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Like all viruses, human immunodeficiency viruses (HIVs) and their primate lentivirus 
relatives must enter cells in order to replicate and, once produced, new virions need 
to exit to spread to new targets. These processes require the virus to cross the plasma 
membrane of the cell twice: once via fusion mediated by the envelope glycoprotein to 
deliver the viral core into the cytosol; and secondly by ESCRT-mediated scission of 
budding virions during release. This physical barrier thus presents a perfect location for 
host antiviral restrictions that target enveloped viruses in general. In this review we will 
examine the current understanding of innate host antiviral defences that inhibit these 
essential replicative steps of primate lentiviruses associated with the plasma membrane, 
the mechanism by which these viruses have adapted to evade such defences, and the 
role that this virus/host battleground plays in the transmission and pathogenesis of HIV/
AIDS.

Keywords: human immunodeficiency virus, type i interferons, antiviral restriction, plasma membrane, tetherin/
BST-2, serine incorporator, interferon-induced transmembrane

iNTRODUCTiON

A key feature of eukaryotic cells is the plasma membrane (PM), the single lipid bilayer that delimits 
the cytoplasm from the extracellular milieu (1). As well as acting as the physical boundary of the 
cell, the PM acts as a platform which plays a role in almost every cellular process, from regulating 
transport of small molecules and proteins in out of the cell, to cell mobility, and the response to its 
environment. As such, any infectious agent that seeks to gain access to the cell’s cytosol must breach 
the PM or the limiting membranes of intracellular compartments. In the case of enveloped viruses, 
this entails an entry step in which viral envelope glycoproteins engage specific cellular receptors 
on the PM or undergo low pH-induced conformational changes upon endocytic uptake (2, 3). As 
a result of either of these processes, mechanisms intrinsic to the glycoproteins themselves mediate 
fusion between the viral and host cell membranes, allowing the viral genetic material to enter the 
cell and initiate the replication cycle. For lentiviruses, the replication cycle culminates in newly 
synthesized RNA genomes and viral structural proteins being targeted to the inner leaflet of the 
PM (4). With the aid of a multitude of cellular factors, new virus particles assemble and bud into 
the extracellular space, acquiring their lipid envelope from the host cell. Budding ends in a scission 
event that separates the new virion from the cell, allowing it to be released and infect new targets.
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These unavoidable processes are common to all enveloped 
viruses. Moreover, the lipid envelope is the one component of the 
virus particle that is not encoded by the virus itself. It is perhaps 
unsurprising that the mammalian host has evolved multiple anti-
viral mechanisms whose role is to inhibit viral replicative processes 
that are associated with entry and exit (5–8), necessitating either 
the evolution of directly encoded countermeasures by the virus, 
or other mechanisms of resistance or avoidance. Furthermore, 
these mechanisms are often (but not always) regulated by type 
1 interferons (IFN-I) and pattern recognition responses, linking 
these factors to the wider antiviral immune response.

OveRview OF LeNTiviRAL  
eNTRY AND eXiT

The mediator of the entry of HIV-1 and its related viruses is 
the trimeric envelope spike [reviewed in Ref. (9)]. For HIV-1, 
this is comprised of three precursor Env proteins, gp160, that 
are proteolytically cleaved into a surface subunit, gp120, and a 
transmembrane subunit gp41. gp120 harbours the receptor bind-
ing components of the envelope spike whereas gp41 encodes the 
fusion machinery itself, buried within the trimer. gp120 consists 
of a series of conserved domains interspersed with variable loops 
and is heavily glycosylated on the outer faces of the trimer (10). 
There are surprisingly few spikes on the surface of the virion, 
with estimates of about 10–20 (11). Super-resolution microscopy 
imaging of HIV-1 particles has shown that these spikes cluster, 
which appears to be important for fusogenicity (12).

The Env trimer is a metastable structure, poised to mediate 
viral entry upon interaction with its receptor(s) (9). When gp120 
binds to its cognate receptor, CD4 (13–15), on the target T cell 
or macrophage, structural rearrangements “open” the envelope 
to reveal a coreceptor binding site (16–18). This interacts with 
either CCR5 (19–21) or CXCR4 (22), and occasionally additional 
CC chemokine receptors. Upon coreceptor binding, further con-
formational changes expose the hydrophobic fusion peptide of 
gp41, which rapidly inserts in the target membrane. The extended 
conformation of the gp41 trimer collapses back to form a six-helix 
bundle common to diverse type 1 enveloped virus fusion proteins 
(9). This pulls the viral and cellular membranes together, and is 
sufficient to locally destabilise the membranes, allowing lipid 
mixing, fusion, and the release of the viral core into the cell (9).

The use of CCR5 appears to be essential for sexual transmis-
sion of HIV-1. Viruses that use CCR5 alone (R5), or more rarely 
CCR5 and CXCR4 [R5/X4 or dual tropic (23)], predominate in 
early infection (24, 25). Individuals homozygous for a 32 base 
pair deletion in CCR5 that disrupts its expression are largely 
HIV-1 resistant (26, 27). X4-using viruses tend to arise later 
in infection in some, but not all, individuals, and are associ-
ated with more rapid progression to AIDS. Whilst they can be 
transmitted by intravenous drug-use/transfusion, it is not clear 
why X4 viruses are almost never transmitted sexually given that 
target CD4+ T  cells in the mucosa express CXCR4 (25). The 
selective pressures that produce the so-called coreceptor switch 
are not well understood, but it is associated with changes in 
the V3 loop of gp120 and perhaps arises through escape from 

certain classes of neutralizing antibody (28). Coreceptor usage 
in part determines the cellular tropism of the virus; R5 viruses 
infect predominantly subsets of antigen-experienced CD4+ 
T cells, whereas X4 usage expands this tropism to naïve cells (9). 
Macrophage-tropic viruses are almost exclusively R5 users, but 
importantly macrophage tropism is determined by changes in 
gp120 that allow it to use much lower cell surface concentrations 
of CD4 (29, 30). Thus most R5 isolates, including those transmit-
ted between individuals (the so called transmitted-founder (TF) 
viruses) can only infect T cells (31). Quite why the majority of 
X4 viruses cannot infect macrophages which express abundant 
CXCR4 is not known (32).

Where entry occurs in the cell has been of some controversy. 
The pH-independence of HIV-1 entry would suggest that it 
occurs at the cell surface (2, 33). This was reinforced by early 
studies showing that endocytosis of CD4 was not necessary 
for productive viral entry (34). However, more recent studies 
have shown that HIV-1 entry is sensitive to certain endocytosis 
inhibitors, particularly those targeting the GTPase dynamin-2 
(35). These effects may be cell-type dependent, as entry appears 
to be predominantly cell surface in T cell lines (36). Furthermore 
dynamin-2 may play a role in fusion, independent of its activ-
ity in endocytosis (37). Much further work, particularly with 
clinically relevant isolates, is required to fully rationalize many 
of these observations. However, the ability of certain membrane 
associated antiviral factors to differentially restrict HIV-1 entry 
dependent on their own subcellular localization may allow fur-
ther insight into these issues.

The next encounter of HIV-1 with the limiting membrane of 
the cell is viral assembly [reviewed in Ref. (4, 38)]. For lentiviruses, 
this occurs exclusively at the plasma membrane. Small amounts 
of Gag and Gag-Pol polyproteins are targeted to the inner leaflet 
of the PM, bringing with them two copies of the viral genomic 
RNA. This allows more Gag/Gag-Pol to nucleate around them, 
and in doing so form a budding virion. Small peptide motifs in 
the p6 portion of Gag (termed late domains) interact with several 
members of the ESCRT pathway, a multi component protein 
machinery that resolves membrane-bound entities budding away 
from the cell’s cytoplasm. The recruitment of the core ESCRT-I 
subunit TSG101 is the major event in initiating HIV-1 release, 
although other associated factors can also directly interact with 
Gag. This then leads to the recruitment of charged multivesicular 
protein (CHMP) subunits of ESCRT-III. The polymerization of 
these ESCRT-III subunits into filaments around the inside of the 
stem of the budding virions and their subsequent depolymeriza-
tion by the AAA-ATPase VPS4, leads to the contraction of the 
neck of the bud and the final scission of the virus from the cell. 
During the budding process, mature Env trimers are recruited 
into the assembling virion, as well as a number of other host 
membrane proteins; some beneficial, others, as described below, 
less so. Co-incident with the latter stages of budding, dimerization 
of the protease component of the Gag-Pol polyprotein, driven by 
interactions between reverse transcriptase moieties, activates its 
catalytic activity. This then leads to the sequential processing 
of the Gag and Gag-Pol to generate the mature structural and 
enzymatic components of the infectious virion.
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TYPe 1 iNTeRFeRONS AND THe 
ReSTRiCTiON OF Hiv-1 RePLiCATiON

