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Thyroid Autoantibodies Display  
both “Original Antigenic Sin” and 
epitope Spreading
Sandra M. McLachlan* and Basil Rapoport

Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA, United States

Evidence for original antigenic sin in spontaneous thyroid autoimmunity is revealed by 
autoantibody interactions with immunodominant regions on thyroid autoantigens, thyro-
globulin (Tg), thyroid peroxidase (TPO), and the thyrotropin receptor (TSHR) A-subunit. 
In contrast, antibodies induced by immunization of rabbits or mice recognize diverse 
epitopes. Recognition of immunodominant regions persists despite fluctuations in auto-
antibody levels following treatment or over time. The enhancement of spontaneously 
arising pathogenic TSHR antibodies in transgenic human thyrotropin receptor/NOD.H2h4 
mice by injecting a non-pathogenic form of TSHR A-subunit protein also provides evi-
dence for original antigenic sin. From other studies, antigen presentation by B cells, not 
dendritic cells, is likely responsible for original antigenic sin. Recognition of restricted 
epitopes on the large glycosylated thyroid autoantigens (60-kDa A-subunit, 100-kDa 
TPO, and 600-kDa Tg) facilitates exploring the amino acid locations in the immunodom-
inant regions. Epitope spreading has also been revealed by autoantibodies in thyroid 
autoimmunity. In humans, and in mice that spontaneously develop autoimmunity to all 
three thyroid autoantigens, autoantibodies develop first to Tg and later to TPO and the 
TSHR A-subunit. The pattern of intermolecular epitope spreading is related in part to 
the thyroidal content of Tg, TPO and TSHR A-subunit and to the molecular sizes of 
these proteins. Importantly, the epitope spreading pattern provides a rationale for future 
antigen-specific manipulation to block the development of all thyroid autoantibodies by 
inducing tolerance to Tg, first in the autoantigen cascade. Because of its abundance, Tg 
may be the autoantigen of choice to explore antigen-specific treatment, preventing the 
development of pathogenic TSHR antibodies.

Keywords: thyroid autoantibodies, intermolecular and intramolecular epitope spreading, immunodominant 
region, original antigenic sin, thyroglobulin, thyroid peroxidase, thyrotropin receptor

iNTRODUCTiON

The concept of “original antigenic sin” arose from findings in humans and mice infected with influenza 
virus (1, 2) and in mice responding to Chlamydia proteins (3). For example, in sequential immu-
nization of mice with two antigenically related but different strains of influenza A virus, antibodies 
induced by the second infection reacted more strongly with the primary than with the secondary 
virus (1). Similarly, humans infected with a novel influenza virus expanded antibodies against a viral 
strain of a previous infection and failed to develop antibody responses to epitopes on the new viral 
strain (4). Unlike in viral infections, the presently held authoritative opinion is that autoimmunity 
involves the converse of the “doctrine” of original antigenic sin, thereby facilitating “an unforseen 
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platform for immune therapy” (5). In this review, we present 
contrary evidence supporting the concept of an original antigenic 
sin component occurring for autoantibodies in thyroid autoim-
munity and perhaps for other autoantibody-mediated diseases.

A phenomenon interlinked with original antigenic sin is 
epitope spreading, a well-recognized feature of some autoimmune 
conditions such as type 1 diabetes mellitus and multiple sclerosis, 
as well as for the animal models of these diseases, namely NOD 
mice and experimental autoimmune encephalomyelitis (EAE). 
Spreading can involve increasing the number of epitopes recog-
nized on the same autoantigen (intramolecular) and subsequent 
recognition of additional autoantigens (intermolecular) over 
time. An example of intermolecular spreading, in EAE, SWX 
mice immunized with myelin proteolipid protein (PLP) develop 
the (as expected) T cell reactivity to determinants on PLP and to 
determinants on myelin basic protein and myelin oligodendro-
cyte glycoprotein (6). Similarly, in type 1 diabetes that develops 
spontaneously in NOD mice, T cell recognition of islet autoan-
tigens spreads from proinsulin to other islet autoantigens such 
as islet-specific glucose-6-phosphatase catalytic subunit-related 
protein (IGRP) [for example, Ref. (7, 8)].

