NF-κB, and 
Rho kinase 1- and 2-positive cells compared to the non-treated OVA and OVA-LPS groups 
(p < 0.05). In conclusion, these data suggest that inhibition of IL-17 is a promising therapeutic 
avenue, even in exacerbated asthmatic patients, and significantly contributes to the control 
of Th1/Th2/Th17 inflammation, chemokine expression, extracellular matrix remodeling, and 
oxidative stress in a murine experimental asthma model exacerbated by LPS.

Keywords: anti-il-17, distal lung, asthma, inflammation, lPs-exacerbated

inTrODUcTiOn

Bronchial asthma is an inflammatory, obstructive, heterogeneous, complex, and chronic lung disease 
characterized by an increase in mucus secretion and hyperreactivity of the airways. Over time, 
functional and structural changes in lung tissue may occur (1). Bronchial asthma is defined based 
on clinical and pathophysiological characteristics. Patients with a pre-existing diagnosis or even an 
initial presentation of asthma can have exacerbations (2).
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LPS is a glycolipid that is present in the outer membrane of 
Gram-negative bacteria and is an important activator of the innate 
immune response via toll-like receptor 4. It has little toxicity when 
used directly to treat cells (in  vitro). The use of this endotoxin 
provides information on the effects of the inflammatory response 
by bacterial infection (3). Starkhammar et al. (4) used an experi-
mental model with a low dose of LPS (0.1  mg/ml) and found 
increased airway hyperresponsiveness and neutrophil-dominant 
inflammation, which is common in asthmatic patients with 
exacerbations caused by bacteria. However, the use of LPS in high 
doses reproduces a experimental model of acute lung injury (5).

Th17 cells act as potent inducers of inflammatory responses as 
a determining factor for severe asthma (6). In addition to display-
ing an elevated anti-inflammatory profile, increased IL-17A and 
IL-17F levels may aggravate the neutrophil inflammatory response 
(7). IL-17 promotes eosinophilia in airways through chemokine 
growth factors (G-CSF, GM-CSF, and TNF-α) (8). In addition, 
IL-17 may contribute to the remodeling of airways in asthma, 
suggesting that blockade of this cytokine may facilitate fibrosis 
control (9). Furthermore, allergic asthma may be influenced by 
the IL-17 levels, which directly increase smooth muscle cells 
in airways via the NF-κB signaling pathway. NF-κB modulates 
expression of the GTPase RhoA and its effector kinases ROCK-1 
and ROCK-2, which are signaling factors that are critical for 
airway smooth muscle contraction (10). Thus, the NF-κB, Rho 
kinase, and IL-17 pathways may be attractive therapeutic targets 
for the treatment of AHR and inflammation (11).

Although previous studies have demonstrated the role of IL-17 
in hyperreactivity (4, 12), few studies have evaluated the effects 
of LPS in animal models allergic inflammation. Lowe et al. (13) 
showed the effects of exposure to LPS and OVA in mice treated 
with corticosteroids. They observed changes in the neutrophils, 
eosinophils, and functional inflammatory responses, and these 
effects prolonged asthmatic responses and decreased corticoster-
oid sensitivity. Bae et al. (14) confirmed that the exacerbations 
are associated to of neutrophilic responses and increase in IL-17 
levels due to LPS treatment in asthma model. However, there are 
no studies evaluating the chemokines and signaling pathways 
involved in allergic inflammation exacerbated by LPS. In addi-
tion, remodeling of the extracellular matrix and oxidative stress 
may be potentiated in bacterial infections. Although asthma is 
considered to be an airway disease, this condition has long been 
characterized by the contribution of distal parenchymal changes 
in asthmatic responses, and the development of alterations in 
the distal lungs of asthmatic patients has an important impact 
on the pathogenesis and treatment of this disease (15, 16). Thus, 
the pulmonary parenchyma may play a fundamental role in total 
pulmonary resistance in addition to its potential participation 
in the pathophysiology of asthma, which may alter the potential 
treatment of this disease, particularly in severe asthma (17–19).

We recently demonstrated the presence of hyperresponsiveness, 
an increase in inflammatory cells, activation of the oxidative stress 
pathway and remodeling of the extracellular matrix in the distal 
parenchyma of chronic allergic inflammation models (10, 20).

Although IL-17 shows potential as an alternative for asthma 
treatment, there are no studies evaluating the use of anti-IL-17 
in LPS-exacerbated asthma models. The aim of this study was to 

examine the levels of oxidative stress, inflammation, and extracel-
lular remodeling in the lung parenchyma of an animal model of 
LPS-exacerbated asthma.

MaTerials anD MeThODs

experimental groups
The present study was approved by the Research Ethics Committee 
of the Hospital das Clínicas of the Faculty of Medicine of the 
University of São Paulo (Case No. 141/16).

This protocol was repeated twice and used a total of 60 
animals male BALB/c mice from the Medical School at the 
University of São Paulo were utilized in accordance with the 
Guideline to Care and Use of Laboratory Animals, published by 
the National Institutes of Health (21) (NIH publication 85-23, 
revised in 1985). On average, the body weight of the animals 
was approximately 20–25 g at the beginning of the sensitization 
protocol. The animals were divided into the following groups: 
the SAL group, which received inhalations with a sterile saline 
solution (n = 6); the OVA group, which received inhalations of 
an ovalbumin solution (n = 6); the OVA anti-IL-17 group, which 
received inhalations of an OVA solution and treatment with an 
anti-IL-17 monoclonal antibody (n  =  6); the OVA-LPS group, 
which received inhalations of an ovalbumin solution and LPS 
instillation (n = 6); and the OVA-LPS anti-IL-17 group, which 
received inhalations of an ovalbumin solution, LPS instillation 
and treatment with an anti-IL-17 monoclonal antibody (n = 6).

