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Emerging evidence suggests that the β2 integrin family of adhesion molecules have 
an important role in suppressing immune activation and inflammation. β2 integrins are 
important adhesion and signaling molecules that are exclusively expressed on leuko-
cytes. The four β2 integrins (CD11a, CD11b, CD11c, and CD11d paired with the β2 
chain CD18) play important roles in regulating three key aspects of immune cell function: 
recruitment to sites of inflammation; cell–cell contact formation; and downstream effects 
on cellular signaling. Through these three processes, β2 integrins both contribute to 
and regulate immune responses. This review explores the pro- and anti-inflammatory 
effects of β2 integrins in monocytes, macrophages, and dendritic cells and how they 
influence the outcome of immune responses. We furthermore discuss how imbalances 
in β2 integrin function can have far-reaching effects on mounting appropriate immune 
responses, potentially influencing the development and progression of autoimmune and 
inflammatory diseases. Therapeutic targeting of β2 integrins, therefore, holds enormous 
potential in exploring treatment options for a variety of inflammatory conditions.

Keywords: β2 integrins, CD11/CD18, dendritic cells monocytes and macrophages, immune regulation, 
autoimmunity

iNTRODUCTiON

The integrin family of proteins is comprised of 24 heterodimeric transmembrane adhesion receptors. 
Each integrin is formed through the non-covalent association of 1 α-subunit and 1 β-subunit; cur-
rently, 16 α-subunits and 8 β-subunits have been identified. Their expression on virtually all human 
cells and their complex signaling mechanisms explain their wide variety of biological roles, including 
blood clotting, cell adhesion, and migration.

Due to their extensive importance in biological systems, elucidating integrin signaling and 
receptor function has been of great interest since their characterization as adhesion molecules 
over 30 years ago. Integrins are important signaling proteins that mediate interactions of the cell 
with extracellular matrix proteins and with other cells via cell-surface ligands. Integrins exist in a 
continuum between a folded inactive form with low affinity for their ligand and an extended high 
affinity conformation (1), although even bent integrins are able to bind ligand in rare instances (2). 
As immune cell adhesion and extravasation into lymph nodes and tissues forms part of initiating an 
effective immune response, β2 integrin conformation on the surface of leukocytes needs to be tightly 
regulated. β2 integrins on the surface of circulating leukocytes tend, therefore, to be largely inactive 
(2) until inside-out and outside-in signaling trigger integrin-mediated adhesion and extravasation 
into tissue (Figure 1).

http://www.frontiersin.org/Immunology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2017.01866&domain=pdf&date_stamp=2017-12-20
http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
https://doi.org/10.3389/fimmu.2017.01866
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:vicky.morrison@glasgow.ac.uk
https://doi.org/10.3389/fimmu.2017.01866
https://www.frontiersin.org/Journal/10.3389/fimmu.2017.01866/full
https://www.frontiersin.org/Journal/10.3389/fimmu.2017.01866/full
https://www.frontiersin.org/Journal/10.3389/fimmu.2017.01866/full
http://loop.frontiersin.org/people/491493
https://loop.frontiersin.org/people/41295
http://loop.frontiersin.org/people/99917
http://10.13039/501100000341


FigURe 1 | Schematic representation of integrin activation and signaling. Inside-out signaling induces a conformational change in the integrin to the active, high 
affinity state. Upon ligand binding, active integrins then transmit outside-in signals and downstream signaling cascades. [Adapted from Byron et al. (3), with 
permission from the Journal of Cell Science].
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Inside-out signaling modifies how cells interact with their 
environment by facilitating receptor affinity and avidity (4) to 
allow binding to extracellular ligands. Outside-in signaling, 
on the other hand, mediates intracellular events in response to 
their environment by eliciting downstream signaling cascades in 
response to receptor occupation. The complex details of integ-
rin signaling are reviewed elsewhere (5, 6) and are beyond the 
scope of this review. Briefly, inside-out signaling is mediated by 
talin (7) and kindlin (8, 9) binding to the intracellular domain 
of the β2 subunit, a process initiated by chemokine receptor or 
Toll-like receptor (TLR) engagement (10, 11), which results in 
a conformational change in the integrin from a low-affinity to 
a high-affinity state. Outside-in signaling is then initiated by 
ligand binding to high-affinity integrin receptors (Figure  1). 
Downstream signaling events mediate the formation of focal 
complexes and adhesions through rearrangement of the actin 
cytoskeleton. The relative importance of affinity and avidity on 
integrin signaling and function is heavily debated (12, 13), but 
dynamic interaction between these processes and both inside-out 
and outside-in signaling seems likely (14).

