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The gastrointestinal (GI) tract provides a compartmentalized interface with an enormous 
repertoire of immune and metabolic activities, where the multicellular structure of the 
mucosa has acquired mechanisms to sense luminal factors, such as nutrients, microbes, 
and a variety of host-derived and microbial metabolites. The GI tract is colonized by 
a complex ecosystem of microorganisms, which have developed a highly coevolved 
relationship with the host’s cellular and immune system. Intestinal epithelial pattern 
recognition receptors (PRRs) substantially contribute to tissue homeostasis and immune 
surveillance. The role of bacteria-derived signals in intestinal epithelial homeostasis and 
repair has been addressed in mouse models deficient in PRRs and signaling adaptors. 
While critical for host physiology and the fortification of barrier function, the intestinal 
microbiota poses a considerable health challenge. Accumulating evidence indicates that 
dysbiosis is associated with the pathogenesis of numerous GI tract diseases, including 
inflammatory bowel diseases (IBD) and colorectal cancer (CRC). Aberrant signal integra-
tion at the epithelial cell level contributes to such diseases. An increased understanding 
of bacterial-specific structure recognition and signaling mechanisms at the intestinal 
epithelial interface is of great importance in the translation to future treatment strategies. 
In this review, we summarize the growing understanding of the regulation and function 
of the intestinal epithelial barrier, and discuss microbial signaling in the dynamic host–
microbe mutualism in both health and disease.
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iNTRODUCTiON

The human gastrointestinal (GI) tract represents the most densely colonized organ of the body, with 
the highest microbial load of 1011 bacteria/mL content in the colon (1, 2). Bacteria dominate the 
microbial ecosystem in the GI tract, with more than 90% belonging to the phyla Bacteroidetes and 
the Firmicutes (3–5). Despite considerable progress the functional complexity of the microbiome is 
still unresolved, and to date, mechanisms of microbe–host interactions involve a pleiotropic network 
of immune, metabolic, and trophic functions (1, 6). Studies in germ-free animals recognized the 
essential role played by the intestinal microbiome in the development and regulation of the mucosal 
immune system during early life (7–12). While many organisms have been shown to fulfill protec-
tive functions in the GI tract and are critical for host physiology, complex shifts in the community 
structure and abundance of certain microbes have been associated with the onset of inflammatory 
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and tumorigenic diseases, such as inflammatory bowel diseases 
(IBD) and colorectal cancer (CRC) (6, 13–15).

Loss of epithelial barrier function and innate immunity are 
fundamental to the pathogenesis of inflammatory and infectious 
diseases. The intestinal immune system has the challenge of 
responding to pathogens, while remaining tolerant to food anti-
gens and the commensal microbiota. The intestinal epithelium 
executes a compartmentalization between the lumen and the 
host, simultaneously acting as a selectively permeable first line of 
defense to fulfill its function of absorption, while maintaining an 
effective barrier against the intestinal microbiota, antigens and 
toxins. Intestinal epithelial cells (IECs) express pro-inflammatory 
cytokines in response to infectious invasive bacteria (16), but 
largely ignore non-pathogenic commensals (17). Certain intes-
tinal pathogens (18, 19) and opportunistic commensals (20), 
however, can evade this first line of defense and enter IECs, 
suggesting that the existence of epithelial cell-intrinsic immune 
mechanisms for bacterial detection and limitation are essential. 
One key cell-autonomous mechanism of antibacterial defense is 
intestinal epithelial autophagy, shown to be activated following 
bacterial invasion through adaptor protein myeloid differentia-
tion primary response gene-88 (MyD88) cell-intrinsic signaling, 
with autophagy-deficiency in mice causing increased dissemina-
tion of invasive bacteria (21), indicating that autophagy could 
have a broader role in inflammatory disease. IECs and innate 
immune cells of the lamina propria are able to differentiate self 
from non-self through a selective spatial and cellular expression 
of pattern-recognition receptors (PRRs) (22). Classically the 
detection of pathogen-associated molecular patterns (PAMPs) 
allows the intestinal epithelium to activate signaling pathways 
that induce the early host response to infection. The role of 
microbe-associated molecular patterns (MAMPs) in mediating 
innate recognition of the commensal “non-infectious” micro-
biota remains controversial. Paradoxically, recent progress in 
understanding IBD pathogenesis suggests that a defective innate 
immune system predisposes the host toward chronic inflamma-
tion (23, 24), supporting a protective role of PRR signaling in 
maintaining intestinal tissue homeostasis. Early work related to 
the activation of inflammation-related transcription factors, such 
as the nuclear factor kB (NF-kB), suggested a hormetic adapta-
tion of the epithelium in response to commensal bacteria (25, 26), 
with elegant studies related to epithelial cell-specific inhibition 
of NF-kB activation validating the importance of this signaling 
pathway in maintaining tissue homeostasis (27). This paradigm 
shift was supported by Medzhitov and colleagues, demonstrating 
that microbiota-derived signals via the toll-like receptor (TLR)-
related adaptor protein MyD88 protect mice from the develop-
ment of colitis (28) and intestinal tumor formation (29). Thus, 
bacteria (dead or alive) and their metabolites form key mediators 
for the cross-talk between IECs and other mucosal cell types, 
through the interaction with host PRRs.