sensitization Protocol
A schematic describing the 29-day ovalbumin sensitization 
protocol used in this study is shown in Figure 1. Mice received 
a solution of 50 µg of ovalbumin (GRADE IV, Sigma-Aldrich, St. 
Louis, MO, USA) and 6  mg of aluminum hydroxide (Alumen; 
Pepsamar, Sanofi-Synthelabo S.A., Rio de Janeiro, Brazil) in a 
total volume of 0.2 ml via intraperitoneal injection on days 1 and 
14. The animals inhaled an OVA aerosol diluted in 0.9% NaCl 
(physiological saline) at a final concentration of 10 mg/ml (1%) 
on days 22, 24, 26, and 28. In addition, the SAL group received a 
saline solution (NaCl 0.9%) and aluminum hydroxide (Alumen) 
(6 mg) via intraperitoneal injection; on the inhalation challenge 
days, the mice were exposed to 0.9% saline solution through 
aerosol for 30 min (22). The LPS administration was based on 
the protocol of Starkhammar et al. (4), who used a dose that only 
caused hyperresponsiveness and neutrophil recruitment. The 
treatment was performed with 20 µl of phosphate-buffered saline 
(PBS) + 0.1 mg/ml Escherichia coli 0127: B8 (Sigma-Aldrich, St. 
Louis, MO, USA) 24 h after the last antigen challenge on day 29. 
The animals in the LPS-OVA and anti-LPS-OVA IL-17 groups 
were anesthetized via inhalation of isoflurane and received LPS 
intratracheally. No animal died during this protocol.

Treatment
An anti-IL-17A (clone50104) neutralizing antibody (R and D 
Systems, Abingdon, UK) was administered via intraperitoneal 
injection 1 h prior to each aerosol administration on days 22, 24, 
26, and 28 of the experimental asthma protocol and 1 h before 
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FigUre 1 | Timeline of the protocol for establishing chronic allergic inflammation + exacerbation. On days 1 and 14, the OVA, OVA-LPS, OVA anti-IL-17, and 
OVA-LPS anti-IL-17 groups were sensitized with OVA (i.p.) and the SAL control group received saline (i.p.). On days 22, 24, 26, and 28, 1 h prior to inhalation 
challenge, the treatment groups received anti-IL-17 (i.p.), and 24 h after the end of the protocol, the OVA-LPS and OVA-LPS anti-IL-17 groups received  
intratracheal LPS.
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LPS administration, at a dose of 7.5 μg/application, based on the 
Barlow’s protocol (23).

Bronchoalveolar lavage Fluid (BalF)
Animals were anesthetized with thiopental (250  mg/kg i.p.) 
24 h after the end of the protocol. The anterior chest wall was 
opened, animals were exsanguinated via the abdominal aorta, 
and BALF was collected. The trachea was cannulated, and BALF 
was obtained by washing the airway lumina with 3× 0.5 ml of 
sterile saline; for each 0.5 ml instilled, the volume was recovered 
(totaling 1.5  ml). The BALF sample was centrifuged at 790  g 
for 10 min at 5°C. The cell pellet was resuspended in 300 µl of 
saline. Subsequently, after vortex mixing, 100 µl of this sample 
was used for lamina preparation for differential counting. The 
remaining BALF was cytocentrifuged in a Cytospin for 6  min 
at 450  rpm, and the lamina was subsequently stained with 
DiffQuick. The total cell count was obtained by optical micros-
copy and a Neubauer hemocytometer (400× magnification). 
The differentiation of neutrophils, eosinophils, lymphocytes, 
and macrophages was performed using an optical microscope 
with an immersion objective lens (1,000× magnification). At the 
end of this procedure, the lungs were isolated and removed for 
histological analysis.

Mean alveolar Diameter (lm)
The Lm was measured using a microscope (E200MV, Nikon 
Corporation, Tokyo, Japan) with a 400× magnification and a 
reticulum with a known area (50 straight and 100 points) to cal-
culate how many times the reticular lines intercepted the alveolar 
walls. The initial area of the alveolar walls was determined, 
excluding vessels and airways. For each animal, 20 lung paren-
chyma fields were randomly analyzed. Thus, the mean alveolar 
diameter was calculated according to the ratio of the area of the 
pulmonary parenchyma to the number of intersections between 

the lines and the alveolar walls. All Lm values were expressed 
in micrometers (24). We used this method of analysis to rule 
out any acute lung injury at the dose of LPS used in the present 
protocol.

immunohistochemistry
Pulmonary tissue fragments were fixed in 10% formalin and 
embedded in paraffin. Five-micrometer thick sections were 
stained with hematoxylin and eosin for further analysis. The 
material was subjected to standard histological techniques as 
described below. The slices were deparaffinized and rehydrated 
for immunohistochemistry, treated with Proteinase K for 20 min 
at 37°C followed by 20  min at room temperature, and washed 
with PBS. Blocking of endogenous peroxidases was performed by 
incubation with 3% hydrogen peroxide (H2O2) 10 V (3× 10 min) 
and sections of experimental and control (positive and negative) 
tissue slides were incubated overnight with the indicated anti-
bodies (Figure 2). The following day, the slides were washed in 
PBS and incubated with a secondary antibody using ABCKit by 
Vectastain (Vector Elite-PK-6105 anti-goat), PK-6101 (anti-rab-
bit), and PK-6102 (anti-mouse). For visualization of positive cells, 
the slides were washed in PBS and proteins were visualized using 
3,3’-diaminobenzidine chromosome (DAB) (Sigma Chemical 
Co., St. Louis, MO, USA). Slide sections were contrasted with 
Harris hematoxylin (Merck, Darmstadt, Germany) and assem-
bled using Entellan microscopy resin (Merck) (25). Analyzes were 
performed using the morphometric technique described below.