β2 integrins are the focus of this review, as they are exclusively 
found on leukocytes and therefore of particular importance for 
the immune system. They mediate cell recruitment into lymphoid 
organs and inflamed tissues by facilitating firm leukocyte arrest 
on endothelial cells and extravasation after cell rolling (15); cel-
lular interactions between leukocytes including immunological 
synapse formation (16); and intracellular signaling cascades that 
influence cytoskeletal rearrangement, activation, proliferation and 
impact on cellular responses to TLRs. Importantly, through these 
three processes, β2 integrins can have either pro-inflammatory 
or anti-inflammatory outcomes. The β2 integrin subunit (CD18) 
can pair with one of four α-subunits (αL—CD11a, αM—CD11b, 
αX—CD11c, and αD—CD11d), forming leukocyte function-
associated antigen-1, Mac1/CR3 (macrophage-1 antigen, 
complement receptor 3), P150,95/CR4 (complement receptor 4),  
and CD18/CD11d, respectively (Figure 2). For consistency, this 

review will utilize only the CD nomenclature. Both function 
and cell-specific expression of β2 integrins vary according to the 
α-subunit involved.

The main ligands for the β2 integrin family members are 
outlined in Figure 2. Briefly, CD11a binds to intracellular adhe-
sion molecule-1 (ICAM-1), -2, -3, and -5, which are expressed 
by a variety of cells including leukocytes and endothelial cells, 
thereby mediating leukocyte recruitment to lymph nodes and 
sites of inflammation as well as cell–cell adhesion. CD11b 
binds the complement proteins iC3b and C4b with high affinity, 
mediating phagocytosis of complement-coated particles but can 
also bind ICAM-1, fibrinogen, and more than 40 other ligands 
(17). The sequence of CD11c is very close to that of CD11b, 
and indeed CD11c binds several of the same ligands including 
iC3b, ICAM-1, and fibrinogen. Multi-ligand binding capacity of 
CD11d is proposed to largely overlap with CD11b and includes 
ECM-associated proteins fibronectin, fibrinogen, vitronectin, 
Cyr61, and plasminogen (18).

This review will provide an overview of β2 integrin expres-
sion on monocytes, macrophages and DCs, before exploring 
the paradoxical pro-inflammatory and regulatory roles of β2 
integrins in immune regulation in three key aspects of immune 
function: recruitment and migration, cellular interactions, and 
downstream cell signaling (Figure  3). We will furthermore 
review how dysregulated integrin signaling could contribute to 
inflammatory and autoimmune conditions and introduce the 
therapeutic potential of targeting β2 integrins.

eXPReSSiON OF β2 iNTegRiN SUBUNiTS 
BY DeNDRiTiC CeLLS (DCs), 
MONOCYTeS, AND MACROPHAgeS

The expression of β2 integrin subunits varies in different leukocyte 
subsets and between mice and humans. In general terms, CD11a 
is expressed on all leukocytes at varying levels, while CD11b, 
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FigURe 3 | β2 integrin involvement in immune cell function can be categorized into three processes: immune cell recruitment, immune cell interactions, and immune 
cell signaling. Dysregulation of these functions could contribute to conditions such as inflammation, immunity, and infection.

FigURe 2 | Schematic representation of β2 integrin subunit pairing, depicting the β-subunit CD18 as the common subunit non-covalently associating with one of 
four α-subunits. The main ligands for each integrin are also shown.
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CD11c, and CD11d are predominantly expressed by monocytes, 
macrophages and DCs. Specifically, in humans, monocytes express 
all four β2 integrin-associated alpha subunits (CD11a, CD11b, 
CD11c, and CD11d) with CD11a and CD11b expression greater 
than CD11c (19, 20); macrophages express CD11a and CD11b at 
lower levels than monocytes together with CD11c at similar levels 
to monocytes (21); while DCs mainly express CD11c together 
with CD11a, though some DC subsets also express CD11b 
(22). While CD11d has received less attention than the other β2 
integrins due to the absence of commercially available human 

antibodies, Miyazaki and colleagues showed CD11d expression 
on monocyte-derived DCs and macrophages as well as most 
circulating monocytes (23). To complement the scarce available 
data, mRNA expression data for the CD11d subunit ITGAD were 
consulted. While Villani and colleagues (24) find monocytes to 
express highest levels of ITGAD mRNA, the Expression Atlas 
(25) reports highest expression in DCs, with ITGAD expression 
in monocytes remaining below detectable threshold. However, 
overall both RNAseq data sets show that CD11d mRNA expres-
sion is very low in monocytes, macrophages, and DCs. Table 1 
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TABLe 1 | β2 integrin expression on dendritic cells (DCs), monocytes and macrophages—human and murine findings.