A burst of systemic inflammatory cytokines driven by type 1 
interferons (IFN-I) is one of the earliest host responses detectable 
in HIV-1 infected individuals (39). Despite the virus being adept 
at avoiding host pattern recognition receptors in infected cells 
(see review by Sumner et  al. in this issue), the consequence of 
the rapid increase in viral replication is that systemic IFN-I levels 
are detectable as early as 7 days after infection. Both alpha and 
beta interferons activate the same receptor, IFNAR1/2, expressed 
on the majority of somatic cells, and via the Jak/STAT pathway 
induce the transcription of hundreds of so-called interferon-
stimulated genes (ISGs), many of which, like IFN-I themselves, 
are also activated directly by pattern recognition responses (40). 
In addition to the activation of systemic innate and adaptive 
immunity, a number of these ISGs have direct antiviral activity 
against the replicative stages of diverse mammalian viruses (7). 
These antiviral factors, sometimes called restriction factors, often 
target common pathways or structures that are essential for viral 
replication, and which cannot be simply mutated around. In the 
case of lentiviruses, several restriction factors have been identi-
fied that are targets of virally encoded accessory proteins (41), 
for example tetherin and Vpu described below. The evolutionary 
arms race between these countermeasures and species-specific 
orthologues of these restriction factors has shaped the adaptation 
of these viruses to new primate hosts, ultimately allowing chim-
panzee and sooty mangabey simian immunodeficiency viruses to 
cross into humans to become HIV-1 and HIV-2 respectively (42). 
However, ectopic expression of a number of ISGs have a direct 
antiviral activity against HIV-1 with no obvious virally-encoded 
countermeasure (43). HIV-1 replication can be inhibited in 
primary CD4+ T cells and macrophages in culture by IFN-I treat-
ment, indicating some of these ISGs may play a physiological role 
in early infection (43, 44). Furthermore, treating HIV-infected 
patients with pegylated-IFN leads to a transient reduction in 
viral loads (45). In macaques, although initial mucosal inflam-
masome activation may inhibit local ISG activation (46), early 
viremic control of SIVmac infection is dependent on systemic 
IFN-I responses (47). But perhaps the most powerful evidence of 
the importance of directly antiviral ISGs in HIV-1 pathogenesis 
comes from the observation that viruses that represent the most 
likely founder of an individual’s infection, called transmitted/
founder (TF) viruses, display a considerably higher resistance to 
the effects of IFN-I in their replication in primary CD4+ T cells 
than viruses isolated during the chronic phase (31, 48). While ini-
tially controversial in a replication study in subtype C infections 
using blood-derived viral sequences (49), these observations have 
been extended and now show that the TF virus sequence in a 
recipient partner is the most IFN-I resistant amongst the viral 
quasi-species that existed in the donor partners’ genital secre-
tions at the time of transmission in both clades B and C, thus 
indicating IFN-I resistance is a key attribute for transmission 
fitness (50). Curiously, as infection progresses, IFN-I resistance 
in circulating virus wanes (48). There are multiple molecular 
determinants of this difference in IFN sensitivity between TF and 
chronic viruses from the same the donor, suggesting a number of 

ISGs are involved (50). In the sections below, we will discuss host 
restriction factors and antiviral ISGs that target the entry and exit 
pathways of the virus.

THe iNTeRFeRON-iNDUCeD 
TRANSMeMBRANe (iFiTM)  
PROTeiN FAMiLY

The interferon-induced transmembrane (IFITM) proteins are 
a family of antiviral factors that restrict the fusion of a number 
of pathogenic enveloped viruses with their target cells, includ-
ing influenza A virus (IAV), Dengue virus (DENV), hepatitis C 
virus (HCV), Ebola virus (EBOV) and HIV (51–53). They are 
predominantly located at the PM and on endosomal membranes, 
the portals of entry for most viruses (54, 55). Recent studies have 
sought to identify the mechanisms of their antiviral restriction 
activities that may explain this broad spectrum activity, which 
primarily target the entry stages of the viral lifecycle.

Five members of the gene family have been identified in 
humans, ifitm 1, 2, 3, 5 and 10, all clustered on chromosome 11 
(56, 57). Unlike ifitms 1, 2 and 3, ifitm5 is not induced by type 1 or 
type 2 interferons but has been proposed to be involved in bone 
mineralization. A function for ifitm10 has not been identified. In 
the mouse genome, the orthologues of the human ifitm genes are 
located on chromosome 7, with the pseudogene ifitm4, also not 
functional in humans, located in close proximity to ifitm 1, 2 and 
5. Analogous genes have been identified in other mammals and 
in the avian species, where the IFITM proteins serve to inhibit 
influenza viruses.

iFiTM Structure and Localisation
IFITMs are members of a larger superfamily of proteins found in 
both eukaryotes and prokaryotes, known collectively as dispanins 
(58). Structurally, the IFITMs each contain two hydrophobic 
domains that are separated by a short conserved intracellular loop 
(CIL) containing a CD225-like domain; speculation has how-
ever surrounded the topological conformation of the domains 
within the membrane. The current biochemical and cell biology 
evidence suggest that the IFITMs adopt a topology in which the 
N-terminus and CIL reside in the cytoplasm, with the first hydro-
phobic domain existing as an intra-membrane domain whilst the 
second hydrophobic domain spans the membrane such that the 
C-terminus resides in the extracellular space (Figure  1A) (54, 
55, 59). The CIL domain also contains palmitoylation sites that 
likely stabilize this conformation (60–62). The intramembrane 
helices of the first hydrophobic domain are postulated to influ-
ence the curvature of the membrane in which the IFITM resides 
thus impacting the restriction activity (59). Evidence of self-
association and intramolecular interactions between the IFITM 
proteins, via residues within the first transmembrane domain, has 
been reported, suggesting that higher order multimers may have 
functional implications (63).

Mammalian IFITMs are highly homologous at the amino acid 
level, and in particular IFITMs 2 and 3 in primates display highly 
complex positive selection signatures (64) suggesting that they 
are continually adapting to target pathogenic viruses (65). Such 
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FigURe 1 | Schematic representation of IFITMS, SERINC 3/5 and tetherin within a model membrane. (A) A model of the IFITM protein, which adopts a type II 
transmembrane protein topology in the membrane. The N-terminal domain lies within the cytoplasm and connects to two short intramembrane α-helices. IFITMs 2 
and 3 possess a longer N-terminal domain that contains important trafficking motifs that determine protein localisation. The conserved intracellular loop (CIL) 
contains sites of palmitoylation that likely stabilise the conformation of the C-terminal transmembrane α-helix which spans the membrane, thus positioning the 
C-terminal domain within the extracellular space. (B) Very little information about the structures of SERINC proteins is currently known. SERINCs 3 and 5 are thought 
to possess between 10 and 12 transmembrane helices such that the N- and C-termini reside within the extracellular space. (C) Tetherin exists as a dimer anchored 
to the membrane via an N-terminal transmembrane domain and a C-terminal GPI anchor. The extracellular portion of tetherin is comprised of a coiled coil. The N 
terminal cytoplasmic tail contains a dual tyrosine motif that plays a role in both steady-state cycling of the protein and signal transduction following virus retention. 
Amino acid sequences of human and chimpanzee cytoplasmic tails are shown for comparison, highlighting the deletion of the DIWKK motif. The short isoform of 
human tetherin lacks the first 12 amino acids of the cytoplasmic tail.
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selection raises the notion that they may be under pressure to 
provide a continuous barrier across the entry portals into the 
cell. Consistent with this, human IFITMs localize to distinct but 
overlapping cellular membranes (54). While IFITM1 appears to 
be mainly associated with the PM, the longer N-terminal cyto-
plasmic tail of IFITMs 2 and 3 contain a YxxΦ endocytic motif 
that permits their localization to early/recycling (IFITM3) and 
late (IFITM2) endosomal compartments (66, 67). This sorting 
signal overlaps with an endosomal degradation motif (PPxY) that 
regulates their turnover (Figure 1A) (68). Importantly, therefore, 
both endosomal IFITMs dynamically traffic via the cell surface 
to reach their major sites of localization. This localization is a 
key determinant of the antiviral spectrum which a given IFITM 
restricts because the mechanism of entry of different viruses 
(receptor requirements, pH thresholds of fusion etc.) define their 
sites of access to the cell. For example, mutation of the endocytic 
motif in IFITM3 such that it redistributes to the cell surface 
abolishes its antiviral activity against IAV (67). This has major 
implications for the discussion of their effects on HIV below.