Morphometric analysis for inflammatory 
and edema evaluation
The point-counting technique was employed (26) by means of 
a reticule of a known area (50 lines and 100 points) coupled to 
a microscope (E200MV, Nikon Corporation, Tokyo, Japan). Ten 
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FigUre 2 | Types of antibodies and dilutions used in the study. **This monoclonal antibody is per DC-STAMP that represents a multi-membrane spanning protein 
preferentially expressed for dendritic cells. DC-STAMP is present in the endoplasmic reticulum of immature DC’s and it can translocate to the Golgi compartment 
during maturation.
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random fields in the alveolar walls per animal, at a magnification 
of 1,000×, were counted, and the number of positive cells was 
established based on the number of points that coincided with 
the positive cells within the reticulum divided by the number of 
points coinciding with the alveolar walls. The total area of the 
reticulum was 104 μm2 and analyzes were performed at 1,000× 
magnification (17, 27).

The optical density was used to evaluate the volume fractions 
of the collagen fibers type I and III, actin, decorin, lumican, 
biglycan, fibronectin, and isoprostane PGF2α. Images were cap-
tured using an Leica DM2500 microscope (Leica Microsystems, 
Wetzlar, Germany), a digital camera (Leica DFC420 Leica 
Microsystems, Wetzlar, Germany). The images were acquired and 
processed using Optimas v.4.10 software. We analyzed 10 fields 
per lamina and one lamina per animal. The images were analyzed 
using Image-Proplus 4.5 software (NIH, MD, USA). This software 
allowed a thresholding of the color shades to be developed. These 
shades represent the positive areas quantified in the previously 
determined area. The volume fractions of these markers are 
expressed as percentages of the area (20).

By using a light microscope (Leica DFC 420 Leica microsys-
tems, Wetzlar, Germany), eight non-overlapping fields of view 
were imaged at 100×, 200×, and 400× magnifications. We used 
a weighted scoring system to quantify interstitial edema. Scores 
from 0 to 4 were used to represent the severity of interstitial edema, 
with 0 representing no effect and 4 representing maximal severity. 

Additionally, the degree of each score quantified per field of view 
was established on a scale of 0–4, with 0 representing no noticeable 
extent and 4 representing complete involvement. An evaluator 
blind to all animal treatment conditions performed all analyzes 
and product of severity and the extent of each feature, ranging 
from 0 to 16, was used to calculate the overall scores (28, 29).

gene expression
The expression level of IL-6R in the lungs was evaluated using real-
time PCR (polymerase chain reaction) as previously reported by our 
group (30). Expression of GAPDH was used as an internal control. 
The primer sequences and annealing temperatures were: GAPDH 
(5′–3′ sense: CCACCACCCTGTTGCTGTAG; 5′–3′antisense: 
CTTGGGCTACACTGAGGACC; 60°C; NM_008084) and IL-6R 
(5′–3′ sense: TTCTCTGGGAAATCGTGGAAA; 5′–3′ antisense: 
TCAGAATTGCCATTGCACAAC; 60°C; NM_001314054). The 
results were obtained as cycle number at which logarithmic PCR 
plots cross a calculated threshold line and used to determine ΔCt 
values [ΔCt = (Ct of the target gene) − (Ct of the house-keeping 
gene)]. The results were expressed as arbitrary units using the 
transformation: Expression = 1000 × (2−Δct) arbitrary units.

statistical analysis
All data are represented as the means ± SEs, and graphs are pre-
sented in bar formats. One-way Analysis of Variance (ANOVA) 
followed by the Holm-Sidak method for multiple comparisons 
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FigUre 3 | Effects of anti IL-17 treatment on bronchoalveolar lavage fluid (BALF) (a–e). (a) Total cells, (B) cell differential for macrophages, (c) cell differential for 
neutrophils, (D) cell differential for Lymphocytes, and (e) cell differential for eosinophils. The results are expressed as 104 cells/ml. Data are presented as the 
means ± SEs. The differences were considered significant when p < 0.05. p < 0.05 vs. SAL group; **p < 0.05 vs. OVA and OVA-LPS groups. #p < 0.05 vs. OVA group.
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was used to determine the difference between groups with statis-
tical significance. All analyzes were conducted using SigmaPlot 
11.0 software (Systat Software, SPSS Inc., USA). A p-value < 0.05 
was considered statistically significant.

resUlTs

Mean linear intercept (lm)
The mean linear values of the alveolar intercepts of the experi-
mental groups were as follows: Group OVA (40.82  ±  1.55), 

OVA-LPS (44.40 ±  0.58), and SAL (42.23 ±  0.46), which were 
not significantly different. The OVA group treated with anti-IL-17 
(41.93 ± 0.60) and the OVA-LPS group treated with anti-IL-17 
(42.29  ±  0.51) had no significant differences compared to the 
OVA and OVA-LPS groups.