Although it is recognized that the intestinal microbiota has 
profound influences on health and disease, the understanding 
of the precise mechanism(s) by which this is exerted remains 
largely unknown (30). This review summarizes our knowledge 
of specific bacterial interactions and signaling mechanisms at the 
intestinal epithelial interface. We discuss bacterial signaling in 

inflammation and cancer, and reflect on how increasing knowl-
edge of such mechanisms might be translated to the benefit of 
patient care.

THe iNTeSTiNAL ePiTHeLiUM: OUR 
DYNAMiC PROTeCTive BARRieR

In spite of the symbiotic nature of the microbe–host relationship, 
the close proximity of bacteria to intestinal tissue poses a consider-
able health challenge. An effective and dynamic intestinal epithe-
lial barrier is therefore crucial to conserve a compartmentalized 
microbe–host interaction and tissue homeostasis (Figure 1). In 
the healthy organ, the epithelium maintains a distinct anatomical 
barrier relevant for a constant state of homeostasis, while being 
exposed to a myriad of environmental stimuli that include, but 
are not limited to, microbes, dietary products and inorganic 
materials (31). A single-cell layer of IECs forms a continuous 
physical barrier, with tight junctions connecting adjacent IECs 
and associating with cytoplasmic actin and myosin networks 
that regulate intestinal permeability (32). Long-lived pluripotent 
stem cells located at the base of intestinal crypts continuously 
produce tissue-specific precursor cells that transit through a 
differentiation pathway that gives rise to absorptive lineage cells 
(enterocyte/colonocyte) or secretory lineage cells (goblet, Paneth, 
enteroendocrine and tuft) (33). IECs represent not only a physical 
barrier but also contribute to intestinal health through the pro-
duction of mucus (goblet cells) and the secretion of antimicrobial 
peptides (AMPs) (Paneth cells).

Goblet cells secrete mucin glycoproteins, of which Muc2 is 
the main constituent of the approximately 150-µm thick (in the 
mouse) colonic mucus layer (34). While the mucus layer in the 
small intestine consist of a single layer, in the colon, two structur-
ally distinct mucus layers are formed; an inner mucus layer that is 
devoid of bacteria, and an outer mucus layer that forms a habitat 
for a large number of bacteria (35, 36). In addition to mucins, 
goblet cells secrete a range of bioactive molecules such as trefoil 
factor peptides (TFFs), resistin-like molecule β (RELMβ), and 
Fc-γ binding protein (37). Intestinal Paneth cells are the main 
source of AMPs that function in host defense and in establishing 
and maintaining the intestinal microbiota (38, 39). Secretory 
immunoglobulin A (sIgA) directed against intestinal bacteria and 
produced by Lipopeptide/lipoprotein (LP) plasma cells, binds the 
polymeric immunoglobulin receptor (pIgR), and transcytoses 
across the epithelium to prevent microbial translocation across 
the epithelial barrier (40, 41). This concerted interplay between 
plasma cells and IECs provides an adaptive immune element to 
the intestinal epithelial barrier. Also found scattered throughout 
the LP are T  cells, stromal cells, and antigen presenting cells 
such as dendritic cells (DCs) and macrophages. Specialized 
IECs, called microfold (M) cells, and goblet cells facilitate the 
transport of luminal antigens and bacteria across the intestinal 
epithelial barrier to DCs, with macrophages sampling through 
trans-epithelial dendrites (42–44). Under steady-state conditions, 
the intestinal immune system detects commensal bacteria and 
provides basal signals without the full activation of adaptive 
immune responses (7).
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FigURe 1 | The colonic intestinal epithelium as a dynamic protective barrier. The single-cell layer (10 µm) of intestinal epithelial cells (IECs), which is comprised of 
distinct subpopulations, separates the luminal intestinal microbiota from the underlying tissue, forming a physical barrier. Overlying the IECs is the microbial and 
chemical barrier, mainly composed of the mucus layer(s). Goblet cells secrete mucins, which form a proteoglycan gel to create an inner mucus layer that is devoid of 
bacteria, and an outer mucus layer that forms a habitat for the intestinal microbiota. The largely sterile inner mucus layer has a high concentration of secretory 
immunoglobulin A (sIgA), antimicrobial peptides (AMPs), microbe-associated molecular patterns (MAMPs), as well as other bioactive molecules such as trefoil factor 
peptides (TFFs), resistin-like molecule β (RELMβ), and Fc-γ binding protein. Underlying the IECs, the Lipopeptide/lipoprotein (LP) contains mainly plasma cells, 
macrophages, and dendritic cells that, in the healthy state, are of a naïve nature with limited expression of inflammatory cytokines.
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The intestinal microbiota forms part of the intestinal barrier 
by limiting bacterial colonization and stimulating epithelial 
turnover (45). For example, Bifidobacteria species produce high 
concentrations of the short-chain fatty acid (SCFA) acetate, and 
can thereby prevent enteropathogenic Escherichia coli (EHEC) 
infection and its Shiga toxin release (46). Similarly, butyrate-
producing Fecalibacterium prausnitzii, Eubacterium rectale, and 
Roseburia species directly target virulence gene expression to 
prevent bacterial infection (47). Studies have demonstrated that 
bacteria-dependent signals regulate the intestinal epithelial bar-
rier and contribute to its effective functioning. Experiments in 
germ-free mice have shown that mucus layer thickness is reduced 
compared with conventionally housed mice, and that stimulation 