Thyroid autoimmune disease, Hashimoto’s thyroiditis, and 
Graves’ disease are the most common organ-specific autoimmune 
diseases affecting humans, far more common than type 1 diabetes 
mellitus and multiple sclerosis. In particular, approximately 1% of 
the population will develop Graves’ disease in their lifetime and 
~15% of adult females have autoimmune thyroiditis, although 
usually subclinical (9, 10). Animal models (induced and sponta-
neous) are available that provide insight into thyroid autoimmun-
ity in humans. Three thyroid-specific autoantigens are targeted 
by the immune system: abundant soluble thyroglobulin (Tg), the 
much less abundant membrane-bound protein thyroid peroxi-
dase (TPO), and the thyrotropin receptor (TSHR) [reviewed in 
Ref. (11)]. Although the great majority of Hashimoto patients 
have autoantibodies to TPO and many have Tg autoantibodies, 
hypothyroid patients with seronegative Hashimoto’s disease have 
been reported (12).

Whether autoantibodies to TPO and Tg play a role in thyroid 
cell destruction is unclear, but they are excellent markers of the 
immune response to the thyroid. Moreover, B cells are increas-
ingly recognized as powerful antigen-presenting cells by means 
of their membrane-bound antibodies that capture small amount 
of antigen for processing and presentation to T cells [for example, 
Ref. (13)]. TPO autoantibody-mediated and -modulated presen-
tation to T cells has been reported (14, 15). Also, the enhancing or 
suppressing effects of Tg antibodies on the processing of a patho-
genic T cell epitope on Tg have been described (16). Importantly, 
the successful treatment of Graves’ ophthalmopathy patients 
with a monoclonal antibody to B cells (ritixumab) was suggested 
to involve antibody presentation by B  cells (17). Turning to 
responses to the TSHR, stimulating TSHR autoantibodies are the 
direct cause of hyperthyroidism in Graves’ disease [reviewed in 
Ref. (18)] and blocking TSHR autoantibodies are responsible for 
hypothyroidism in rare patients [for example, Ref. (19)].

Here, we examine evidence involving thyroid autoantibodies 
for both intramolecular original antigenic sin and intermolecular 
epitope spreading in autoimmune thyroid disease. Our findings 

have important implications for understanding disease patho-
genesis and for developing novel antigen-specific therapeutic 
approaches to control the development of thyroid autoantibodies 
and thereby prevent thyroid autoimmunity rather than treating 
the clinical disease.

AUTOANTiBODY ReCOGNiTiON iN 
HUMANS OF AN iMMUNODOMiNANT 
ReGiON (iDR)—A ReFLeCTiON OF 
ORiGiNAL ANTiGeNiC SiN

Antibody Recognition of an iDR on Tg and 
TPO
It has long been recognized that antibodies induced experimentally 
to Tg interact with multiple, widely diverse epitopes on the large 
(600 kDa) dimeric Tg molecule, whereas human Tg autoantibodies 
interact with a restricted number of epitopes (Figure 1) (20–23). 
Similar observations have been made for TPO (24, 25). Panels of 
human monoclonal TPO and Tg autoantibodies isolated from com-
binatorial immunoglobulin libraries and expressed as recombinant 
Fab confirmed restricted epitope recognition [for example (26, 27)]. 
Recombinant Fab provided the tools to characterize the IDRs on 
TPO and Tg recognized by antibodies in patients and some euthy-
roid controls with subclinical disease (Table 1). Characterization 
of the epitopes recognized by TPO and Tg autoantibodies has also 
been performed by competition assays using mouse monoclonal 
antibodies generated (for example) to Tg polypeptides (28), to 
purified TPO (25), or to TPO peptides (25, 29).

It should be emphasized that binding by the majority of 
patients’ autoantibodies to TPO is decreased following protein 
denaturation (47, 48), demonstrating that most TPO autoanti-
bodies interact with epitopes on conformationally intact protein. 
However, some studies have shown interaction between serum 
autoantibodies and reduced and denatured TPO [for example, 
Ref. (49, 50)], suggesting that not all TPO epitopes are conforma-
tional. Further, several linear epitopes (51, 52) and polypeptide 
fragments (53–56) are recognized by some patients’ TPO autoan-
tibodies. Similarly, Tg autoantibodies predominantly recognize 
native protein [for example, Ref. (57)]. However, recognition of 
peptide fragments by some Tg autoantibodies has been reported 
[for example, Ref. (38, 58)].