effects of anti-il-17 on BalF
The total cell count in the BALF and the differential count for mac-
rophages, lymphocytes, neutrophils, and eosinophils are shown in 
Figures 3A–E The evaluation of the total and the differential cell 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FigUre 4 | Effects of anti-IL-17 on IL-6 gene expression and IL-6 positive cell number. (a) The levels of IL-6 mRNA in the lung parenchyma were evaluated using 
RT-PCR (AU) and (B) IL-6-positive cells. The results were expressed as arbitrary units and as positive cells 104 µm2. Data represent means ± SEs. The differences 
were considered significant when p < 0.05. *p < 0.05 vs. SAL group; **p < 0.05 vs. OVA and OVA-LPS groups. #p < 0.05 vs. OVA group.
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counts for macrophages, neutrophils, and eosinophils revealed an 
increase of type cells in the OVA and OVA-LPS groups compared 
to the SAL group (p  <  0.05). The OVA-LPS group showed an 
increase in the number of total cells and neutrophils compared to 
the OVA group (p < 0.05). The animals from the OVA anti-IL-17 
and OVA-LPS anti-IL-17 groups showed decreases in the num-
bers of total cells, macrophages, and neutrophils compared to the 
OVA and OVA-LPS groups, respectively (p  <  0.05). However, 
eosinophils decreased only in the OVA anti-IL-17 group com-
pared to the OVA group (p  <  0.05). There was no significant 
difference in the counts of lymphocytes in any of the groups. The 
following is the description of the cell differences in percentage 
for: 1. Macrophages: SAL (8.76 ± 0.35%), OVA (48.15 ± 7.94%), 
OVA-anti-IL-17 (5.57 ± 0.90%), OVA-LPS (33.78 ± 3.00%), and 
OVA-LPS anti-IL-17 (14.29  ±  7.33%) groups; 2. Neutrophils: 
SAL (0.20  ±  0.03%), OVA (0.75  ±  0.29%), OVA-anti-IL-17 
(2.31 ± 0.43%), OVA-LPS (30.14 ± 5.72%), and OVA-LPS anti-
IL-17 (1.05 ± 0.32%) groups; 3. Lymphocytes: SAL (0.10 ± 0.04%), 
OVA (0.16 ± 0.04%), OVA-anti-IL-17 (0.24 ± 0.14%), OVA-LPS 
(0.40 ± 0.18%), and OVA-LPS-anti-IL-17 (0.21 ± 0.12%) groups; 
4. Eosinophils: SAL (0.24 ± 0.0%), OVA (67.14 ± 31.76%), OVA-
anti-17 (1.23 ± 0.10%), OVA-LPS (28.95 ± 1.58%), and OVA-LPS 
anti-IL-17 (8.91 ± 8.38%) groups.

effect of anti-il-17 on gene and cell 
expression of il-6
We compared the results of IL-6 gene expression analysis by PCR 
with the cell expression of this cytokine assessed by morpho-
metric analysis following immunohistochemical staining. The 
number of positive cells and gene expression of IL-6 in the lung 
parenchyma is presented in Figure 4A. There was an increase in 
the number of positive cells in the lung parenchyma in the OVA 
and OVA-LPS groups compared to the SAL group (p  <  0.05). 
The OVA-LPS group showed an increase in relation to the OVA 
group (p < 0.05). Treatment with anti-IL-17 attenuated all inflam-
matory markers evaluated in the OVA anti-IL-17 and OVA-LPS 
anti-IL-17 groups compared to the OVA and OVA-LPS groups 

(p < 0.05). The gene expression evaluation by PCR showed simi-
lar patterns of responses compared to morphometric analyzes, 
as shown in Figure  4B. Considering these results, we decided 
to evaluate additional inflammatory, remodeling, and oxidative 
stress markers using morphometric analysis after immunohisto-
chemistry studies.

effects of anti-il-17 Therapy on 
inflammation
The number of cells positive for IL-4, IL-13, IL-17 expression 
and increased interstitial edema is presented in Figures 5A–D. 
The number of cells positive for IL-2, IL-5, IL-10, TNF-α, TARC, 
CD4, and CD8 expression in the lung parenchyma is presented 
in Table 1 (A). The number of positive cells in the lung paren-
chyma showed an increase in their contents in the OVA and 
OVA-LPS groups compared to the SAL group (p < 0.05). The 
OVA-LPS group showed an increase in all markers compared 
to the OVA group, except for TNF-α and IL-17 (p  <  0.05). 
Treatment with anti-IL-17 reduced the levels of inflammatory 
markers evaluated in the OVA anti-IL-17 and the OVA-LPS 
anti-IL-17 groups compared to the OVA and OVA-LPS groups, 
respectively (p < 0.05). Regarding interstitial edema, an increase 
was observed in the OVA and OVA-LPS groups compared to the 
SAL group (p < 0.05). In the OVA-LPS group, an increase was 
observed in the level of interstitial edema compared to the OVA 
group (p < 0.05). Treatment with anti-IL-17 in the OVA anti-
IL-17 and OVA-LPS anti-IL-17 groups decreased the regions of 
interstitial edema compared to the OVA and OVA-LPS groups 
(p < 0.05).

effects of anti-il-17 on regulatory T cells 
(Treg) and on antigen-Presenting cells 
(aPc)
The numbers of FOXP3 (Treg) and Dendritic cells (APC) in 
the lung parenchyma is presented in Table 1 (B). There was an 
increase in the number of positive cells in the lung parenchyma in 
both the OVA and OVA-LPS groups compared to the SAL group 
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FigUre 5 | Effects of anti-IL-17 on inflammatory cells and interstitial edema of the pulmonary parenchyma (a–D). (a) IL-4, (B) IL-13, and (c) IL-17 levels expressed 
as numbers of positive cells/104 µm2, and (D) interstitial edema area in 104 µm2. Data are presented as the means ± SEs. The differences were considered 
significant when p < 0.05 (p < 0.05 vs. SAL group; ** p < 0.05 vs. OVA and OVA-LPS groups; #p < 0.05 vs. OVA group).