with lipopolysaccharide (LPS) and peptidoglycan (PGN) can 
reverse this to SPF-like levels of mucus thickness (48). Similarly, 
AMP and antimicrobial protein production, transcriptional- and 
post-translational regulation can be dependent on and enhanced 
by the presence of intestinal microbial signals (49–51). TLR, 
NOD-like receptor (NLR), RIG-like receptor (RLR), and C-type 
lectin receptor (CLR) family members provide distinct microbial 
signaling pathways in the intestinal epithelium (52–57). Despite 
evidence from mouse models deficient in PRRs and signaling 
adaptors (27, 52–56, 58), there is further need for epithelial-
specific PRR knock-out mice to fully comprehend the role of 
bacteria-derived signals in intestinal epithelial homeostasis and 
repair.
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BACTeRiAL ReCOgNiTiON AT THe 
iNTeSTiNAL ePiTHeLiAL iNTeRFACe

Of the four signaling receptor families (TLR, NLR, RLR, and CLR), 
members of the TLR family of type I transmembrane proteins are 
the best-characterized receptors in the intestinal mucosa. NLRs 
are cytoplasmic receptors, of which nucleotide-binding oligomer-
ization domain-containing protein 1 (NOD1) and NOD2 func-
tions have been well characterized, that signal to elicit cytokine, 
chemokine, and defensing expression (59). RLRs recognize viral 
RNAs and induce innate antiviral responses (60). TLRs can be 
located at the cell surface or internal cell compartments, respond 
to specific ligands, and are associated with particular adaptors 
that activate downstream signaling cascades. Nearly all TLRs 
are expressed in the human colon, with the expression of TLR1, 
TLR2, TLR3, TLR4, TLR5, and TLR9 demonstrated in IECs of 
the human small intestine (61). Studies have identified four main 
adaptor molecules [MyD88, MyD88-adapter-like (Mal/TIRAP), 
TIR domain-containing adaptor-inducing interferon-β (TRIF), 
and TRIF-related adaptor molecule (TRAM)] that interact with 
TLRs in response to ligand stimulation (62, 63).

With the exception of TLR3, all TLRs signal via the adaptor 
protein MyD88, whose engagement triggers signaling cascades 
that ultimately lead to the activation of transcription factors such 
as NF-ĸB, interferon regulatory factor (IRF) and activator protein 
1 (AP-1) (64). While the lack of MyD88 in certain mouse strains 
was shown to have a significant impact on the composition of the 
intestinal microbiota, linking TLR signaling to the structure of 
the microbial community (65), a study published the same year 
using MyD88- and TLR-deficient mice and wild-type littermates, 
demonstrates that colony and housing differences between labo-
ratories make it difficult to clearly define the influence of innate 
immune signaling pathways on the microbiota (66). Here, Ubeda 
et al. found that MyD88 and TLR signaling does not detectably 
alter the composition of the intestinal microbiota, demonstrating 
the need for caution in the interpretation of microbiota analysis 
in mutant mice. It is important to bear in mind that observations 
in MyD88-deficiency do not imply a direct link to microbial 
signals, but may in fact be intrinsic. Besides TLR receptors, 
MyD88 associates with all receptors of the IL-1 cytokine family, 
and contributes to tissue homeostasis, including tissue repair 
and regeneration (28, 67, 68). Therefore, the inability of MyD88-
deficient mice to respond to the IL-1 cytokine family is likely also 
involved. In the colon epithelium, for example, it was shown that 
the protective effect of MyD88 is, at least in part, mediated by the 
IL-1 cytokine family member IL-18 (69).