In this review, because of their dominance in the patient 
repertoire, we will focus on autoantibodies to TPO and Tg that 
interact with conformational epitopes.

Autoantibody Recognition of TPO and  
Tg is Stable over Time
TPOAb epitopic “fingerprints” of the IDR are stable over time, 
that is without intramolecular epitope spreading, for example, in 
families in which the proband has juvenile Hashimoto’s thyroidi-
tis (30), women who develop postpartum thyroiditis (35), and for 
TgAb in most patients on iodine supplementation (39) (Table 1). 
Similarly, after iodine-131 treatment in Graves’ disease, there 
was no evidence of TgAb intramolecular antibody spreading 
(44). There is some evidence that TPOAb epitopic patterns are 
inherited in families (36, 37).
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TABLe 1 | Recognition of an autoantibody immunodominant region (IDR) on 
thyroglobulin and thyroid peroxidase (TPO) in spontaneous thyroid autoimmunity 
(humans and a mouse model) versus thyroid antibodies induced in rabbits or 
mice that are either restricted or not restricted to an IDR.

Thyroid 
autoAb

Recognition Reference

Humans (spontaneous)
AITD TPOAb IDR (31–33)
Normal, elderly women TPOAb IDR (34)
Postpartum thyroiditis TPOAb IDR, stable  

over time
(35)

Juvenile HT; Amish HT TPOAb IDR, stable  
over time

(30, 36)

HT twins TPOAb IDR, stable  
over time

(37)

Thyroiditis; also after I2 TgAb IDR (27, 38–41)
Differentiated thyroid cancer TgAb IDR (42)
Subacute thyroiditis TgAb IDR-B (43)
GD treated with 131Iodine TgAb IDR (44)

Mice (spontaneous)
Thyrotropin receptor (hTSHR)/
NOD.H2h4 injected with TSHR 
A-subunit

TSHR-Ab: 
pathogenic

Expanded by 
“inactive” antigen

(45)

Mice rabbits (induced)
AKR/J-mice TPO fibroblasts TPOAb IDR (46)
AKR/J-mice TPO + complete 
Freund’s adjuvant (CFA)

TPOAb Not restricted (46)

Rabbits Tg + CFA TgAb Not restricted (20)

FiGURe 1 | (A) Diverse antibody epitopic recognition in rabbits immunized with human thyroglobulin (Tg) versus restricted antibody recognition by human Tg 
autoantibodies in humans. Schematic illustration of the concept described in Ref. (20–23). (B) Recognition of thyroid peroxidase autoantibody epitopes 
(“fingerprints”) is stable over 15 years. The inset provides the key to the A and B domains (and subdomains) recognized by autoantibodies in the sera. Adapted 
from Ref. (30).
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TSHR Autoantibody Recognition
Changes are rare in the epitopes recognized by TSHR antibod-
ies, namely thyroid-stimulating antibodies (TSAbs), which 
are responsible for hyperthyroidism in Graves’ disease, and 
TSH-blocking antibodies (TBAbs), which cause hypothyroid-
ism. In rare patients, TSHRAb switching from TSAb to TBAb 
(or vice  versa) has been observed [reviewed in Ref. (59)]. The 

derivation of monoclonal TSAb and TBAb from one blood sam-
ple of an unusual patient who alternated between hyperthyroid-
ism and hypothyroidism (60) demonstrated that the contrasting 
serum biological activities were due to two distinct antibodies.

iDR Recognition by TPOAb induced in 
Mice
It is of interest that injecting mice with TPO expressed together 
with MHC class II on a fibroblast line induced TPOAb that 
resembled autoantibodies from Hashimoto or Graves’ patients in 
terms of a high affinity for TPO and recognition of an IDR (46). 
In the same mouse strain, conventional immunization with TPO 
protein and adjuvant induced antibodies with lower affinity that 
recognized diverse epitopes on TPO (Table 1).

Other Autoantibody Recognition of an iDR
Autoantibodies interact with epitopes in an IDR in other autoan-
tibody-mediated diseases [reviewed in Ref. (61)]. For example, in 
myasthenia gravis, autoantibodies to the acetylcholine receptor 
are restricted to a major IDR on the α1 subunit (62). Similarly, 
in the skin blistering diseases such as pemphigus vulgaris and 
pemphigus foliaceous, autoantibodies interact with an IDR on 
desmoglein (63).