TaBle 1 | Absolute values of inflammatory markers, Treg, and antigen-presenting cells in the pulmonary parenchyma.

sal OVa OVa anti-il-17 OVa-lPs OVa-lPs anti-il-17

(a) inflammatory markers
TARC (cells/104 μm2) 1.11 ± 0.25 4.32 ± 0.38* 1.17 ± 0.10** 5.61 ± 0.41*,# 1.80 ± 0.38**
CD4 (cells/104 μm2) 1.87 ± 0.16 4.82 ± 0.51* 1.84 ± 0.32** 6.59 ± 0.64*,# 2.40 ± 0.37**
CD8 (cells/104 μm2) 0.36 ± 0.11 2.96 ± 0.38* 0.67 ± 0.09** 5.37 ± 0.65*,# 1.94 ± 0.30**
IL-2 (cells/104 μm2) 0.92 ± 0.08 3.21 ± 0.16* 1.69 ± 0.18** 5.30 ± 0.27*,# 1.94 ± 0.10**
IL-5 (cells/104 μm2) 0.94 ± 0.19 5.20 ± 0.49* 1.74 ± 0.13** 7.36 ± 0.56*,# 2.06 ± 0.34**
IL-10 (cells/104 μm2) 0.54 ± 0.09 4.10 ± 0.25* 0.78 ± 0.10** 6.22 ± 0.30*,# 1.72 ± 0.18**
TNF-α (cells/104 μm2) 1.18 ± 0.37 5.43 ± 0.54* 1.50 ± 0.34** 3.15 ± 0.62* 1.65 ± 0.49**

(B) Markers Treg and antigen-presenting cell
Dendritic cells (cells/104 μm2)  0.44 ± 0.10 3.42 ± 0.43* 1.06 ± 0.25** 7.23 ± 0.93*,# 2.00 ± 0.26**
FOXP3 (cells/104 μm2) 1.37 ± 0.29 8.78 ± 0.74* 5.77 ± 0.61** 11.30 ± 1.32*,# 5.71 ± 0.93**

Inflammatory markers for TARC, CD4, CD8, IL-2, IL-5, IL-10, and TNF-α are presented as positive cells/104 μm2, and regulatory T and antigen-presenting cell markers for dendritic 
cells and FOXP3 are presented as positive cells/104 μm2.
*p < 0.05 in comparison with the SAL group.
**p < 0.05 in comparison with the OVA and OVA-LPS groups.
#p < 0.05 in comparison with the OVA group.
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(p < 0.05). The OVA-LPS group showed an increase relative to 
the OVA group (p < 0.05). Treatment with anti-IL-17 attenuated 
all inflammatory markers evaluated in the OVA anti-IL-17 and 
OVA-LPS anti-IL-17 groups compared to the OVA and OVA-LPS 
groups (p < 0.05).

effects of anti-il-17 on extracellular 
Matrix remodeling
The number of cells positive for MMP-9, MMP-12, TIMP-1, and 
TGF-β, as well as the volume fraction of collagen fibers I and III, 
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FigUre 6 | Effects of anti-IL-17 on oxidative stress. (a,B). (a) iNOS-positive cells and (B) the 8-iso-PGF2α volume fraction. The results are expressed as positive 
cells/104 µm2, and the volume fraction is expressed as percentages of area (%). Data are presented as the means ± SEs. The differences were considered 
significant when p < 0.05 (*p < 0.05 vs. SAL group; **p < 0.05 vs. OVA and OVA-LPS groups; #p < 0.05 vs. OVA group).

TaBle 2 | Absolute values for remodeling markers in the pulmonary parenchyma.

remodeling markers sal OVa OVa anti-il-17 OVa-lPs OVa-lPs anti-il-17

MMP-9 (cells/104 μm2) 2.70 ± 0.46 8.11 ± 0.47* 2.57 ± 0.36** 16.50 ± 0.62*,# 9.75 ± 0.43**
MMP-12 (cells/104 μm2) 0.32 ± 0.06 7.51 ± 0.48* 1.36 ± 0.26** 11.00 ± 1.96*,# 1.62 ± 0.28**
TIMP-1 (cells/104 μm2) 1.11 ± 0.18 8.29 ± 0.85* 2.72 ± 0.48** 9.96 ± 0.95* 3.95 ± 0.56**
TGF-β (cells/104 μm2) 1.65 ± 0.23 31.60 ± 2.22* 19.84 ± 1.53** 42.06 ± 1.91*,# 8.35 ± 0.75**
Collagen Fibers I (%) 12.16 ± 0.88 22.25 ± 2.16* 13.58 ± 1.12** 25.19 ± 1.48 20.08 ± 0.72**
Collagen Fibers III (%) 0.89 ± 0.09 13.47 ± 0.62* 8.17 ± 0.53** 20.10 ± 0.80*,# 7.89 ± 0.71**
Decorin (%) 1.62 ± 0.29 52.68 ± 2.60* 2.77 ± 0.43** 55.66 ± 2.37* 8.00 ± 0.92**
Lumican (%) 14.03 ± 0.18 27.39 ± 1.02* 21.64 ± 1.47** 26.57 ± 0.68* 15.33 ± 0.54**
Actin (%) 8.05 ± 1.84 28.44 ± 1.99* 12.80 ± 1.29** 29.90 ± 1.93* 6.9 ± 1.66**
Biglycan (%) 4.13 ± 0.23 12.47 ± 0.71* 5.39 ± 1.08** 20.68 ± 2.83*,# 5.00 ± 0.66**
Fibronectin (%) 4.60 ± 0.47 40.27 ± 1.65* 11.17 ± 1.06** 48.56 ± 2.03*,# 10.20 ± 0.78**