Mechanism of iFiTM Restriction
IFITMs appear to block the physical fusion of enveloped viruses 
with their target membranes, however the mechanism of action 
is not clear. It is widely postulated from the work of Brass, Liu 

and others particularly on IAV, that the mechanism of action is 
through modulation of the host cell membrane fluidity to block 
viral fusion (69–73). These “tough-membrane” models suggest a 
number of possible mechanisms: (1) Adjacent IFITM molecules 
may interact via their intramembrane domains thereby decreas-
ing the fluidity of the host membrane and limiting the lateral 
movement of host entry receptors and formation of productive 
receptor complexes. (2) These intramolecular interactions may 
prevent the effective viral envelope clustering that is required 
particularly for IAV fusion and (3) the IFITM multiplexes could 
also form a “meshwork” within the outer leaflet of the membrane 
that not only decreases fluidity and imposes rigidity but induces 
an outward membrane curvature that opposes the forces exerted 
by the viral fusion machinery. These general mechanisms may 
account for the diversity of viruses inhibited, including non-
enveloped viruses, such as reoviruses, that do not require fusion, 
but do need to disrupt the endosomal membrane to enter the cell 
(74). Such models are also consistent with observations of IAV 
and Semliki Forest virus (SFV) accumulating in endosomal com-
partments where the restricting IFITM resides, without affecting 
the pH-dependent exposure of the viral fusion machinery (70, 
71, 75). Studies have demonstrated that IFITM-mediated restric-
tions of fusion can be overcome by antifungal drugs that target 
cholesterol metabolism, and oelic acid treatment that is predicted 
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to reverse the positive membrane curvature exerted by the IFITM 
(72, 73). Dye-dequenching transfer experiments using labelled 
IAV virions suggest that hemifusion, the mixing of lipids from 
the outer leaflets of viral and cellular membranes, still occurs 
in the presence of the IFITM (70, 72). However, whether this is 
generalizable to all enveloped virions is not known.

One related mechanism, suggested by Amini-Bavil-Olyaee 
et al., is that the direct interaction of IFITM3 with vesicle mem-
brane protein associated protein A (VAPA) leads to a disruption 
of the VAPA-oxysterol binding protein (OSBP) function that 
acts to regulate intracellular cholesterol homeostasis (69). In the 
presence of IFITM3, endosomal membranes become cholesterol 
laden, less fluid and functionally impaired, thus blocking viral 
entry. However, other studies have failed to replicate the latter 
observation (70), and the lack of VAPA interaction with IFITM1 
or 2 is difficult to reconcile with their antiviral properties. Lastly, a 
recent study has suggested that a ubiquitous zinc metalloprotease, 
ZMPSTE24, previously implicated in processing nuclear lamins, 
is an essential cofactor for IFITMs independent of its catalytic 
activity (76). As yet, the mechanism for its role is not known.

Restriction of Hiv by iFiTMs
All three IFITM proteins have been demonstrated to affect 
HIV-1 entry and replication, albeit to a lesser degree compared 
to their effects on other viruses. However, there has been some 
controversy over their potency and mode of action. The initial 
study from the Liang group, based on T  cell lines ectopically 
expressing individual doxycycline-inducible IFITMs showed that 
IFITM2 and IFITM3 could block the entry of a model X4-using 
laboratory strain, but all three IFITMs could block spreading rep-
lication, suggesting multiple stages of the HIV-1 replication cycle 
were sensitive to IFITM restriction (53). While these differential 
effects on HIV-1 entry and replication were observed in the target 
cells, two further studies explored the role of IFITMs in HIV-1 
producer cells (77, 78). Both groups observed that IFITMs were 
incorporated into viral particles, making the particles less infec-
tious. They hypothesized that through cell-cell transmission, the 
virions were able to circumvent the effect of IFITMs in target cells 
but cell-free virus spread from infected producer cells is limited as 
the virions produced become increasingly less infectious through 
IFITM incorporation (Figure 2A). While IFITM3 was found to 
accumulate at sites of viral assembly on the PM, neither study 
reported a specific interaction with the envelope glycoprotein or 
an effect on envelope density due to IFITM incorporation. A third 
study reported that IFITM overexpression caused an infectivity 
defect to virions not because of their incorporation per  se, but 
because they appeared to directly interact with nascent gp160 and 
block its processing to its mature subunits (79). The major caveat 
to all these studies is that the majority of the mechanistic data 
are based on un-physiological overexpression mediated either by 
transient transfection or drug-induction. Whilst all the studies 
performed RNAi-mediated depletion of IFITM expression levels 
(which is challenging because of high homology between the 
IFITMs) to show that a prototypical HIV-1 isolate replicates better 
in target cells, that this phenotype is because of the mechanisms 
proposed is unclear. In particular, the block to gp160 processing 
has not been reproduced by others under more physiological 

IFITM expression levels (65, 80). However, virion incorporation 
of IFITMs as a mechanism of reducing viral infectivity has been 
suggested for diverse enveloped viruses (81).

The subcellular site at which HIV-1 enters has been controver-
sial. Recently, we wondered whether IFITM-mediated restriction 
might shed light on this controversy (80). Using a panel of model 
cell lines based on the neuroblastoma cell line U87-MG (long 
used in HIV-1 entry studies because they express no CD4 or 
endogenous major coreceptors), we expressed individual IFITMs 
at interferon-induced expression levels alongside CD4 and 
CXCR4 or CCR5. We found that IFITM restriction of HIV-1 was 
mediated by all three proteins but that there was a dependence on 
the viral co-receptor usage (Figure 2A). Virions that required the 
CCR5 co-receptor were more susceptible to inhibition by IFITM1 
at the plasma membrane whilst CXCR4-using virions were more 
sensitive to IFITMs 2 and 3 that are predominantly localised 
within endosomal compartments. We therefore hypothesized 
that both properties of the viral envelope and that of the IFITM, 
in particular its subcellular localisation, dictated this “specific-
ity” of inhibition. We showed that mutation of Y19/Y20 that 
mislocalises IFITMs 2 and 3 to the plasma membrane, or direct 
blockade of endocytosis, also modulates the restriction activity 
of these proteins against HIV-1 virus isolates that differ in their 
sensitivity to restriction by IFITM1 or IFITMs 2 and 3. HIV-1 
envelope glycoproteins that were usually sensitive to restriction 
by IFITMs 2 and 3 were now insensitive in both one-round entry 
assays and spreading replication. The observation that this did 
not impair virion incorporation of the IFITM indicated that the 
primary mode of restriction was the blocking of viral entry by 
the IFITM expressed on the target cell membrane. These data 
implied that the pattern of IFITM-mediated restriction of a given 
envelope indicated different sites of entry—some viruses may 
fuse at the PM; others in, or en route to, endosomal compart-
ments (Figure 2A). Three independent studies have also linked 
coreceptor use and IFITM sensitivity [(82, 83) #870] (81). In 
particular, Huang and colleagues (83) identified a putative splice 
variant (Δ20 IFITM2) of IFITM2 that lacks the N-terminal 20 
amino acids of the full-length protein. They report higher endog-
enous expression of this isoform in monocytes and in CD4+ 
T-cells compared to the full-length protein, with localisation 
of the variant both at the plasma membrane and in endosomal 
compartments. They found that several R5-tropic viruses were 
resistant to inhibition by Δ20 IFITM2 with the cytoplasmic tail 
of CCR5, containing the major trafficking and signaling motifs, 
being a major determinant of this resistance. By contrast a diverse 
range of X4-tropic viruses were highly susceptible to inhibition. 
Whilst confirming that coreceptor usage also affected sensitivities 
to full length IFITM2 and IFITM3-mediated entry restriction, 
they found this was cell-type dependent, further highlighting 
the complexities of IFITM-mediated restriction of HIV entry. 
Interestingly, the authors showed that IFITM2 knockdown in 
primary dendritic cells led to a 2-fold increase in their permissiv-
ity to X4 viruses. Whilst it is unclear if this was a significant gain 
in replication capacity for myeloid cells, it raises the possibility 
that X4 viruses might lack macrophage tropism in part through 
active host restrictions that R5 viruses avoid, something previ-
ously suggested by Schmidtmeyerova et al. 20 years ago (84).
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FigURe 2 | Restriction of HIV-1 entry at the plasma membrane. (A) IFITMs. The antiviral restriction activity of the interferon induced transmembrane (IFITM) protein 
family appears to be linked to the site of viral fusion. The current general mechanism of action proposed, i.e. the physical fusion of the viral and host cell membranes 
is blocked, accounts for the diversity of viruses that IFITMs restrict. The influence of complex cellular trafficking pathways on this mechanism is yet to be determined. 
IFITMs 1, 2 and 3 are localised in different membrane compartments; IFITM1 primarily at the plasma membrane and IFITMs 2 and 3 in overlapping intracellular 
endocytic compartments-the sites of enveloped virus fusion. HIV-1 entry requires the CD4 receptor and co-receptors CCR5 or CXCR4 and it appears that HIV-1 
sensitivity to IFITM restriction is influenced both by IFITM localisation and the site of fusion. Fusion that occurs at the plasma membrane is susceptible particularly to 
an IFITM1 mediated block. IFITMs 2 and 3 appear to restrict any fusion events that bypass the plasma membrane and occur within the intracellular compartments. 
IFITMs incorporated into viral particles during budding mediate their restriction on the target cell as the virus progeny become increasingly less infectious due to 
IFITM incorporation. (B) SERINC 3 and 5. The transmembrane proteins SERINC3 and SERINC5 are incorporated into budding HIV-1 particles from the membrane 
of the infected cell. In the absence of the Nef protein, HIV-1 infectivity in the target cell is restricted as delivery of the viral core is reduced due to a block to fusion. 
Conversely, in the presence of Nef, SERINC3/5 are relocalised from the plasma membrane through dynamin- and clathrin-dependent endocytosis, thus restoring 
viral infectivity and allowing for successful fusion of the progeny virions that lack SERINC3/5, with the target cell. (C) Other lentiviral restrictions at the plasma 
membrane. The post-entry restriction activity of lentivirus susceptibility factors 2 and 3 (Lv2/3) is dependent on the fusion events at the plasma membrane. Both 
envelope and capsid are determinants of Lv2 mediated restriction that blocks reverse transcription and nuclear entry. Likewise, RNA-associated early stage antiviral 
factor (REAF) which has been identified as a potent effector of Lv2, blocks reverse transcription in a similar manner dependent on the route of entry. The Lv3 block is 
a TRIM5α-independent process that is dependent on envelope interactions with viral entry receptors. The cell specific restriction factor TRIM5α, binds to capsid and 
forms a lattice leading to premature disassembly of the core. In Langerhans cells, HIV-1 uptake by the C-type lectin Langerin leads to recruitment of TRIM5α and a 
post-fusion block that occurs prior to integration. Conversely, in other DC subsets, interaction with DC-SIGN, induces a signalling cascade that facilitates reverse 
transcription and prevents TRIM5α restriction.
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The importance of iFiTM-Mediated 
Restriction in Transmission and  
Acute infection
Amongst the viruses tested in our study, we showed that envelopes 
from R5-tropic TF viruses were uniformally resistant to IFITM 
restriction (80). Intriguingly, matched virus clones representing 
the majority species from the same individual at 6 months had 
gained substantial sensitivities to IFITM2 and 3 in particular. 
Again this was envelope determined, and was lost upon relocali-
zation of the IFITM to the PM, suggesting that changes in Env 
during those 6 months had affected the route of viral entry, despite 
no change in coreceptor usage occurring. A major determinant 
of the IFITM-resistance of the TF virus was the cell surface level 
of CD4, suggesting that receptor engagement and density were 
key requirements. Consistent with this idea, selection of X4 
HIV-1 resistance to IFITM1 by the Liang group yielded viruses 