Overall, the stability of human thyroid autoantibody recogni-
tion of an IDR is suggestive of “original antigenic sin.” It is possible 
that this concept may also apply to other human autoantibodies 
directed to an IDR on their respective autoantigens.

eviDeNCe FOR ORiGiNAL ANTiGeNiC 
SiN iN A MOUSe MODeL OF THYROiD 
AUTOiMMUNiTY

In mice induced to develop Graves’ disease by immunization 
with an adenovirus encoding the TSHR A-subunit gene, 
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FiGURe 2 | “Original antigenic sin” observed in human thyrotropin receptor (hTSHR)/NOD.H2h4 mice injected with an inappropriate form of thyrotropin receptor 
A-subunit or saline (as control). See text for explanation. Adapted with permission from Ref. (45).
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pretreatment with a non-pathogenic (or “inactive”) form 
of TSHR A-subunit protein attenuated hyperthyroidism by 
diverting pathogenic TSHR antibodies to a non-functional 
variety (64). Subsequently, pathogenic TSHR antibody diver-
sion was attempted using the same approach in a mouse model 
that spontaneously develops pathogenic TSHR autoantibodies, 
human thyrotropin receptor (hTSHR)/NOD.H2h4 mice with 
the human TSHR A-subunit transgene targeted to the thyroid 
(65). Unexpectedly, in an example of original antigenic sin, 
rather than attenuating the pre-existing pathogenic TSHRAb 
level, injecting “inactive” TSHR A-subunit protein into hTSHR/
NOD.H2h4 mice enhanced the levels of pathogenic TSH-binding 
inhibition and TSAbs, as well as increasing the levels of non-
pathogenic antibodies detected by ELISA (45). This effect was 
TSHR specific as spontaneously occurring autoantibodies to Tg 
and TPO were unaffected.

In hTSHR/NOD.H2h4 mice, the original antigenic sin is the 
initial selection of B cells for the transgenically expressed TSHR 
protein, namely precursors specific for both non-functional anti-
bodies (detectable only by ELISA) as well as pathogenic TSHR 
antibodies (detectable only in functional assays) (Figure  2). 
B cells with affinity for self antigens (like the transgenic hTSHR) 
are tolerized by a number of mechanisms including receptor 
editing and anergy (functional unresponsiveness) rather than 
deletion as for self-reactive T  cells (66). By using transgenic 
hen egg lysozyme-specific transgenic mouse models, it was 
demonstrated that self-reactive B cells were not eliminated when 
this antigen was expressed by thyroid cells (67). Similarly, in the 
spontaneous hTSHR/NOD.H2h4 model, two types of precursor 
B cells for pathogenic and non-pathogenic TSHRAb remain in 
the repertoire and both can be expanded by the “cross-reacting” 
antigen, the non-pathogenic TSHR A-subunit protein.

MeCHANiSMS AND iMPLiCATiONS OF 
ORiGiNAL ANTiGeNiC SiN iN THYROiD 
AUTOiMMUNiTY

Mechanisms of Original Antigenic Sin
The mechanisms responsible for original antigenic sin are not fully 
understood. However, because of the problems caused for vaccination 
against novel viral strains, approaches have been used to overcome 
original antigenic sin. These studies provide insight into the basis for 
this phenomenon, at least from the perspective of T cell epitopes.

One approach involves eliciting cross-reactive responses by 
immunization with multiple peptide variants (68) or injecting 
yeasts carrying diverse virus-like particles (69). It has also been 
suggested that, at least for CD8+ T cell responses, original antigen 
sin can be overcome by treatment with neutralizing interleukin 
10 together with linked T cell epitopes (70). A different strategy 
involves immunization with adjuvants (such as Bordetella pertus-
sis toxin) that activate dendritic cells (71). The latter approach is 
of interest in the context of comments by Kim et al. (4) concern-
ing viral antibodies, namely that antigen presentation by B cells 
favors the activation of memory B cells specific for the first virus 
rather than naive B cells specific for the subsequent cross-reacting 
virus. Finally, a simple mechanistic explanation proposes that 
original antigenic sin occurs because regulatory T cells induced 
by the first antigen decrease the amount of the second antigen on 
dendritic cells that activate naive B cells (72).

implications of Original Antigenic Sin  
in Thyroid Autoimmunity
The most likely explanation for original antigenic sin in thyroid 
autoantibodies appears to involve antigen presentation by B cells 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


TABLe 2 | Thyroid antibodies: induced or spontaneous intermolecular or 
intramolecular antigenic spreading.