Remodeling markers for MMP-9, MMP-12, TIMP-1, and TGF-β are expressed as positive cells/104 μm2. Collagen fibers I and II, decorin, lumican, actin, biglycan, and fibronectin are 
presented as volume fraction expressed as percentages of area (%).
*p < 0.05 in comparison with the SAL group.
**p < 0.05 in comparison with the OVA and OVA-LPS groups.
#p < 0.05 in comparison with the OVA group.
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decorin, actin, biglycan, lumican, and fibronectin in the lung 
parenchyma, is presented in Table 2. All markers were increased 
in the OVA and OVA-LPS groups compared to the SAL group 
(p < 0.05). The OVA-LPS group showed an increase in the volume 
fraction of biglycan, fibronectin, and collagen fibers I and III com-
pared to the OVA group (p < 0.05). The numbers of cells positive 
for MMP-9, MMP-12, and TGF-β were increased compared to 
the OVA group (p < 0.05). There was no increase in the lumican, 
actin and decorin levels in OVA-LPS animals compared to OVA 
animals. There was a decrease in all markers in the OVA anti-
IL-17 and OVA-LPS anti-IL-17 groups compared to non-treated 
animals (OVA and OVA-LPS groups, respectively, p < 0.05).

effects of anti-il-17 on Oxidative stress
The numbers of cells positive for iNOS and the volume fractions 
of PGF-2-α isoprostane in the lung parenchyma are shown in 
Figures 6A,B. Both markers in the OVA and OVA- LPS groups 
were increased compared to the SAL group (p < 0.05). There was 
an increase in the OVA-LPS group in the number of cells positive 

for iNOS and the volume fraction of PGF-2-α isoprostane com-
pared to the OVA group (p < 0.05). Treatment with anti-IL-17 
attenuated these markers in OVA anti-IL-17 and OVA-LPS 
anti-IL-17 groups compared to the OVA and OVA-LPS groups 
(p < 0.05).

effects of anti-il-17 on signaling 
Pathways
The cellular expression levels of NF-κB, ROCK-1, and ROCK-2 
in the lung parenchyma are shown in Figures  7A–C. We 
observed an increase in the numbers of cells positive for these 
markers in the OVA and OVA-LPS groups compared to the 
SAL group (p < 0.05). There was an increase in the OVA-LPS 
group in the number of positive cells for ROCK-1 and ROCK-2 
compared to the OVA group (p < 0.05). In the OVA-LPS group, 
there was no increase in the number of NF-κB-positive cells. 
Anti-IL-17 treatment in the OVA anti-IL-17 and OVA-LPS 
anti-IL-17 group ameliorated all increases in these markers 
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FigUre 7 | Effects of anti-IL-17 on signaling pathways. (a–c). (a) ROCK-1, (B) ROCK-2, and (c) NF-κB-positive cells. The results are expressed as positive 
cells/104 µm2 Data are presented as the means ± SEs. The differences were considered significant when p < 0.05 (*p < 0.05 vs. SAL group; **p < 0.05 vs. OVA and 
OVA-LPS groups; #p < 0.05 vs. OVA group).
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compared to the OVA and OVA-LPS groups, respectively 
(p < 0.05).

effects of il-17 inhibition Through 
Qualitative analysis
Photomicrographs of extracellular matrix inflammatory features 
of alveolar walls measuring IL-4, IL-13 and IL-17 are shown in 
Figure 8. The animals exposed to only ovalbumin and ovalbumin 
more LPS (OVA and OVA-LPS groups) presented prominent 
increases in the numbers of positive cells, compared with the 
control animals (SAL group). Anti-IL-17 treatment in the OVA 
anti-IL-17 and OVA-LPS anti-IL-17 group ameliorated all 
increases in these markers.

Photomicrographs of extracellular matrix remodeling features 
in the alveolar walls: collagen fibers I and metalloproteinase inhibi-
tor (TIMP-1) is presented in Figure 9. The animals treated with 
ovalbumin and LPS (OVA, OVA-LPS group) presented increases 
in volume fraction and number of positive cells compared to the 
control group (SAL). There was a decrease in all markers in the 
OVA anti-IL-17 and OVA-LPS anti-IL-17 groups compared to 
non-treated animals.

Photomicrographs of immunohistochemical analysis of oxida-
tive stress and signaling pathways markers present in the alveolar 
walls, as represented by NF-κB and 8-iso-PGF2α are shown in 

Figure 10. There was an increase in the number of cells positive 
for iNOS and the volume fraction of PGF-2-α iso-prostane in the 
OVA and OVA-LPS non-treated groups compared to the SAL 
group. Anti-IL-17 treatment in the OVA anti-IL-17 and OVA-LPS 
anti-IL-17 group ameliorated all increases in these markers.

DiscUssiOn

We evaluated the effects of inhibition of IL-17 in the present study, 
using an anti-IL-17 monoclonal antibody, on distal pulmonary 
parenchyma responses characterized by the infiltration of inflam-
matory cells, differential release of cytokines and chemokines, 
oxidative stress, extracellular matrix remodeling, signaling 
pathways, and IL-6 gene expression in an experimental model 
of LPS-exacerbated asthma. An attenuation of the inflammatory 
responses of Th1, Th2, and Th17 cytokines, Treg cells and APCs 
in both the OVA anti-IL-17 and OVA-LPS anti-IL-17 groups was 
observed, as represented by reductions in the total numbers of 
inflammatory cells, macrophages, neutrophils, and eosinophils in 
the BALF. However, did not there was difference in the numbers 
of lymphocytes, which we considered that was already expected, 
since these cells are mainly attached to the airway walls and to 
the alveolar septum. Several studies showed a low number of 
lymphocytes compared to eosinophils in BALF in asthma animal 
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FigUre 8 | Inflammatory markers. Photomicrographs of extracellular matrix inflammatory features of alveolar walls measuring IL-4, IL-13, and IL-17. The red arrows 
indicate positive cells for IL-4, IL-13, and IL-17. All images are presented at a magnification of 1,000×, scale bars = 10 µm. The experimental groups are 
represented as: SAL, OVA, OVA anti-IL-17, OVA-LPS, and OVA-LPS anti-IL-17.