Cell type CD11a/CD18 (αL/β2) CD11b/CD18 (αM/β2) CD11c/CD18 (αX/β2) CD11d/CD18 (αD/β2)

DCs Human: high levels of CD11a 
on monocyte-derived DCs (22, 
27–29); plasmacytoid DCs 
(pDCs) also express CD11a (30); 
reduced CD11a/CD18 levels 
upon DC activation (31)

Human: CD11b present on monocyte-
derived DCs (22, 27, 28); detected in 
cDCs, but not in pDCs (31–33); higher 
on cDC2 than cDC1s (33, 34); reduced 
CD11b/CD18 levels upon DC  
activation (31)

Human: pDCs lack CD11c (31); 
expressed on mature DCs (31); CD11c 
expression is higher on cDC2 than 
cDC1s (33, 34); monocyte-derived 
DCs also express CD11c (32); reduced 
CD11c/CD18 levels upon DC  
activation (31)

Human: expressed on 
monocyte-derived DCs 
(23), single-cell mRNA data 
suggests low gene expression 
in DCs (25)

Mouse: expressed by cDCs, 
particularly the CD8+ subset, 
and by pDCs (35); also highly 
expressed by bone marrow-
derived DCs

Mouse: expression of CD11b in mouse 
cDCs is subset-specific: higher on CD8− 
than CD8+ splenic DCs (35); expressed in 
sub-populations of gut DCs (36); absent 
from pDCs (37); expressed by bone 
marrow-derived DCs (38)

Mouse: CD11c highly expressed on 
cDCs and typically used as a DC 
marker (38); expressed by pDCs (39) 
and bone marrow-derived DCs (40)

Mouse: no protein expression 
data available, RNA-seq data 
suggest medium ITGAD gene 
expression in murine DCs (25)

Monocytes Human: expressed by circulating 
monocytes (21, 29, 41)

Human: highly expressed by circulating 
monocytes (21, 34, 41); differentially 
expressed on osteoclast precursors (42)

Human: expressed on circulating 
monocytes (21, 34) and classical, non-
classical, and intermediate  
monocytes (31)

Human: expressed on 
majority of circulating 
monocytes, higher on CD16− 
cells compared to CD16+ 
cells (23)

Mouse: expressed by circulating 
monocytes (43)

Mouse: high expression of CD11b on 
murine monocytes (44)

Mouse: thought to be absent from 
most monocytes (45); though may 
be upregulated upon stimulation/
maturation (44)

Mouse: lowly expressed 
by circulating monocytes, 
upregulated upon 
differentiation into 
macrophages (46), low ITGAD 
mRNA expression (25)

Macrophages Human: expressed by monocyte-
derived macrophages (21, 43);  
reduced expression on 
monocyte-derived macrophages 
compared to blood  
monocytes (21)

Human: expressed on monocyte-derived 
macrophages (47–49); expressed on 
alveolar macrophages, though at lower 
levels compared to blood monocytes (21)

Human: lowly expressed by monocyte-
derived macrophages (21, 48–50)

Human: expressed 
on monocyte-derived 
macrophages in vitro (23)

Mouse: expression dependent 
on tissue: present on pulmonary, 
but not on microglia, spleen or 
peritoneal macrophages (51)

Mouse: abundantly expressed by 
peritoneal macrophages (52, 53); highly 
expressed on dermal macrophages (54)

Mouse: expressed on alveolar 
macrophages (55); absent from bone 
marrow-derived macrophages and 
dermal macrophages (54)

Mouse: expressed by 
peritoneal macrophages (56)
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provides the details of expression of all β2 integrin subunits in 
human and murine monocytes, macrophages, and DCs. Where 
available, expression analysis on DC subsets is given using the 
Guilliams nomenclature (26), which was recently confirmed and 
expanded by Villani and colleagues (24).

Animal studies have been instrumental in elucidating integrin 
function in monocytes, macrophages, and DCs. β2 integrins are 
highly conserved across species, with mice, rats, and rabbits most 
commonly used as models. Importantly β2 integrin-deficient mice 
are considered an appropriate model of the human condition 
leukocyte adhesion deficiency (LAD) where β2 integrin expres-
sion or function is lost (57). However, while β2 integrin structure 
is largely similar between species, cellular expression levels can 
vary significantly. A common example is CD11c, which in mice is 
predominantly expressed by conventional (cDCs) and plasmacy-
toid DCs (pDCs), although can also be expressed on lymphocyte 
subsets. In humans, on the other hand, CD11c is expressed not 
only on DCs but also monocytes, macrophages, granulocytes, and 
natural killer cells (19, 38). Animal and human studies therefore 
have to be compared with great care, and validation of concepts 
conceived in animal models in human cells remains a priority in 
elucidating the functions of β2 integrins.