Strains/disease Treatment First Ab Second Ab Reference

induced—intermolecular spreading
Rabbit Tg peptide + CFA Peptide Ab hTgAb, 

mTgAb
(85)

Rabbit Tg/Tg 
peptide + CFA

TgAb TPOAb, 
TgPOAb

(86)

HLA-DR3 hTSHR-DNA hTSHR Ab mTg (89)
BALB/c hTSHR A- Anti-CD25, hTSHR hTSHR Ab mTg, mTPO (90)
Subunit  
(Lo-expressor)

A-subunit-
adenovirus

Spontaneous—intermolecular spreading
NOD.H2h4 mice No Tx; time TgAb TPOAb (91)
Juvenile HT No Tx; time TgAb TPOAb (91)
HT No Tx; time TgAb TPOAb (92)
GD No Tx; time TgAb, 

TPOAb
TSHRAb (92)

Hyper to hypo TSAb TBAb (93, 94)
Hypo to hyper L-T4 TBAb TSAb (95, 96)

Spontaneous—intramolecular spreading
HT Iodine prophylaxis TgAb TgAb-B 

epitope
(97)

CFA, complete Freund’s adjuvant; h, human; m, mouse; HT, Hashimoto thyroiditis; 
hTSHR, human thyrotropin receptor; GD, Graves’ disease; TBAb, TSH-blocking 
antibody; Tg, thyroglobulin; TSAb, thyroid-stimulating antibody.
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or (in the case of TPO) thyroid cells, rather than dendritic cells. 
It should be noted that a restricted antibody response focused 
on the TPO IDR (as in humans) occurs in AKR/J-mice injected 
with cells expressing human TPO but not in mice of the same 
strain immunized with human TPO protein and adjuvant (46). 
The restricted response is likely related to the much lower concen-
tration of cell-associated TPO than TPO injected with adjuvant. 
Because of their efficiency as specific antigen-presenting cells 
[for example, Ref. (13)], B cells are likely the antigen-presenting 
cells in spontaneously arising autoantibodies to Tg and the TSHR 
A-subunit. Via their specific immunoglobulin receptors, B cells 
may also capture conformationally intact thyroid autoantigens, a 
critical factor for the induction of pathogenic TSHR antibodies 
[reviewed in Ref. (73)].

In addition to suggesting the likely cells involved in autoantigen 
presentation, IDR recognition simplifies what would otherwise 
be a gargantuan task, namely exploring the regions recognized 
by autoantibodies on large, glycosylated thyroid autoantigens:

 (i) Tg, the largest thyroid autoantigen comprising a homodimer 
of 300 kDa molecules, poses a major challenge. Iodination 
of Tg alters recognition by human autoantibodies (74), pos-
sibly by denaturing the antigen. However, epitope mapping 
using Tg fragments (fusion proteins or digestion products) 
suggests that some Tg autoantibody epitopes are located 
in the central region (75) or at the C-terminal end of the 
molecule (76, 77).

 (ii) TPO is a homodimer (each 110 kDa) inserted in the plasma 
membrane, and TPO autoantibodies are directed against the 
ectodomain. The TPO epitope of an human autoantibody 
(expressed as a recombinant Fab) was identified using foot-
printing technology (78). In addition, progress has been made 
in delineating the amino acids targeted by other autoantibod-
ies [for example, Ref. (79–81)]. However, definitive mapping 
of autoantibodies epitopes will require crystallization of a 
TPO monoclonal autoantibody with TPO protein.