with lesions in Vpu and changes in the CD4 binding site of Env 
(85). Such adaptations in culture will lead to a modulation of the 
envelope structure during assembly (see tetherin section below). 
The differences in Env between TF and 6 month viruses varied 
between individuals. It is well known that gp120 and gp41 are 
the targets for both T  cell and antibody responses throughout 
infection in vivo. Hypothesizing that escape from such adaptive 
immune responses in Env might reveal IFITM sensitivity, we 
found that reversal of amino-acid changes in gp120 that arose 
through the escape of early neutralizing antibody responses 
(86) fully restored IFITM resistance to the 6-month virus. 
Furthermore, in primary human CD4+ T  cells, knockdown of 
IFITM2 and 3 rescued much of the 6 month virus’s replication 
after IFN-treatment. Thus it would appear that IFITM-resistance 
in Env is a major contributor to the overall IFN-I resistance of 
transmitted viruses, implying their evasion must be an important 
attribute for successful transmission. Moreover, once the virus 
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is systemically established, structural changes in Env that affect 
receptor/co-receptor interactions leading to IFITM sensitivity 
become tolerable if there is selective pressure applied by a com-
peting adaptive immune response. This suggests that even host 
restrictions with a relatively small magnitude [by comparison 
to say APOBEC3G (87)] can have a major determining effect 
at transmission or in the early stages of systemic replication. 
Furthermore, because IFITM sensitivity appears to be dictated by 
Env/receptor interactions, these data further suggest a constraint 
on the envelope at transmission that endows it with IFN resist-
ance, which itself may be an important consideration for vaccine 
design. Of note, recent studies on the adaptation of chimeric 
SIVs encoding HIV-1 envelopes (SHIVs) via sequential passage 
in macaques demonstrated a gain in IFN resistance mapping to 
Env, and particularly its level of virion incorporation (88, 89). 
Whether this is reflective of restriction by simian IFITMs, which 
do inhibit lentiviruses in culture (90), has yet to be determined.

The ifitm locus is complex and has not been well-annotated 
for genome wide association studies. However, SNPs in ifitm3 
have been implicated in the susceptibility to human disease. Of 
these, rs12252 has generated much interest. Homozygosity for a 
very rare minor allele, rs12252-C, was strongly associated with 
the severity of H1N1 Swine Flu in the UK (91). This synony-
mous polymorphism changes a serine codon in the N-terminal 
cytoplasmic tail of IFITM3 from AGT to AGC. Initially, this was 
thought to lead to an alternatively spliced message that would 
express a N-terminally truncated IFITM3 protein lacking its 
endocytic YXXϕ motif. Such a truncated protein localizes to the 
PM and does not restrict IAV entry (91). However, no evidence 
of such a splice variant has since been found, raising questions 
about how this SNP exerts its effects. Reproduction of rs12252-C 
association with IAV pathogenesis has been mixed, but in Han 
Chinese populations, where the allele frequency is much higher 
(30–40%), a clear association with flu severity has been confirmed 
(92–97). At present it is not known whether other SNPs in the 
locus are in linkage disequilibrium with rs12252-C that might 
explain such discrepancies. In the same Chinese population 
rs12252-C is also strongly associated with rapid progression 
during acute HIV-1 infection, and in particular elevated viral 
loads and CD4+ T cell loss (96). Unlike IAV pathogenesis, this 
association was also observed in heterozygotes, suggesting the 
effect of rs12252-C is dominant. These intriguing results further 
highlight the importance the IFITMs in HIV-1 pathophysiology. 
The elucidation of the molecular bases for these observations will 
provide mechanistic insight to their role in HIV restriction.

SeRiNe iNCORPORATORS 3 AND 5

The accessory protein Nef, common to all primate lentiviruses, 
has a multitude of functions in HIV-1 replication (42). Nef is 
myristoylated and associates with the inner leaflet of the PM 
and endosomal membranes. Here it promotes downregulation 
of various membrane proteins from the cell surface, predomi-
nantly to reduce the recognition of infected cells by adaptive 
immune responses. The most well-studied Nef targets are CD4, 
and class I and II MHC molecules, which protect infected cells 
from antibody-dependent cellular cytotoxicity (ADCC) (98) or 

recognition by antigen-specific T  cells respectively, although 
several others have been identified (42), particularly amongst 
SIV Nef alleles. However, one conserved function of lentiviral Nef 
proteins that until recently remained unexplained, was its ability 
to promote the infectivity of the lentiviral virion (99).

Cells infected with HIV-1 mutants lacking Nef produce viri-
ons with reduced infectivity, even in the absence CD4 which itself 
interferes with envelope folding and trafficking (99). The magni-
tude of this CD4-independent effect on virion infectivity is vari-
able amongst cell lines, but from lymphoid cells it can be reduced 
by as much as 50-fold (6). Pseudotyping virions with heterologous 
pH-dependent envelope proteins such as the glycoproteins from 
vesicular stomatitis virus or Ebola virus completely rescues the 
infectivity defect of HIV-1 Nef mutants (99). However, while this 
infectivity defect is manifest at an early entry or post-entry stage, 
it does not correlate with envelope incorporation into the virion. 
Furthermore, variations in gp120 variable domains, particularly 
the V1/V2 loops, affect the sensitivity of HIV-1 to Nef-dependent 
infectivity enhancement, implying that Nef regulates an intrinsic 
property of Env during the entry process (100). In keeping with 
this, Nef also affects the sensitivity of virions to certain neutral-
izing antibodies (101).

The first clue that this may be governed by a host restriction fac-
tor came from the observation that Nef interaction with dynamin 
2 (dyn2), the major cellular GTPase that controls endocytosis, was 
essential to regulate particle infectivity (102). The requirement 
for dyn2 by Nef was during viral production, and its knockdown 
reduced virion infectivity to that of the Nef-defective mutant. 
Since Nef mediates the removal of other membrane proteins from 
the cell surface, one attractive hypothesis was that it was targeting 
an inhibitor of virion infectivity. This was further evidenced by 
the demonstration that in heterokaryons between human cells 
that had a high and low dependence on Nef for virion infectivity, 
the requirement for Nef was dominant (6). Intriguingly, the acces-
sory protein of gamma retroviruses, a membrane-bound and gly-
cosylated form of their major structural protein Gag (GlycoGag), 
can substitute for Nef activity and vice versa (103). GlycoGag is 
generated from a weak in-frame translational start site upstream 
of the regular Gag initiation codon, producing a Gag with an 88 
amino acid N-terminal extension that results in its insertion in 
the ER membrane. As with Nef, GlycoGag promotes MLV infec-
tivity in a dyn2 and endocytosis dependent manner (104), thus 
indicating that they target a common factor or pathway.