β2 iNTegRiNS AS RegULATORS OF 
iMMUNe FUNCTiON

evidence for β2 integrin Contribution to 
immune Regulation
There is mounting evidence that puts β2 integrins at the center of 
the balance between immune priming and tolerance. Integrin-
deficient humans and mouse models show that β2 integrins are 
important negative regulators of the immune system. LADs are 
genetic human disorders caused by the reduction or complete 
absence of β2-integrins (LAD-I) (58) or by mutations in the 
integrin-activating protein kindlin-3 (LAD-III) (59). These dis-
orders are characterized by profound impairment of leukocyte 
recruitment to peripheral sites of infection. Patients with LAD 
suffer from increased susceptibility to infection and impaired 
inflammatory responses (60), resulting in markedly reduced 
lifespan if no therapeutic measures are taken. Paradoxically LAD 
patients also suffer from chronic inflammatory diseases. Examples 
of conditions prevalent in LAD patients include intestinal colitis 
(61) and periodontitis (62) suggest that β2 integrins have an 
important role in suppressing inflammation and promoting 
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immune tolerance. Supporting this, the presence of functional β2 
integrins improved symptoms in a model of skin inflammation by 
restricting DC-mediated T cell activation (63).

LAD pathology can be replicated in β2 integrin knockout 
(KO) mouse models, underlining the importance of β2 integrins 
for immune cell recruitment in both humans and murine models 
and the similarities between the species. From studies in KO mice 
and LAD patients, we know β2 integrins are essential in mediating 
T  cell recruitment to lymph nodes and leukocyte, particularly 
neutrophil and T cell, recruitment to sites of inflammation. Here, 
we will further explore the roles of these integrins in monocytes, 
macrophages, and DCs.

β2 integrins Regulate Recruitment and 
Migration of Mononuclear Phagocytes
Evidence suggests that leukocyte recruitment to tissues is 
dependent on β2 integrins, because of the requirement for these 
adhesion molecules in the firm adhesion to the endothelial layer 
under shear flow conditions and for subsequent transendothelial 
migration (64). However, leukocyte migration within tissues is 
thought to occur independently of β2 integrins, as cells use an 
actin-dependent flowing and squeezing mechanism of move-
ment in three-dimensional environments (64).

Geissmann and colleagues showed that the adhesion of 
patrolling murine monocytes to blood vessel walls is significantly 
decreased when CD11a is blocked (45). Similarly, chemotactic 
migration of human monocytes in vitro is inhibited when CD18 
function is blocked (65). However, murine monocyte recruitment 
to sites of inflammation was found to occur independently of 
CD11a and CD11b (66), suggesting that β2 integrins are primar-
ily involved in the homeostatic migration of monocytes and that 
their role is redundant during inflammation. On the other hand, 
increased expression levels of CD11d on macrophages mediates 
their retention at inflammatory sites in mice (56).

The role of β2 integrins in DC and macrophage recruitment to 
secondary lymphoid organs and tissues seems to be dependent 
on the inflammatory state of the body. Bone marrow-derived 
DCs (BMDCs) from mice where all integrins, including β2, are 
knocked out, migrated from the site of injection (ear) to the 
draining lymph node in similar numbers to their wild-type 
counterparts when activated with lipopolysaccharide (LPS). This 
suggests that DC migration during inflammation is not depend-
ent on integrins. However, under steady-state conditions, the 
absence of functional β2 integrins from murine BMDCs (using 
signaling-deficient β2 integrin knock-in BMDCs) was found to 
increase migration from tissue (footpad) to draining lymph node, 
leading to the hypothesis that β2 integrins function to restrict 
migration in the steady-state by anchoring DCs in the tissue site. 
As a consequence of increased DC migration to the draining 
lymph node, the same study showed an increase in Th1 cytokine 
production (67), further supporting a negative regulatory role for 
β2 integrins on DCs. In addition, a murine model of skin inflam-
mation also showed an increase in migratory DCs in the draining 
lymph node of β2 integrin signaling-deficient mice, as well as at 
the site of inflammation, though whether this was dependent on 
the inflammation or not was not determined (63). Overall, the 
cellular environment seems to determine the requirement for 

functional β2 integrins in the migration of both monocytes and 
DCs in vivo: integrins play a role in monocyte recruitment and 
DC migration under steady-state conditions, but are dispensable 
during inflammation.