FigUre 9 | Remodeling markers. Photomicrographs of extracellular matrix remodeling features in the alveolar walls: collagen fibers I and metalloproteinase inhibitor 
(TIMP-1). The red arrows indicate the collagen fibers and positive cells for TIMP-1. All images are presented at a magnification of 1,000×, scale bars = 10 µm. The 
experimental groups are represented as: SAL, OVA, OVA anti-IL-17, OVA-LPS, and OVA-LPS anti-IL-17.

10

Camargo et al. Effects of Anti-IL-17 in Asthma

Frontiers in Immunology | www.frontiersin.org January 2018 | Volume 8 | Article 1835

models and in asthmatics (2, 31–33). The anti-IL-17 treatment 
also decreased the markers of extracellular matrix remodeling, 
reduction in the volume fraction of actin, biglycan, collagen fibers 
I and III, decorin, lumican and fibronectin, as well as the cellular 
expression levels of MMP-9, MMP-12, TIMP-1, and TGF-β. 
Consistently, a decrease in the numbers of cells positive for 

iNOS and activation of PGF-2-α isoprostane in OVA-anti-IL-17 
and OVA-LPS anti-IL-17 groups and similarly, in the signaling 
pathways mediated by Rho kinases 1 and 2 and NF-κB.

The experimental model utilized here comprised two distinct 
phases. In the first stage, we induced allergic inflammation 
through repeated exposures to ovalbumin. At the second stage, 
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our objective was to study an exacerbated asthma model, using a 
low dose of LPS as previously described (4). We did not consider 
that this low doses of LPS (0.01 mg/ml) cause acute lung injury 
based on previous studies in which ALI was induced by doses of 
LPS at about 50–100 times greater (34, 35). Fodor et al. (35) used 
increasing doses of LPS (3, 5, and 10 mg/kg) in order to quantify 
the severity of the dose-dependent effect. They concluded that 
the findings confirmed sepsis and alveolar–capillary membrane 
damage in a dose-dependent manner. However, comparing with 
our work the dose of 3 mg/kg (adjusted to mg per animal) was 
equivalent to 130 times greater than the one used in our protocol. 
Reinforcing our hypothesis and in order to rule out the possibility 
of alveolar damage by this low dose of LPS, we performed the 
evaluation of alveolar mean (LM) interception (36). LM is an 
index through which we evaluate the mean diameter of the distal 
air spaces in order to prove alveolar destruction. We observed 
that there were no significant differences among all groups.

In previous studies, we demonstrated that this experimental 
model of allergic inflammation induced by repeated exposures 
of antigen showed several characteristics present in the patho-
physiology of asthma, such as intense constriction, eosinophilic 
inflammation, oxidative stress, and remodeling of the extracellular 
matrix in the distal parenchyma (17, 20, 25, 37–39). Concerning 
the increase of Th1/Th2 and Th17 cytokines observed in the 
present study, increased levels of CD4+ and CD8+ cells activate 
immune responses in both humans and experimental mamma-
lian models. Since CD4+ is considered a marker for Th17 cells 
(40–42), Wang and Wills-Karp (43) demonstrated that the 
CD4+/Th2 cells induced inflammation during the chronic phase 
and these cells produce IL-17.

The number of IL-4 and IL-13 positive cells was higher than 
that observed in the number the of IL-17 positive cells. This 
increase may be related to an effect of another cytokine. One pos-
sibility is the IL-6, since this cytokine has emerged as a regulator 
of CD4 responses and may induce Th1 and Th2 responses (44). 
Corroborating with these findings, Diehl et al. (45) showed that 
IL-6 promotes the production of IL-4 and IL-13 in animal models 
of asthma. We observed a potentiation of IL-6 in the OVA-LPS 
group in the same way as IL-4 and IL-13. To confirm the impor-
tance of IL-6 as the involved mechanism, we checked these data 
by PCR and immunohistochemistry. Corroborating with our 
findings, Bae et al. (14) showed in knockout animals for IL-17A 
a decrease of neutrophils, IL-6, and IL-17. Nevertheless, IL-13 
and IL-17 inhibition protected the animals from eosinophilia, 
mucus hyperplasia, and hyperresponsiveness of the airways and 
the elimination of neutrophilic inflammation, suggesting the 
effectiveness of combination therapies that control both Th2 and 
Th17 responses (46). Herein, we demonstrated that anti-IL-17 
treatment attenuated IL-4, IL-5, and IL-13-positive cell responses 
in the lung parenchyma in the OVA anti-IL-17 and OVA-LPS 
anti-IL-17 groups.

The function of Foxp3 is to differentiate and expand Treg cells 
and is a specific marker for this differentiation (47, 48). After Tregs 
are activated, they express high levels of TGF-β and IL-10, which 
play an anti-inflammatory role (49). It is known that in mice, 
TGF-β and IL-6 cytokines are essential for the differentiation of 
Th17 cells. Inducing the production of IL-17A and IL-17F (50). In 
addition, Chakir et al. (51) showed a positive correlation between 
the severity of the disease and Th17 phenotype in patients with 
moderate and severe asthma.

FigUre 10 | Oxidative stress and Signaling Pathway markers. Photomicrographs of immunohistochemical analyzes of oxidative stress and signaling pathways 
markers present in the alveolar walls, as represented by NF-κB and 8-iso-PGF2α. The red arrows indicate positive cells for NF-κB and positive area of 8-iso-PGF2α. 
All images were analyzed at a magnification of 1,000×, scale bars = 10 µm. Experimental groups are represented as: SAL, OVA, OVA anti-IL-17, OVA-LPS, and 
OVA-LPS anti-IL-17.
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Concerning alterations in remodeling of the extracellular 
matrix in the distal parenchyma, an increase in MMP-9-, MMP-
12-, TIMP-1-, TGF-β-positive cells and collagen fibers I and III, 
decorin, lumican, actin, biblycan, and fibronectin volume fraction 
in the OVA group compared to SAL. Treatment with anti-IL-17 in 
the OVA and OVA-LPS animals reduced these responses. It was 
observed in the OVA-LPS group an increase in the responses of 
MMP-9, MMP-12, TGF-β, fibronectin, and biglycan.