In 2015 two groups cloned the factor(s) responsible for 
this phenotype by complementary approaches. In the first, 
Massimo Pizzato and colleagues performed a large scale gene 
expression analysis of cells where the virus dependence on Nef 
varied, looking for mRNAs whose abundance correlated with 
the magnitude of the infectivity enhancement (6). In the second, 
Heinrich Gottlinger’s group performed proteomic analyses of 
HIV-1 virions purified from human T  cells in the presence or 
absence of Nef and/or GlycoGag expression, hypothesizing that 
a Nef-regulated inhibitor of infectivity may be incorporated into 
virions of Nef-defective viruses (8). Both groups identified mem-
bers of the serine incorporator (SERINC) family of multi-pass 
membrane transporters, SERINC5 and SERINC3 respectively. 
Shortly afterward, a further proteomic study documenting global 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


8

Foster et al. HIV Restriction at the Plasma Membrane

Frontiers in Immunology | www.frontiersin.org January 2018 | Volume 8 | Article 1853

changes to the cell surface proteome of HIV-1 infected T cell lines 
identified both SERINCs as differentially regulated by wild-type 
and Nef-defective viruses (105). Both proteins were shown to 
inhibit Nef-defective virus infectivity upon ectopic expression in 
“low Nef-responsive” cells, with SERINC5 being the most potent 
(6, 8, 106). Conversely, CRISPR/Cas9 knockout of both SERINC5 
and SERINC3 fully restored Nef-defective virus infectivity from 
CD4+ T  cells. In the presence of Nef, SERINC5 is relocalized 
from the PM to endosomal compartments dependent on Nef 
interaction with the clathrin adaptor AP-2 (Figure 2B). Moreover, 
SERINC5 was also counteracted by various SIV Nef alleles as 
well as MLV GlycoGag and VSV-G (6, 8), thus recapitulating the 
known features of the proposed restriction factor. Additionally, 
the S2 accessory protein of the distantly related lentivirus, equine 
infectious anemia virus (EIAV), also counteracts SERINC5 (107). 
Interestingly, unlike the IFITMs or tetherin (see below), SERINCs 
are neither significantly regulated by IFN-I, nor do they display 
evidence of positive selection in mammals (6, 108).

At the time of writing almost nothing is known about the mech-
anism by which SERINC5 exerts its antiviral activity. SERINCs 
are PM proteins with 12 predicted TM domains (Figure  1B). 
They are conserved from yeast to man, but only SERINCs 3 and 
5 restrict retroviral infectivity (6, 8). Whilst there are several 
predicted isoforms of SERINC5 derived from putative splice 
variants, the majority mRNA species encodes the longest form 
(109). SERINCs were originally named for their proposed ability 
to incorporate serine into membranes as phosphatidylserine or 
sphingolipids (110), although how they do this or even whether 
this activity is relevant for viral restriction is not known. Direct 
incorporation of SERINC5 into the virion seems to be essential, 
and as a result of Nef-mediated internalization, SERINC5 is 
excluded from the assembling virion (6, 8, 111). However, 
this is not sufficient to explain the antiviral activity as VSV-G 
pseudotyping of the virus confers complete SERINC5 resistance 
without blocking incorporation (6, 8). What has been shown is 
that the block mediated by SERINC5 occurs at the fusion stage 
(6, 8). Both particle-associated beta-lactamase (BLAM) or CRE 
recombinase transfer to target cells is reduced in the presence of 
SERINC5, however the magnitude of this block to fusion does not 
fully match that of the infectivity defect or levels of reverse tran-
scription. Whilst this has been interpreted as a potential block to 
fusion pore expansion rather than the initiation of fusion, it could 
also simply be a reflection of the difference in the dynamic range 
of assays that measure entry and post-entry events. Interestingly, 
SERINC5 sensitivity of primary R5 tropic viruses is variable in 
the absence of Nef (8). Exchange of the gp120 V1/V2 or V3 loops 
between these and prototypic X4 viruses swaps these phenotypes. 
This in part maps to variable N-linked-glycosylation sites in gp120 
that are thought to stabilize the envelope glycoprotein (100). A 
very recent study indicates that while there is no evidence yet 
of direct Env/SERINC5 interaction, sensitive envelopes appear 
to be inactivated, exposing epitopes that would normally require 
receptor interactions (112, 113). Thus SERINC5 may be affecting 
the intrinsic stability of the Env trimer, thus blocking fusion. It is 
interesting to note the potential parallels here with those of the 
restriction of HIV-1 by IFITMs, with the relative resistance of 
R5 envelopes again highlighting that constraints on the envelope 

glycoprotein may be driven by selection for their resistance to 
intrinsic antiviral restriction mechanisms.

As noted above, SERINC3/5 expression appear not to be 
regulated by inflammatory stimuli and there is no evidence of 
the positive selection in mammalian SERINCs that is a common 
feature of other viral restriction factors (6). There is no apparent 
species specificity in antagonism, with a given HIV-1, HIV-2 
or SIV Nef counteracting both human and primate SERINC5 
orthologues (114). This conservation of function in Nef would in 
itself imply its importance. However, further observations have 
hinted that the efficiency of Nef-mediated SERINC antagonism 
by HIV and SIV Nef alleles may correlate with prevalence of a 
given virus in its host primate species (114). If so, then the selec-
tive pressure on Nef that gives rise to this variation in activity 
will be more complex than simply Nef/SERINC5 interaction, and 
may reflect, for example, impacts of envelope variation in SIVs 
or other properties of SERINCs in lentiviral replication yet to be 
discovered.

OTHeR LeNTiviRAL “ROUTe OF eNTRY” 
ReSTRiCTiONS

Aside from IFITMs and SERINCs, other restrictions have been 
reported that affect post-entry events in lentiviral replication 
dependent on the route of viral entry. These restrictions, termed 
Lv2 and Lv3 [Lv1 being the name of the post-entry restriction 
activity later shown to be conferred by species-specific variants 
of TRIM5α (115, 116)], operate in human and primate cells 
respectively. Lv2 manifests as a block to reverse transcription 
and nuclear entry, and was originally demonstrated for HIV-2 in 
certain human cell lines and primary macrophages (Figure 2C) 
(117). The viral determinants of this restriction mapped both to 
the viral capsid and envelope proteins, but the entire restriction 
can be bypassed by VSV-G, suggesting that the post-entry block 
depends on where in the cell the virus fuses (118). Consistent with 
this, Lv2 restriction can be relieved by blocking endocytosis or 
mis-localizing CD4 at the PM (119). Moreover, these restriction 
patterns can also be seen for a variety of X4-using HIV-1 strains 
and be in part conferred to a heterologous core by envelope pseu-
dotyping (119), a phenotype that bears some similarity to those 
for IFITM-mediated restriction (80). However, more recently 
regulation of nuclear pre-mRNA domain-containing protein 2 
(RPRD2), termed by the authors REAF (RNA-associated early 
stage antiviral factor), has been proposed to be the effector of 
Lv2 restriction (120, 121). REAF appears to interact with the 
incoming genome to block reverse transcription, but is depend-
ent on the pseudotyping envelope (Figure 2C). Whether REAF is 
differentially localized along the endocytic network, or whether 
restrictions during fusion (or avoidance thereof) predispose the 
incoming virus to REAF-mediated restriction remains to be 
determined. Similarly, Lv3 is a post-entry block to HIV replica-
tion in macaque cells that is distinct from TRIM5α and again 
depends on the Env CD4/coreceptor interactions (122). Again, 
this bears superficial similarities to IFITM restrictions, but the 
block appears to be manifest at reverse transcription and can be 
saturated (Figure 2C).

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


9

Foster et al. HIV Restriction at the Plasma Membrane

Frontiers in Immunology | www.frontiersin.org January 2018 | Volume 8 | Article 1853

A third very recent example of “route of entry restrictions” 
has been described in a human dendritic cell subset, Langerhans 
cells (LCs), that are resistant to HIV-1 infection due to the inter-
action between the virus and the C-type lectin langerin (123). 
This mediates virion targeting to Birkbeck granules and prevents 
viral replication at an early post-entry stage. This turns out to 
be dependent on human TRIM5α, the capsid-binding restriction 
factor to which HIV-1 was thought to be resistant. In the presence 
of langerin, the authors propose that TRIM5α is recruited to the 
site of entry and targets the incoming virus to an autophagic deg-
radation pathway. In other DC subsets, virion engagement with a 
different lectin, DC-SIGN, prevents the recruitment of TRIM5α 
upon virion internalization (Figure 2C).

Type II IFNs (IFNγ) have an under-appreciated direct antiviral 
activity on HIV-1 (124). In part, this again maps to the envelope 
protein, and in particular the V1/V2 loop (124). The initial results 
suggest that TF viruses may be more resistant to the effects of 
IFNγ, but the factors involved are not yet known.

TeTHeRiN

At the other end of the viral lifecycle, the most prominent anti-
viral inhibitor of lentiviral replication associated with the plasma 
membrane is tetherin (also known as bone marrow stromal cell 
antigen 2—BST2 or CD317). Tetherin’s antiviral activity was 
discovered as the target of the HIV-1 accessory protein Vpu (125, 
126), long known to play a role in the efficient release of new 
retroviral particles from infected cells. Tetherin is an IFN- and 
pattern recognition-regulated gene and has a general antiviral 
function against diverse enveloped viruses [reviewed in Ref. (5)]. 
Amongst the primate lentiviruses, tetherin antagonism is a highly 
conserved attribute (127). Furthermore, the adaptation of HIV-1 
Vpu to target the human tetherin orthologue was a key event in 
the development of the HIV/AIDS pandemic. In this section we 
will focus only on the role of tetherin in lentiviral pathogenesis.