β2 integrins Regulating DC–T Cell 
interactions
In addition to their roles in leukocyte recruitment and migration, 
β2 integrins are also important mediators of cellular interactions. 
Functional β2 integrins are important in the formation of the 
immunological synapse between antigen-presenting cells (APCs) 
and T cells. The context and dynamics of this interaction deter-
mine whether T cells become activated or tolerized. β2 integrins, 
and their ligand, ICAM-1, are expressed by both the T cell and the 
APC and are vital in immune synapse formation. Importantly, it 
is becoming increasingly clear that β2 integrins expressed by the 
APC and T cell have opposing functions in the immune synapse, 
resulting in differential outcomes for the T cell response.

On the T cell side, CD11a clusters in the peripheral supramo-
lecular activation cluster (P-SMAC) and binds to ICAM-1 on the 
APC (68). This molecular interaction stabilizes the connection 
made between T  cell receptor and peptide:MHC on the APC 
in the central SMAC (16, 69), thereby enhancing TCR signal 
transduction (70). While T  cell CD11a therefore has a largely 
pro-inflammatory effect, enhancing T cell activation, prolifera-
tion, and differentiation, a role for T cell integrins in regulation of 
activation, for example, in different T cell subsets, is not ruled out.

On the APC side of the immunological synapse, β2 integrins 
have also been shown to be involved, likely binding to ICAM-1 
on the T cell. Importantly, the integrins on the APC regulate the 
outcome of the T cell response. For example, in murine models, 
active CD11b on DC surfaces inhibits the DC–T cell interaction 
(71). The reduced antigen-presenting capabilities of murine 
bone marrow-derived macrophages compared to BMDCs were 
therefore proposed to be due to their comparably larger surface 
expression of activated CD11b (71, 72). This suppressive role for 
DC CD11b has also been shown in human cells. When CD11b 
on human monocyte-derived DCs binds its ligand ICAM-1, 
both CD86 expression on DCs and DC-induced T cell prolifera-
tion were reduced (73). Interestingly, ligation of CD11b/CD18 
decreases the ability of murine BMDCs to stimulate T cells and 
elicit a downstream response (74), CD11b/CD18 interactions can 
suppress Th17 cell differentiation (75), suggesting a strong role 
for this specific β2 integrin in immune regulation. This suggests 
that the activated conformation of CD11b/CD18 is extensively 
involved in regulating the immune system and has strong nega-
tive and positive regulatory functions depending on cell type they 
are expressed on.

Furthermore, the expression of activated β2 integrins on 
murine DC surfaces significantly reduces T cell activation (71) 
and further studies actually demonstrated an inverse relationship 
between forced activation of murine BMDC CD11a and T cell 
activation (72), suggesting a directly limiting effect of active β2 
integrins on T cell activation by APCs.

Overall, the role of integrins as adhesion molecules carefully 
mediating and regulating cellular interactions is not to be under-
estimated for mounting an effective immune response.
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TABLe 2 | Summary of the roles for β2 integrins in monocytes, macrophages, and dendritic cells (DCs).

Cell type Recruitment and migration interactions with T cells Signaling

Monocytes β2 integrins mediate recruitment of monocytes under homeostatic conditions 
(45, 65), but dispensable for recruitment during inflammation (66)

Yet to be determined Yet to be determined

Pro-inflammatory Unknown Unknown

Macrophages β2 integrins reported to mediate macrophage retention at inflammatory sites 
(56, 86)

Yet to be determined β2 integrin signaling dampens 
macrophage responses to Toll-like 
receptor (TLR) stimulation (82, 83)

Pro-inflammatory Unknown Regulatory

DCs Under homeostatic conditions β2 integrins restrict DC migration from tissue 
to lymph nodes (67); Migration from tissue site to draining lymph nodes 
during inflammation occurs independently of integrins (64)

DC integrins contribute to 
contact formation with T cells—
this role inhibits full T cell 
activation (71, 72, 74) 

β2 integrin signaling functions to restrict 
DC activation both in response to TLR 
stimulation and under homeostatic 
conditions (67)

Regulatory Regulatory Regulatory
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β2 integrins Regulate immune Cell 
Signaling
In addition to their roles in leukocyte recruitment and interac-
tions, several studies show that integrin outside-in signaling 
following ligand binding can directly affect cell function. Chinese 
Hamster Ovarian cells transfected with CD11c acquire the abil-
ity to bind both LPS and Gram-negative bacteria, as well as the 
ability to initiate downstream activation signals (76). In contrast 
to their anti-inflammatory roles on DCs, CD11b or CD11c recep-
tor occupation on the surface of human monocytes stimulates 
cell-specific pro-inflammatory pathways (77), such as secretion 
of IL-8, MIP1α, and MIP1β.