 (iii)  The TSHR, like TPO, is also membrane bound but 
pathogenic TSHR autoantibodies (as in Graves’ disease) are 
induced spontaneously to the heavily glycosylated TSHR 
A-subunit (~60 kDa) shed after cleavage of the membrane-
bound receptor [reviewed in Ref. (73)]. Amino acid residues 
involved in the binding sites of TSAb were initially explored 
using chimeric TSHR-luteinizing hormone receptors 
together with mutagenesis [for example, Ref. (82)]. More 
recently, the epitopes for monoclonal human (M22) and a 
monoclonal human TBAb (K1-70) have been determined 
by co-crystalizing each antibody with the major portion of 
the TSHR A-subunit (83, 84).

ePiTOPe SPReADiNG OF THYROiD 
AUTOANTiBODieS

intermolecular Spreading
Induced and spontaneous intermolecular spreading for thyroid 
autoantibodies has been demonstrated for thyroid autoimmunity 
(Table 2). For example, rabbits immunized with human Tg and 

complete Freund’s adjuvant develop antibodies to Tg, as expected, 
as well as antibodies to TPO and antibodies that bind to both Tg 
and TPO (85, 86). It should be noted that searching for previously 
postulated bispecific human autoantibodies that recognize both 
Tg and TPO (“TgPO antibodies”) [for example, Ref. (87)] in a 
phage display immunoglobulin gene combinatorial, constructed 
from thyroid-infiltrating B cells of a patient with library serum 
TgPO-like autoantibody activity, led to multiple antibodies 
specific for either Tg or TPO but none had TgPOAb activity (88).

Returning to intermolecular epitope spreading, transgenic 
HLA-DR3 mice immunized with hTSHR DNA develop TSHR 
antibodies and, in a few mice, mild thyroiditis in association with 
antibodies to Tg (89). Transgenic BALB/c mice expressing low 
intrathyroidal levels of the human TSHR A-subunit, depleted 
of regulatory T  cells (CD25 positive) before immunization with 
human TSHR-A-subunit adenovirus, developed TSHR antibodies 
and (unexpectedly) TgAb- and TPOAb-associated with massive 
thyroiditis and hypothyroidism (90). Incidentally, anti-CD25-
treated BALB/c mice transplanted with TUBO tumor cells devel-
oped antitumor responses together with antithyroid immunity (98).

Of particular interest are observations of spontaneous antibody 
epitope spreading. NOD.H2h4 mice develop thyroid autoimmun-
ity, a process that is enhanced by iodide in the drinking water. The 
first autoantibodies to appear are directed against Tg (99–101), 
and subsequently, TPO antibodies appear (91). A similar pattern 
was observed in siblings of probands with juvenile Hashimoto 
thyroiditis (91). Moreover, TSHR antibodies develop spontane-
ously in NOD.H2h4 mice transgenically expressing the human 
TSHR A-subunit (65).

Combining published data from published studies (45, 102) 
studies, the development of autoantibodies in female hTSHR/

http://www.frontiersin.org/Immunology/
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FiGURe 4 | Relative expression of thyroglobulin (Tg), thyrotropin receptor 
(TPO), and the thyrotropin receptor (TSHR) in thyroid (A) and thymus (B) in 
mice (BALB/c strain). For the thymus, data are included for insulin, which is 
highly expressed in the thymus. Adapted with permission from the data in 
Ref. (107).

FiGURe 3 | Intermolecular antigenic spreading from thyroglobulin (Tg) to thyrotropin receptor (TPO) and the thyrotropin receptor (TSHR). (A) Percentage of human 
thyrotropin receptor (hTSHR)/NOD.H2h4 female mice positive for TgAb, TPOAb, and TSHRAb (TSHR binding inhibition) aged 4, 6, and 10 months. (B) Prediagnostic 
TgAb, TPOAb, and TSHRAb levels (7, 2, and 0 years) in patients with Graves’ disease [data plotted from Ref. (92)].
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NOD.H2h4 mice permits comparing the appearance of thyroid 
autoantibodies over time: TgAbs are present in some 4-month-
old mice, and TSHRAb and TPOAb are detectable after the age 
of 6 months, and all three thyroid autoantibodies were present in 
more mice after 10 months (Figure 3A). Turning to humans, in 
a study of prediagnostic markers in Graves’ patients, TPOAb and 
TgAb were detectable several years before TSHR antibodies (92). 
Importantly, although in humans the maximum percentage of 
positive TgAb and TPOAb in humans did not approach 100% as 
in NOD.H2h4 mice, the time sequence of antibody reactivity to Tg, 
TPO, and the TSHR in transgenic NOD.H2h4 mice (Figure 3A) 
resembles that in humans (Figure 3B).