Tetherin-Mediated Restriction  
of viral Release
Tetherin is a type 2 membrane protein whose distinctive topol-
ogy is indicative of its primary mode of action: the retention of 
fully-formed virions on the PM of infected cells and their sub-
sequent removal to endosomes (128, 129). Tetherin exists in the 
PM as disulfide-linked dimers that constitutively recycle via the 
Golgi apparatus (130, 131). The extracellular domain of tetherin 
forms a rod-like coiled-coil, with a hinge towards its N-terminal 
transmembrane domain to allow a degree of rotational flexibility 
(Figure 1C) (132–134). The C-terminus is covalently attached to 
the lipid of the PM by a glycophosphatidyl-inositol (GPI) linkage, 
giving the mature protein two membrane anchors (Figure 1C) 
(128, 130). As the nascent virus buds through the PM, tetherin 
dimers are recruited to the virion membrane (128, 135, 136). The 
C-terminal GPI anchor appears to be preferentially incorporated 
into the virion whilst the N-terminal TM domain is retained 
outside the bud (Figure  3) (129). When the ESCRT pathway 
mediates the scission of viral and cellular membranes, tetherin 
dimers retain the new viral particle via a stable protease-sensitive 

crosslink (125, 129, 137, 138). Leaky scanning of the tetherin 
mRNA leads to two isoforms being expressed at apparently equal 
levels, differing in the length of their cytoplasmic tails (139). 
Depending on the species orthologue, the shorter isoform lacks 
the first 12–17 amino acids that encompass the major subcel-
lular trafficking signal—a dual tyrosine-based motif that engages 
clathrin adaptors AP1 and AP2 (131). Both isoforms can form 
homo- and heterodimers and both can potently restrict viral 
release (139, 140). However, the longer human isoform has a pro-
inflammatory signalling activity associated with it (see below), 
and is also more sensitive to Vpu (139, 140).

Tetherin expression is induced by both type I and II IFNs, as 
well as pattern recognition signals, in many cell types (141, 142). 
It is expressed on activated T cells and is constitutively expressed 
by plasmacytoid dendritic cells. Tetherin expression is upregu-
lated on peripheral blood mononuclear cells during the acute 
phase of HIV infection (143), and by treatment of HIV-infected 
individuals with IFNα (45). Its expression is enriched on tissues 
with barrier function, further suggesting an important role in 
host defence (144).

Tetherin Counteraction by Primate 
Lentiviruses and its Role in Limiting 
Cross-Species Transmission
Tetherin targets a part of the virus that it cannot mutate to evade 
restriction, therefore the virus must evolve a countermeasure. 
Although the virally-encoded protagonist and mechanism differ, 
the ability to counteract tetherin is conserved among primate 
lentiviruses (5).

SIVs are naturally prevalent in a wide range of African non-
human primates [reviewed in Ref. (145)]. For the most part each 
species is infected with a monophyletic strain of SIV (indicated 
by a suffix denoting the host species e.g. SIVsmm in sooty 
mangabeys), signifying predominantly within-species spread, 
with some notable examples of cross-species transmissions. Over 
40 primate lentiviruses have been identified, and of these three 
have crossed the species barrier into humans: SIVcpz, SIVgor 
and SIVsmm, from chimpanzees, gorillas and sooty mangabeys 
respectively (145).

The precursors to HIV-1 were transmitted from chimpanzees 
to humans on at least 2 separate occasions, giving rise to HIV-1 
groups M and N (146, 147), and twice from gorillas to humans 
resulting in HIV-1 groups O and P (148, 149). The precursors 
to HIV-2 crossed from sooty mangabeys into humans at least 8 
different times (or at least their sequence diversity suggests inde-
pendent cross-transmissions), resulting in HIV-2 groups A-H 
(150–152). These 12 groups of viruses have had vastly different 
impacts on the human population, ranging from single-case 
HIV-2 infections to the millions of people infected with Group M 
since its first predicted zoonotic infection in the early 1900s (145). 
While environmental and social factors inevitably played a role 
in the outcome of these zoonoses, extensive work dissecting host-
pathogen relationships reveals a role for tetherin in influencing 
the course of cross-species infections.

Most SIVs counteract their host’s tetherin using the accessory 
protein Nef (127, 153, 154). Notable exceptions to this are SIVs 
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from greater spot-nosed, mustached and mona monkeys (SIVgsn, 
mus and mon respectively) which are unique among SIVs in 
possessing the accessory protein Vpu, capable of antagonising 
tetherin in a species-specific manner (127). Although SIVcpzPtt 
and SIVgor are also among the subset of SIVs that possess a 
vpu gene, their Vpus lack the ability to counteract chimpanzee, 
gorilla and human tetherin, although they still maintain function 
in the form of robust CD4 downregulation (127). These viruses 
use Nef as an antagonist, which stimulates the AP2-dependent 
clathrin-mediated endocytosis of tetherin, removing it from the 
site of virus assembly. The use of Nef rather than Vpu as a tetherin 
antagonist may be explained by the origins of SIVcpz—a chima-
eric virus originating from recombination between an ancestral 
strain of the SIVgsn/mus/mon lineage and red-capped mangabey 
SIV (SIVrcm) (155). Inheriting two tetherin antagonists appears 
to have resulted in SIVcpz losing counteractivity in one.

The deletion of a five amino acid stretch (G/DIWKK) in the 
cytoplasmic tail of tetherin (Figure 3) between 1 and 6 million 
years ago—after divergence from chimpanzees but before the 
divergence of Denisovans and Neanderthals—has rendered the 

human protein resistant to SIV Nef antagonism (127, 153, 154, 
156). Consequently, establishing a successful infection in humans 
requires an alternative mechanism of tetherin counteraction, 
either by adapting a different antagonist or adjusting the action 
of Nef. As detailed below, the mechanism and/or the extent 
of the adaptation differs in each known case of cross-species 
transmission.

HIV-1 group M Vpu efficiently deals with both tetherin’s 
physical virus restriction and subsequent antiviral signalling 
by escorting nascent tetherin into a defunct cellular pathway 
and triggering its degradation (5). Vpu and tetherin interact 
via their transmembrane domains, with the interactive face of 
Vpu consisting of highly conserved alanines and a tryptophan 
(Figure  3) (157–160). Moreover, it is this interacting face that 
was likely to have been the key adaptation that led to human 
tetherin counteraction by the prototypic group M HIV-1 as 
revealed by the Vpu sequences of its closest extant SIVcpzPTT 
relatives (161). Tetherin/Vpu complexes are then targeted to late 
endosomes for degradation (162). This complex process requires 
the phosphorylation of the Vpu cytoplasmic tail that facilitates 
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the formation of a ternary complex between tetherin, Vpu and 
the clathrin adaptor AP-1, and perhaps AP-2, promoting their 
targeting to late endosomes (163–165). This mechanism allows 
Vpu to engage both newly synthesized and recycling tetherin 
pools. Concomitant with this process, the dual-serine phos-
phorylation site of Vpu, a conserved DSGxxS motif, interacts 
with an SCF E3 ubiquitin ligase, predominantly through the 
adaptor protein βTRCP2 (162, 166–169). This leads to multiple 
ubiquitination events in the Vpu cytoplasmic tail (170–172) that 
target it for ESCRT-mediated degradation (164, 173–175). This 
final rerouting and degradation of tetherin requires the major 
endocytic motif in its cytoplasmic tail (163, 175). Thus the short 
isoform of tetherin cannot be degraded or downregulated from 
the surface by Vpu (140). However, physical interaction with Vpu 
does reduce its incorporation into virions, counteracting tetherin 
at lower expression levels.

Primary HIV-1 group M Vpus are highly active antagonists 
of tetherin and efficient inhibitors of tetherin-mediated NF-κB 
signalling, and these functions are conserved in transmitted 
viruses and throughout the course of infection, and across the 
clades (127, 176–178). Suboptimal Vpus are rapidly selected 
against in vivo, and robust anti-tetherin function is maintained 
even years after infection (177). Studies of viruses with mutations 
in Vpu rendering them specifically unable to counteract tetherin 
but otherwise unaffected, demonstrate that these viruses are 
compromised compared to wildtype viruses in the presence of 
high concentrations of IFN-I (179). Likewise, selective pressure 
provided by upregulated tetherin expression during IFNα treat-
ment of HIV-infected individuals may select for changes in Vpu 
(45). Thus, Vpu-mediated tetherin counteraction contributes to 
the overall viral interferon resistance.

Interestingly, it appears that Group M Nefs are able to acquire 
moderate ability to counteract human tetherin in certain cir-
cumstances (180). Although this does not represent a common 
activity amongst Group M Nefs, the association of a proportion 
of the active Nefs with viruses harbouring defective Vpus further 
underlines the importance of tetherin antagonism in vivo (180).