Generally, the interplay between TLR4- and β2 integrin-
mediated signaling is controversial. On the one hand, it has 
been shown that CD11b positively regulates TLR4 signaling 
(78), especially in murine BMDCs. Several studies report β2 
integrins act in synergy with LPS (79–81), therefore suggesting 
a potential pro-inflammatory role for CD11b. By contrast, other 
studies report that β2 integrins negatively affect TLR signaling. 
Complete absence of β2 integrins in mice (CD18 KO) was shown 
to result in a strong increase of TLR signaling (82) and the 
absence of CD11b specifically from murine macrophages causes 
exacerbated TLR-mediated inflammatory responses, resulting in 
increased susceptibility to endotoxin shock and Escherichia coli 
sepsis (83). Mechanistically, CD11b signaling has been shown to 
induce degradation of the key TLR signaling components, MyD88 
and TRIF, directly dampening TLR responses in macrophages 
(83). Moreover, activation of CD11b on human inflammatory 
arthritis synovial macrophages via binding to its ligand ICAM 
was shown to indirectly inhibit TLR signaling (84) by inducing 
expression of IL-10 and the inhibitory factors SOCS3, ABIN-3, 
and A20. Integrins furthermore restrict TLR signaling on both 
murine macrophages and DCs (63). The role of β2 integrins in 
modulating TLR signaling is, therefore, complex, although one 
could tentatively propose that CD11b specifically seems to have 
opposing TLR4-mediated roles in inflammation, depending on 
the APC surface it is expressed on. However, while this could 
hold true for TLR4 signaling, this might not be the case for all 
TLRs. CD11b deficiency in murine BMDCs, while negatively 
affecting TLR4-mediated pathways, actually leads to an increase 

in DC cross-priming of cytotoxic T cells, a process mediated by 
the microRNA-146a (85). β2 integrin regulation of TLR-mediated 
responses therefore remains incompletely understood, with 
future studies hopefully elucidating the complex and intricate 
nature of these receptor interactions.

A variety of studies available suggest a significant immu-
noregulatory role for β2 integrins, not only by their mediation 
of adhesive and migratory processes, but also by immunological 
signaling. However, other studies suggest that, given the right cel-
lular environment or cell type, β2 integrins can also have a strong 
pro-inflammatory effect (see Table  2 for comparison). When 
considering these opposing functions of integrins, it seems likely 
that even slight disturbances in integrin expression, signaling or 
activation could result in significant immunological effects, thus 
potentially contributing to a variety of autoimmune, inflamma-
tory, and infectious conditions.

β2 iNTegRiNS iN iNFLAMMATiON, 
iNFeCTiON, AND AUTOiMMUNiTY

Evidence for the role of β2 integrins in contributing to the 
development and progression of inflammatory and autoimmune 
conditions is accumulating. Considering that β2 integrin signal-
ing can have opposing functions depending on subunit pairing 
and the immune cell type it is expressed on, it is not surprising 
that these receptors play important roles in both contributing to as 
well as negatively regulating inflammatory processes.

Human genetic studies point to a role of β2 integrins in inflam-
mation and autoimmunity. A polymorphism of ITGAM, the 
CD11b subunit, increases the risk for the autoimmune disease 
systemic lupus erythematosus (87) (SLE), which shares genetic 
risk factors with rheumatoid arthritis (RA) (88). Disease risk for 
inflammatory bowel disease, similarly characterized by dysregu-
lation of immune function specifically in the intestine, increases 
with amplified expression of alleles for both ITGAL, encoding 
CD11a, and the β2 integrin ligand ICAM1 (89). Gene expression 
of CD11d in humans and mice was found to be increased in white 
adipose tissue in obesity, a condition characterized by an increase 
in systemic inflammation (90). Furthermore, CD11d activation 
led to increased IL-1β expression (23), which when overproduced 
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can contribute to a variety of autoinflammatory conditions (91). 
While dysregulation of β2 integrin signaling seems likely to be 
involved in a variety of autoimmune diseases and inflamma-
tory conditions, exact mechanisms are still unclear, and further 
investigation of both signaling pathways and genetic basis will be 
needed to fully elucidate their complex roles.