However, the following markers TIMP-1, decorin, lumican, and 
actin did not differ between OVA and OVA-LPS group. It had been 
previously shown that LPS in cell cultures an increase in decorin 
(RNA protein) after 24 h. Nonetheless, the major effect was at 48 h 
(52). We used only one dose of anti-IL17 after LPS administration. 
One possible explanation is that only one dose was not sufficient 
to control the stimuli for decorin production induced by LPS. 
Analyzing lumican responses, we observed that OVA and OVA-
LPS groups were not different. However, anti-IL-17 contributed for 
a greater reduction of lumican in these groups. Since we observed 
the same response in the TGF-β assessment, we hypothesized that 
the reduction of TGF-β by anti IL-17 contributed to the effects 
observed in the lumican response. These data are in accordance 
with Krishnan et  al. (53), which showed that TGF-β increases 
lumican expression. In relation to actin, the anti-IL-17 treatment 
showed a tendency to decrease actin in the OVA-LPS anti IL-17 
group. Qin et al. (54) showed that TGF-β was also able to increase 
actin expression in allergic inflammation models.

In the current study, we found that anti-IL-17 therapy neu-
tralized the remodeling of the lung parenchyma, and we quanti-
fied the volume fraction of collagen fibers I and III. We observed 
that anti-IL-17 treatment mitigated the deposition of collagen 
fibers in the ECM. These results suggest that anti-IL-17 therapy 
not only controls inflammation but also remodeling process.

The results of the present study showed a high number of 
cells positive for MMP-9 and MMP-12 in the OVA-LPS group. 
Several inflammatory cytokines, such as TNF-a and the anti-
genic agent LPS, stimulate the synthesis of MMPs in neutrophils 
(55), and LPS stimulates neutrophil recruitment (56, 57). Oshita 
et  al. (58) had shown that MMP-9 and MMP-12 represent 
markers of inflammation and remodeling. In addition to the 
remodeling process, these MMPs also participate in the inflam-
matory process through the modulation of signaling Th2 cells 
or through the regulation of leukocyte infiltration in the tissues 
of the distal parenchyma (59).

Moreover, the reduction of oxidative stress and signaling 
pathways in response to treatment with anti-IL-17 may have 
contributed to the reduction of ECM remodeling. We observed 
an increase in the volume fraction of PGF2-α, iNOS and cells 
positive for ROCK-1, ROCK-2, and NF-κB. These markers were 
reduced after treatment with anti-IL-17.

Righetti et al. (20) and Possa et al. (25) showed that inhibi-
tion of ROCK-1 and ROCK-2 contributes to the reduction of 
eosinophilic recruitment, hyperresponsiveness, and markers of 
the remodeling process in an asthma model. These findings had 
positive correlations with the functional responses and the mark-
ers of inflammation and remodeling. These studies corroborate 
our results, suggesting that anti-IL-17 was able to counteract this 
signaling pathway.

Consistent with these results, Prado et al. (60) demonstrated 
that treatment with an iNOS inhibitor reduced MMP-9, TIMP-
1, and TGF-β levels in the airways in an asthma model. These 
mediators modulate the production of the collagen and elastic 
fibers, contributing to the remodeling of the ECM. Starling et al. 
(37) also showed a significant reduction of PGF2-α isoprostane 
in animals sensitized with ovalbumin and treated with specific 
iNOS inhibitors.

Transcription factors are involved in all these processes, 
including NF-κB, which is considered a critical modulator of 
inflammation in the pathogenesis of lung diseases (61). In an 
attempt to determine the importance of NF-κB during sensi-
tization to the antigen in the murine asthma model, Pantano 
et al. (62) demonstrated that the epithelial activation of NF-κB 
promoted neutrophilia and eosinophilia and increased the levels 
of IL-17 and IL-4. Notably, the activation of this pathway might 
also increase the levels of NOS and arginase (38, 63).

Our study has certain limitations. We used a monoclonal anti-
body to IL-17 in an experimental animal model, and we cannot 
directly extrapolate these findings to those expected in humans, 
although there are several ongoing clinical tests for severe asth-
matic patients. Regarding the remodeling process, we evaluated 
the alterations immediately after the end of the protocol. It would 
be interesting to evaluate if these alterations were maintained after 
weeks or months of the end of the experiment. In addition, the 
confirmation of all alterations observed by immunohistochemistry, 
using another methodology, such as ELISA could be performed in 
future studies. In the present one, we did it only for IL-6 consider-
ing the regulatory importance of this cytokine on CD4 responses, 
as previously discussed. However, our study has many strengths 
since we showed the importance of investigating the Th17 profile 
in chronic allergic inflammation exacerbated by LPS. We demon-
strated a potential of anti-IL17 to attenuate and/or control inflam-
matory responses, airway remodeling, oxidative stress pathways, 
as well as the mechanisms involved in the activation of NF-κB 
and ROCK-1 and 2 in the lungs with allergic inflammation even 
though there was a second inflammatory stimulus induced by the 
exacerbation. Further studies should, therefore, be performed to 
reveal other pathways that lead to these changes.

cOnclUsiOn

In this study, it was demonstrated that inhibition of IL-17 con-
tributes to the control of Th1/Th2/Th17-mediated inflammation, 
Treg cells, APCs, chemokine expression, extracellular matrix 
remodeling, and oxidative stress in the lung parenchyma in a 
model of chronic allergic inflammation exacerbated by LPS. This 
treatment represents a promising therapeutic strategy, although 
further studies are necessary.
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