Fewer than 20 cases of Group N infections have been docu-
mented to date, and their adaptation to human tetherin represents 
a mixed and developing picture. For the most part they display 
some ability to counteract tetherin and enhance infectious virus 
release from cells, but activity is poor compared to the typical lev-
els of Group M Vpus (127). However, a highly pathogenic Group 
N virus isolated from a French individual—the first case of Group 
N infection found outside Cameroon—demonstrated Vpu activity 
on a par with that of Group M. This French/Togo Vpu contains 
functional domains known to contribute to activity in Group M 
Vpus, whilst these are lacking in other known weak Group N Vpus 
(181). The mixed success of Group N Vpus to combat human teth-
erin is counterbalanced by its total inability to perform another 
major function of Vpu, the downregulation of CD4.

HIV-1 Group O infections represent a substantial epidemic, 
with an estimated 100,000 people infected. The majority of Group 
O Vpus tested demonstrate poor tetherin antagonism (127, 182, 
183); instead, Group O Nef has adapted to target a different region 
of human tetherin, circumventing the 5 amino acid deletion that 
confers resistance to inhibition by SIV Nefs (184). The activity of 

the Group O Nefs is species-specific, being more efficient at down-
modulating human compared to gorilla tetherin. Interestingly, a 
single example of a Group O Vpu able to counteract tetherin has 
recently been reported (185).

HIV-1 group P viruses have been isolated from only two 
individuals to date, both from Cameroon (186, 187). These 
viruses appear to be poorly adapted to humans, with no tetherin 
counteractivity detected in either their Vpu, Nef or Env proteins 
(183, 188).

Like most SIVs, the SIVsmm precursor to HIV-2 uses Nef to 
antagonise tetherin in its sooty mangabey host (127). Similar to 
SERINC5 antagonism, SIV Nefs bind to their cognate primate 
tetherin dependent on the G/DWIKK motif and promote its 
AP-2-mediated endocytosis from the cell surface (189, 190). 
While HIV-1 Group M evolved efficient tetherin antagonism by 
Vpu, and Group O Nefs evolved to target a different region of 
tetherin (184), HIV-2 employs a different strategy of antagonism, 
using the Env protein (191). The extracellular domains of both 
proteins interact, and again this stimulates endocytic removal 
of tetherin from the cell surface through Env’s interaction with 
AP-2 (191–194). Tetherin antagonism appears to be a conserved 
attribute of HIV-2 isolates tested to date (195), although the 
potency of HIV-2 Env in enhancing virus release is weaker than 
that of HIV-1 group M Vpus, insofar as in vitro assays are a true 
reflection of activity. Whether there is a fitness and efficacy cost 
associated with using a major structural protein, also under 
pressure to evade antibody responses, to carry out a role more 
commonly performed by accessory proteins remains to be seen.

In Vivo Relevance—evidence from 
experimental infections
The importance of tetherin in vivo is demonstrated by the remark-
ably diverse strategies enlisted by viruses to overcome this barrier 
(5). Simple demonstrations of this arms race in action come from 
experimental infections of primates, of which there are several 
examples demonstrating pathogenesis associated with acquisition 
of tetherin counteractivity. Studies of chimpanzees infected with 
HIV-1 for the purposes of vaccine studies in the 1980s were revis-
ited in order to investigate readaptation to a previous host species. 
Examination of the readapted viruses revealed that, although the 
Vpu maintained function, tetherin antagonism was also acquired 
in Nef, with the virus using both proteins to overcome chimpan-
zee tetherin (196). The minimal changes required to restore anti-
chimpanzee tetherin activity to the HIV-1 Nef were just 2 amino 
acids, and the region of chimpanzee tetherin targeted by the 
adapted Nef was mapped to the DIWKK region deleted in human 
tetherin (196). It therefore appears that lost accessory gene func-
tions can be reacquired relatively easily. Similarly, serial passage 
of modified simian tropic HIV-1 in pigtail macaques resulted in 
a virus that could replicate efficiently and cause AIDS in these 
otherwise unsusceptible hosts (197). The modified virus used in 
the original inoculum was endowed with resistance to macaque 
APOBEC3 restriction factors, but unable to counteract monkey 
tetherins. Four passages resulted in a pathogenic virus that was 
able to efficiently counteract macaque tetherin while maintaining 
anti-human tetherin activity. The amino acid changes responsible 
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for this adaptation were mapped to the transmembrane region of 
the Vpu—the region that interacts with tetherin—and involved 
only two amino acid changes (197).

Infection of rhesus macaques with Nef-deleted SIV 
(SIVmacΔnef) usually results in attenuated infection, with per-
sistent but low-level viral replication. After serial passage these 
viruses can revert to pathogenicity, leading to high viral loads and 
progression to disease (198). Analyses of the pathogenic revertant 
viruses confirmed that these viruses had adapted to counteract 
rhesus tetherin, with determinants mapping to the cytoplasmic 
tail of the envelope protein gp41. The minimal changes required 
to endow Env with this Nef-like activity involved just five 
amino acids (199). Acquisition of tetherin counteraction in SIV 
envelopes has been documented in the SIVtan envelope, most 
likely through passage in human cells (200). More recently, such 
an adaptation has also been observed in an in vivo for a highly 
neurotropic SIVsm (201).

Studies in tetherin knock-out mice provide direct evidence 
of tetherin’s antiviral role in vivo, with increased replication and 
pathogenicity of a murine retrovirus observed in the absence 
of tetherin (202). Otherwise normal development of −/− mice, 
including no detectable adverse effects on the immune system, 
further support the primary function of tetherin as an antiviral 
effector protein. Indeed, most mammalian tetherin orthologues 
possess antiviral activity, and the role of tetherin as an ancient 
immune effector molecule is supported by the demonstration of 
identifiable tetherin orthologues with antiviral activity in reptiles 
and as far back as the coelacanths (203, 204).

Tetherin’s Role in Linking innate and 
Adaptive immunity
Tethering viruses to the producer cell membranes and prevent-
ing their release is an obvious obstruction to virus propagation. 
However, the major mode of HIV transmission in cultured T cells 
is via synaptic conjugations between infected and uninfected 
cells. These virological synapses are driven by Env/CD4 interac-
tions and result in polarized secretion of new virions across the 
synaptic cleft (205). While very potent at blocking cell free virus 
release, the inhibitory effects of tetherin on cell-to-cell spread 
via the virological synapse structures is weak. In primary human 
CD4+ T  cells, Vpu-defective viruses even spread faster due to 
tetherin-mediated cell-associated virus accumulation, despite 
lower cell-free virion release (206). Given the high selection 
pressure to maintain tetherin counteraction in lentiviruses, it has 
therefore been of particular interest to determine whether the 
consequences of restriction have wider ramifications than simply 
the physical prevention of dissemination. Viruses tethered to 
the cell surface are exposed to anti-Env antibodies, particularly 
those targeting CD4-induced epitopes, and this sensitizes the 
infected cell to ADCC-mediated elimination by Fc-receptor bear-
ing myeloid and NK cells (Figure 3) (98, 207–209). This effect 
is enhanced by treatment of cells with IFNα due to increased 
tetherin expression. In turn it is effectively suppressed by HIV-1 
Vpu and Nef, which play dual roles by counteracting tetherin and 
by degrading CD4, therefore protecting the nascent Env trim-
ers from exposing CD4-dependent epitopes and reducing the 

numbers of cell-associated virions (98, 207–209). Importantly, 
tetherin therefore acts as a link between innate and adaptive 
immunity, enhancing the potency of antiviral antibodies and 
increasing the pressure on the virus to maintain efficient tetherin 
antagonism.

The clustering of cell surface tetherin molecules due to virus 
retention triggers signalling events mediated by its cytoplasmic 
tail, leading to NF-κB activation and the release of pro-inflamma-
tory cytokines (139, 210, 211). These cytokines could potentially 
serve to further amplify tetherin’s role in ADCC by recruiting 
effector cells to the site of infection. Tetherin’s signaling activity 
is restricted to homodimers of the long isoform (139). In this 
context the major endocytic site, a dual tyrosine motif YDYCRV, 
acts as a hemi-immuno-tyrosine activation motif (212). Upon 
virion retention, tyrosines on both L-tetherin monomers 
become phosphorylated by Src-family kinases and present an 
SH2-domain for the recruitment of the kinase Syk (212). This in 
turn recruits a signaling complex including TRAF2, TRAF6 and 
TAK1, ultimately activating NF-κB (Figure 3) (211, 212). Thus 
in addition to retaining virions at the cell surface, tetherin acts 
akin to a pattern recognition receptor in sensing virus restric-
tion. This sensing is dependent on tetherin’s link to the cortical 
actin cytoskeleton via an adaptor protein RICH2 (AHRGAP44) 
(212, 213). There appears to be some primate species specific-
ity in tetherin’s signaling activity. The deletion that occurred in 
chimpanzee tetherin that rendered the human orthologue resist-
ant to Nef antagonism, and serves as a highly effective barrier to 
cross-species transmissions, also appears to have contributed to 
the efficiency with which human tetherin initiates proinflamma-
tory signalling (210). In human cells this correlates with primate 
tetherin phosphorylation efficiency and Syk recruitment (212). 
Whether this is truly an neofunctionalization of tetherin during 
primate evolution, or reflects species incompatibilities in experi-
mental cellular systems is not clear. However, in mice knocked-in 
for constitutive somatic human tetherin expression, runting and 
early lethality is observed consistent with chronic inflammatory 
signaling (214).