Recent studies have focused on β2 integrin involvement in 
RA, which serves as an excellent example of the opposing roles β2 
integrins can take in disease. Expression of CD11a is increased in 
inflamed synovial tissue, where it is hypothesized to contribute 
to cell activation and on-going joint destruction (92, 93), but not 
in peripheral blood of RA patients. However, as CD11a is also 
involved in facilitating immune cell migration to sites of inflam-
mation, clear-cut cause and effect of the presence of activated β2 
integrins in the synovium is difficult to establish. Blocking all β2 
integrins reduced inflammation in a rabbit RA model (94), while 
absence of CD11a led to complete resistance to disease induc-
tion in a KB × N serum transfer mouse model of arthritis (95). 
Furthermore, both a small molecule antagonist against CD11a 
and a CD11a-monoclonal antibody (mAb) proved to be simi-
larly successful in reducing both inflammatory-mediated bone 
destruction and cytokine mRNA levels within the murine joint 
(96, 97). Mice with mutations in the β2 integrin ligand ICAM-1 
also show reduced susceptibility to the collagen-induced arthritis 
(CIA) model (98). Clearly, CD11a–ICAM-1 interactions are 
essential for leukocyte recruitment to the inflamed joint.

However, evidence is emerging that other β2 integrins may 
function to control inflammation in arthritis. CD11b KO mice, for 
example, show exacerbated joint pathology in the KB x N serum 
transfer model of arthritis, underlining the starkly opposite roles 
different β2 integrins can play (95). A recent study replicated these 
results in a CIA model and, furthermore, showed that exacerbated 
joint pathology resulted from elevated IL-6 levels and an increase 
in Th17 cell priming, which could be rescued by introducing a 
CD11b-expressing DC cell line (99). On the other hand, blocking 
CD11b immediately before onset of disease significantly reduced 
disease burden in two different models of arthritis (CIA and a 
DBA/1 to severe combined immunodeficiency transfer model of 
arthritis) (100), suggesting that the role of CD11b in inflamma-
tory arthritis may differ depending on the cell type involved and 
the disease stage.

When considering the importance, as well as the obvious com-
plexity, of β2 integrin function in autoimmune diseases such as 
RA, therapeutically targeting β2 integrins will have to be carefully 
balanced but also holds great promise to offer novel treatment 
options.

APPLiCABiLiTY OF iNTegRiN-
TARgeTiNg THeRAPieS

Modulating integrin function to improve mal-adaptation or 
excessive activation of the immune system is of great interest in a 
variety of autoimmune and inflammatory conditions. However, 
achieving efficacy without immunocompromising side effects 
might prove challenging. Here, we discuss the progress and 
failures in developing integrin-targeted therapies and speculate 
on the routes forward for success.

To date, targeting integrins therapeutically has had mixed 
success in the clinic. The only mAb targeting β2 integrins, 
Efalizumab, which targets CD11a, was originally developed as a 
treatment for psoriasis (101). However, several patients presented 
with the potentially fatal disease progressive multifocal leukoen-
cephalopathy (PML), caused by reactivation of the JC virus, which 
results in a white matter disorder of the brain (102). Although the 
mechanism of PML development in Efalizumab-treated patients 
was not investigated, we speculate that viral reactivation was 
likely either due to the loss of immune cell recruitment to the 
brain to control the virus (103) or due to the mAb itself crossing 
the blood–brain barrier (104). Due to the occurrence of PML, 
Efalizumab was withdrawn from European and American mar-
kets due to its associated safety issues in 2009.

Although targeting β2 integrins has so far failed in the clinic, 
targeting other integrins for the treatment of colitis and Crohn’s 
disease has proved successful. The mAb against the α4 integrin, 
Natalizumab, was developed for the treatment of multiple scle-
rosis and Crohn’s disease (105, 106). This mAb binds to α4β1 and 
α4β7. However, PML also occurs in some Natalizumab-treated 
patients (integrin α4β1 is also involved in leukocyte recruitment 
to the brain) and so is no longer used widely (107). More recently, 
a specific α4β7 targeting mAb Vedolizumab has shown success 
in safety efficacy in Crohn’s disease and ulcerative colitis. This 
success story underlines the potential of targeting integrins for 
therapeutic purposes.