intramolecular Spreading
There is less extensive evidence for intramolecular thyroid 
autoantibody epitope spreading (Table 2): Latrofa and colleagues 
demonstrated that iodine prophylaxis revealed recognition of 
a previously cryptic TgAb epitope, but this phenomenon may 
involve the iodination of Tg, thereby generating a neo-antigen 
(97). In addition, as already mentioned, there are rare examples 
of TSHR antibody switching from TBAb to TSAb associated with 
thyroxine therapy, or the reverse, namely TBAb to switching to 
TSAb [reviewed in Ref. (59)]. As would be expected for antibod-
ies with differing functional effects, the epitopes on the TSHR 
ectodomain recognized by TSAb and TBAb are different (103, 
104), although they interact with closely overlapping portions of 
the amino terminus of the TSHR A-subunit (105).

The apparent antibody epitope spreading in maternally 
transferred TSHR antibodies from initial TBAb to TSAb is due 
to progressive dilution of the high titer TBAb overpowering 
the lower concentrations of TSAb as human IgG is metabolized 
[reviewed in Ref. (59)].

iMPLiCATiONS OF ePiTOPe SPReADiNG 
FOR THYROiD AUTOiMMUNiTY

The phenomenon of epitope spreading provides important 
background information on thyroid autoantigen recognition. In 

particular, epitope spreading appears to be related to the amount 
and the size of each thyroid autoantigen, being greatest for Tg 
and less for both TPO and the TSHR A-subunit in the thyroid 
as well as in the thymus (Figure  4) [reviewed in Ref. (11)]. 
In part, epitope spreading involves the greater availability of 
peptides available to stimulate T  cells and protein to stimulate 
B cells from the abundant, large Tg molecule compared with the 
more limited amount and smaller molecular size of TPO and 
even fewer peptides from the TSHR A-subunit [reviewed in Ref. 
(11)]. Central tolerance also plays a role, with responses regulated 
by intrathymic expression of antigens like the highly expressed 
transgenic human TSHR A-subunit (106).

Knowledge of the autoantigen “cascade” suggests approaches 
for antigen-specific treatment. For example, in NOD mice, 
responses against islet antigens are prevented by inducing toler-
ance against proinsulin but not against IGRP (8), an autoantigen 
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recognized later in the “cascade.” In the same way, it is possible 
that successful induction of tolerance against Tg in NOD.H2h4 
mice could prevent the subsequent breakdown in tolerance to 
TPO (91) and perhaps even to the TSHR in hTSHR/NOD.H2h4 
mice (65). In a mouse model of experimentally induced 
thyroiditis, increasing the circulating level of Tg strengthened 
self-tolerance and reduced the extent of experimental thyroiditis 
[reviewed in Ref. (108)]. These findings suggest that increasing 
Tg levels could possibly regulate autoimmunity to Tg in the 
hTSHR/NOD.H2h4 strain. However, as we previously reported, 
an antigen-specific approach used successfully in an induced 
model may not be directly applicable to a spontaneous model 
(45). Consequently, it may be necessary to test multiple modes 
of Tg presentation to downregulate the cascade of autoimmune 
responses to Tg, TPO, and the TSHR in hTSHR/NOD.H2h4 mice.

CONCLUSiON

The evidence for intermolecular epitope spreading in thyroid 
autoimmunity is focused on autoantibodies, unlike the emphasis 
on T cell epitope spreading in multiple sclerosis and IDDM type 
1 (or their animal models EAE and NOD mice). Unlike multiple 
sclerosis or EAE, original antigenic sin appears to be character-
istic of thyroid autoimmunity as reflected by the recognition of 

an autoantibody IDR in humans and in the response of trans-
genic hTSHR/NOD.H2h4 mice to injection with inappropriate 
TSHR antigen. This difference likely reflects the importance of 
T  cell immunity in EAE/MS versus autoantibodies in thyroid 
autoimmunity, particularly Graves’ disease for which stimulatory 
autoantibodies to the TSHR are the direct cause.

Finally, the pattern observed for intermolecular epitope 
spreading provides the rationale for antigen-specific manipula-
tion to block thyroid autoantibody development by inducing 
tolerance to the first autoantigen in the antigen cascade, namely 
Tg. Because of its abundance, Tg may be the autoantigen of choice 
to explore antigen-specific treatment to block the development of 
pathogenic TSHR antibodies.
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