A further intriguing link between tetherin and innate sensing 
of viruses is its identification as a ligand for the leukocyte inhibi-
tory receptor, ILT7, expressed on plasmacytoid dendritic cells 
(pDCs). Interaction between tetherin and ILT7 induces an inhibi-
tory signal that dampens responses by TLR ligands (Figure  3) 
(215). Recent data from the Cohen group suggests that the ILT7/
tetherin interaction acts akin to a ‘missing self ’ signal when a 
pDC encounters a cell infected with a tetherin-sensitive virus 
(216). The recruitment of tetherin into budding virions occludes 
its ability to interact with ILT7 on the pDC, thereby enhancing 
the responsiveness of the pDC if simultaneously encountering 
extracellular RNA. The authors postulate that differential surface 
removal of long and short tetherin isoforms by HIV-1 group M 
Vpu (and some extent Group O Nefs) ensures a sufficient pool 
tetherin at the PM to deliver this inhibitory signal at the same 
time as counteracting its antiviral effects (216, 217). Whether this 
is a universal function of tetherin is unclear; mice lack an ILT7, 
and a functional orthologue has yet to be identified. However, the 
upregulation of tetherin on some cancers may suggest that ILT7 
interaction is important for tumor-cell immune evasion (215).
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Together these observations indicate that tetherin’s antiviral 
activity in vivo is not limited to the physical reduction in cell free 
virus produced from the infected cell. Rather, virion-tethering to 
the cell has important knock-on effects on how it is perceived and 
dealt with by both the innate and adaptive immune response. This 
linkage between direct antiviral activity and the augmentation of 
downstream immune responses would thus further explain the 
high level of selective pressure on viruses such as HIV-1 not only 
to counteract tetherin for efficient transmission, but to maintain 
this activity after the establishment of systemic infection where 
the physical impairment of viral release has only minor effects on 
spread to new target cells.

OTHeR iNHiBiTORS OF Hiv-1  
ReLeASe AND ASSeMBLY AT THe 
PLASMA MeMBRANe

Whilst the most prominent, tetherin is unlikely to be the only 
antiviral factor that targets HIV during the assembly and release 
stage. In principle many adhesion molecules or lectins could exert 
an antiviral effect on virus release provided they, or their ligand, 
are incorporated into viral particles. Indeed, in the absence of 
both Vpu and Nef, CD4/Env interactions can limit HIV release 
(218) as well as exposing epitopes for ADCC.

The T-cell immunoglobulin and mucin domain (TIM) family 
of phosphatidylserine (PS) receptors have been implicated as 
important attachment for a variety of enveloped viruses (219). The 
exposure of PS on the surface of the PM of apoptotic cells (220) 
is important for their clearance by phagocytes, and it is thought 
that diverse enveloped viruses hijack PS exposure to facilitate 
attachment and entry into target cells (219). TIM family members 
are variably expressed on myeloid and activated T cell subsets. In 
the case of HIV-1, expression of TIM-1 in target cells enhances 
virion entry. This may be by upregulating CD4/coreceptor levels, 
but very recent evidence has shown that PS exposure on the target 
cell is important for HIV-1 fusion. Conversely, overexpression 
of TIM family members restricts virion release by mediating a 
phenotype remarkably similar to tetherin (220). Of note, TIM-3 
silencing in primary macrophages enhances virion release 2–4 
fold, suggesting these observations maybe of relevance in vivo. 
Interestingly, the mucin domain of TIM-1 is highly polymorphic 
and homozygosity for a 6 amino acid in-frame deletion variant 
(delMTTTVP) has been associated with reduced HIV-1 disease 
progression (221) and replication in ex vivo cultured CD4+ 
T cells (222). Whether this is because of an inhibitory effect or a 
reduced entry-enhancing activity is yet to be determined.

The inhibition of processing and incorporation of Env into 
nascent virions was suggested as an antiviral mechanism of 
IFN-I against HIV-1 many years ago (223). Recent studies 
have implicated this process as a target for two ISGs (224, 225). 
LGALS3BP/90K, a cysteine rich secreted scavenger receptor that 
has a role in regulating cell adhesion, is strongly upregulated by 
IFN-I and IFN-II and is present at high concentrations in most 
bodily fluids. Expression of cell-associated 90K blocked envelope 
incorporation and gp160 processing dependent on its BR-C, ttk, 
BOZ/Poxvirus Zinc finger (BTB/POZ) domain (225). 90K does 

not generally inhibit furin-like proteases that cleave a number 
of viral glycoproteins, nor does it have antiviral activity against 
murine retroviruses. Neither was 90K found to directly associate 
with gp160 in the secretory pathway. However, 90K depletion 
in both T  cells and macrophages enhanced HIV-1 replication. 
A similar activity has been associated with guanylate binding 
protein 5 (GBP5), a member of a family of IFN-induced GTPases 
(224). As with 90K, expression of GBP5 blocked the processing 
and incorporation of gp160 as well as other retroviral envelope 
proteins. This required the ability of GBP-5 to localize to the 
Golgi network, but appears independent of its GTPase activity. 
Furthermore, GBP5 expression levels in primary macrophages 
inversely correlated with viral replication. Interestingly, Env 
expression levels were a key to HIV-1 GBP-5 sensitivity. 
Mutations in the start codon of vpu, which is expressed from the 
same mRNA, enhances Env expression levels and confers partial 
GBP5 resistance. Since Vpu is essential to counteract tetherin 
(see below), the authors speculate that balancing the expres-
sion of Vpu and Env allows for optimal viral replication in the 
face of these two IFN-induced restrictions. As yet, little further 
mechanistic understanding of 90K or GBP-5-mediated effects on 
Env are known, or indeed whether they are related given their 
phenotypic similarities.

The assembly and budding of the nascent virion at the PM 
has been suggested as a target for IFN-I-mediated restriction. 
2′,3′-cyclic-nucleotide 3′-phosphodiesterase (CNP) was identi-
fied in an overexpression screen of ISGs that restrict viral release 
(226). CNP, a membrane-associated enzyme, bound to Gag in 
membrane fractions and inhibited particle formation independ-
ent of its enzymatic activity. While most mammalian CNP ortho-
logues tested had antiviral activity against HIV-1, a single amino 
acid difference in murine CNP accounted for its lack of retroviral 
restriction. Selection of CNP-resistant viruses resulted in a single 
point mutation (E40K) in the matrix (MA) domain of the Gag 
polyprotein, which alongside the murine CNP species-specific 
difference, governed CNP/Gag interactions. Interestingly, the 
equivalent position in MA is a K in some HIV-2 and SIV isolates 
and this correlates with their resistance to CNP. However, whether 
CNP ever gets the opportunity to restrict HIV-1 in vivo is unclear. 
It is expressed mainly in oligodendrocytes and epithelial cells, 
with some expression in DCs, but is not detectable in primary 
CD4+ T cells.

Finally, the ESCRT-mediated release of the virus has been 
suggested as a target of IFN-mediated restriction. The interferon-
induced ubiquitin-like modifier, ISG15, has a broad role in 
antiviral defence (227). The ESCRT-III complex constricts the 
neck of the budding virion to the point of scission. This requires 
the polymerization of its charged multivesicular protein (CHMP) 
components into helical polymers on the internal surface of 
the neck, followed by their regulated disassembly by the AAA-
ATPase VPS4 and its cofactor, LIP5 (4). Direct conjugation of 
ISG15 (ISGylation) to various CHMPs blocks their interaction 
with VPS4/LIP5, thereby stalling retrovirus budding (228, 229). 
ISGylation of CHMP5 appears to be essential for this process 
as in its absence, no other CHMP becomes modified (228). 
CHMP5 is dispensable for ESCRT-III function itself, raising the 
possibility that it is a regulator that can rapidly inhibit ESCRT 
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function after IFN treatment. Whether CHMP5 ISGylation is a 
major mechanism of antiretroviral defence under physiological 
conditions is not yet clear. Another ESCRT-III regulating factor, 
CC2D1A, binds to the ESCRT-III CHMP4B and blocks polymer 
formation, thereby dominantly interfering with HIV-1 assembly 
(230, 231). CC2D1A itself is an ISG (7), although whether it acts 
in a directly antiviral capacity is not known given that it has also 
been identified as a regulator of TBK1, a major kinase in the pat-
tern recognition signaling cascade (232).

CONCLUDiNg ReMARKS

Negotiating the limiting membranes of the cell represent the first 
and last stages of HIV-1 replication. As analogous processes are 
common to all enveloped viruses, the evolution of antiviral fac-
tors that inhibit them present general first line defences against 
HIV-1 and related viruses. Their importance is reflected in the 

resistance mechanisms that primate lentiviruses have evolved 
to avoid them, and the evidence that their antiviral activities 
present significant barriers to viral transmission, systemic spread 
and augmentation of other immune responses. This suggests that 
targeting the virus’s resistance to PM-based host restrictions may 
have therapeutic or vaccine-relevant potential. Their study also 
reveals fundamental new understanding of the basic processes of 
viral entry and exit from the cell.
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