In order to realize the potential of targeting β2 integrins 
therapeutically, it will be necessary to improve the strategy. As 
indicated by the success of Vedolizumab over Natalizumab, 
one way to do this is to target the right integrin subunit(s) in 
order to reduce the likelihood of side effects. Targeting CD11a, 
in the form of Efalizumab, proved unsuccessful in the clinic. 
As CD11a is expressed by almost all leukocytes, has vital roles 
in leukocyte recruitment and has immunoregulatory effects in 
mononuclear phagocytes, the resulting serious side effects from 
targeting this molecule therapeutically are, perhaps, not surpris-
ing. Targeting other CD11 subunits might be a more effective 
strategy. For example, CD11b, CD11c, and CD11d have a more 
restricted pattern of expression in leukocytes (predominantly 
on monocytes, macrophages, and DCs), which may make these 
molecules more suitable targets. Importantly, it is vital that we 
consider the pro- and anti-inflammatory functions of β2 integrin 
subunits and design drugs to target them appropriately. CD11b, 
for example, has clear regulatory roles in macrophages and 
DCs, meaning that we could potentially exploit this immuno-
suppressive pathway by activating, rather than blocking, this 
integrin subunit. Such a strategy may have less risk of serious 
side effects. It is, therefore, essential that we fully understand 
the specific functions of individual integrin subunits in differ-
ent leukocyte populations in order to target β2 integrin subunits 
effectively in the clinic.

Another option to explore is blocking not the β2 integrin itself, 
but the ligand of interest. Targeting the CD11a and CD11b ligand, 
ICAM-1, has shown beneficial results especially in early RA 
(108), although immunogenicity of the mAb in question restricts 
clinical use (109) and problems caused by impaired leukocyte 
recruitment prevail.
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Further potential difficulties in developing integrin-targeting 
therapy include the close signaling relationships that exist in 
some integrins, potentially leading to complex downstream 
effects mediated even by an activating mAb highly specific for 
a β2 integrin (110). Carefully elucidating downstream signaling 
pathways and further increasing drug specificity is therefore 
essential to bring more integrin therapeutics into the clinic.

Innovative avenues to explore include computationally 
designed integrin proteins with constitutively activated or inacti-
vated subunits, which could find applications in both pharmaco-
logical testing and therapy (111). Furthermore, developing small 
molecular drugs targeting β2 integrins viable for oral use remains 
a priority, as it could offer an alternative way to yield the same 
beneficial results without the dangerous side effects of mAbs.  
An example is the small molecule CD11b agonist, Leukadherin-1, 
which previous studies found to reduce monocyte-mediated  
TNF-release by mimicking natural ligand binding. When 
NK cells and monocytes were pre-treated with Leukadherin-1, 
innate inflammatory signaling in human ex vivo studies was sup-
pressed (112). While the study noted some caveats, for example, 
the differences of CD11b function on different cell types (78), 
the drug is still being explored for the treatment of SLE. Another 
small molecule currently in development is the CD11a antagonist 
BMS-587101, which acts by reducing CD11a-mediated adhesion 
and to a lesser effect T cell proliferation. It significantly improved 
both murine models of lung inflammation and transplant  
viability (113).

Continuous effort to increase drug specificity and further 
understand their complex delicate signaling networks will be 
needed to bring β2 integrin-targeting drugs into the clinic. But 
while the use of integrin-targeting drugs has been contentious 
in the past, their potential in treating a wide variety of immune 
diseases is enormous and should not be neglected.

CONCLUSiON

This review explored the opposing nature of β2 integrin pro- and 
anti-inflammatory functions in three main immune functions, 

making them prime candidates to be both important mediators 
and regulators of the immune system. The first is migration, 
which allows for targeted immune cell recruitment to sites of 
infection and tissue damage. The second is adhesion, not only 
preceding immune cell extravasation at sites of inflammation, 
but also an important factor in initiating the adaptive immune 
response by facilitating cellular interactions. Finally, immune 
cell signaling, which allows for fine-tuned cooperation between 
a wide variety of immune cells. Considering the fact that β2 
integrins play a complex role in three important areas of the 
immune system and their differential expression on monocytes, 
macrophages and DCs, it becomes clear that the variety of studies 
presented in this review is by no means exhaustive. The com-
mon message is evident: β2 integrins are involved in complex 
immunoregulatory signaling pathways. However, in addition 
to their well-established pro-inflammatory roles in recruitment 
and activation, β2 integrins also have essential immunoregula-
tory functions. Dysregulated integrin signaling, expression and 
surface activation is therefore likely to contribute to a variety 
of inflammatory and autoimmune conditions. Elucidating the 
function of β2 integrins further therefore promises to provide 
novel therapeutic targets for various disorders, RA being just 
one example.
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