The monoassociation of germ-free mice with the prominent 
gut commensal Bacteroides fragilis revealed that this bacterium 
specifically signals through TLR2 on regulatory T  cell via its 
polysaccharide A (PSA) symbiosis factor, to enable its niche-
specific mucosal colonization (70). Similarly, the colonization 
of mice with B. fragilis protects against experimental colitis in a 
TLR2-dependent manner (70, 71). Monocolonization in germ-
free rats with the commensal Bifidobacterium lactis was shown to 
cause TLR2-mediated MAPK and NF-ĸB pathway activation in 
IECs (72). Furthermore, The colonization of germ-free rodents 
with Enterococcus faecalis or Bacteroides vulgatus activate NF-ĸB 

signaling and induce chemokine expression in colonic IECs 
through TLR2 and TLR4 signaling, respectively (26, 73).

A study in TLR5-deficient mice showed that the cecal 
microbiota differed from wild-type littermates in >100 bacterial 
phylotypes (74), indicating that TLR signaling has implications in 
the regulation of the intestinal microbiota. This was also shown 
in MyD88-deficient mice that demonstrated higher levels cecal 
Rikenellaceae and Porphyromonadaceae families (75). In the 
healthy state, mice deficient in TLR signaling (MyD88-deficient, 
TLR4-deficient, MyD88/TRIF-knockouts) do not show any 
differences in proliferation and IEC barrier function compared 
with wild-type mice (76, 77). Under conditions of injury, how-
ever, MyD88-, TLR2-, and TLR4-deficient mice show increased 
susceptibility to dextran sodium sulfate (DSS)-induced colitis 
(28, 77, 78). Despite the importance of PRRs in the bidirectional 
crosstalk between the intestinal microbiota and the host, studies 
in PRR-deficient mice have shown that only those deficient in 
TLR5, NLRP6, or RIG-I develop spontaneous intestinal inflam-
mation (79–81). This may suggest a major role of compensatory 
mechanisms, where PAMPs are recognized by multiple synergiz-
ing host PRRs that share key innate immune signaling pathways, 
resulting in a sufficient host response to commensal bacteria in 
PRR-deficient mice that do not show spontaneous phenotypes. 
It is important to consider that not all laboratories and animal 
colonies observe spontaneous basal inflammation in the above-
mentioned PRR-deficient mice (82).

BACTeRiAL SigNALiNg MeCHANiSMS iN 
iNTeSTiNAL iNFLAMMATiON

Despite difficulties in assigning the intestinal microbiota to the 
role of cause or consequence, chronic mucosal and, in particular, 
GI inflammation is linked to an imbalance of commensal bacteria 
and their gene products in patient groups with IBD (83–87). 
IBD is the collective name for multifactorial chronic relapsing 
inflammatory infections of the intestinal tract, which primarily 
includes Crohn’s disease (CD) and ulcerative colitis (UC). IBD 
can be debilitating and may lead to life-threatening complica-
tions. The development of IBD is characterized by a change in 
the normal intestinal microbiota (dysbiosis), with a reduction in 
both bacterial quantity and bacterial diversity (83, 88–90). In the 
context of IBD, microbiota analyses have negatively associated 
Faecalibacterium prausnitzii and Akkermansia municiphila with 
the disease, whereas Escherichia coli, Fusobacterium nucleatum, 
Haemophilus parainfluenzae, Veillonella parvula, Eikenella cor-
rodens, and Gemella moribillum were shown to be positively 
associated with the inflammatory disease (86, 91–94). Dysbiosis 
is associated with a breakdown of host–microbial mutualism, 
with accumulating evidence from numerous scientific disciplines 
firmly implicating such a breakdown in mutualism in the patho-
genesis of IBD (95, 96).

Abnormal PRR signaling is implicated in the development 
of chronic intestinal inflammation. The cytosolic NLR NOD2 
(also known as CARD15) recognizes bacterial PGN-derived 
muramyl peptide (MDP) to elicit NF-ĸB-mediated proinflam-
matory responses and AMP synthesis (97–99). Nod2-deficient 
mice harbor an elevated load of commensal resident bacteria, 
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display dysbiosis, and show a reduced ability to prevent intestinal 
pathogen colonization (100, 101). In turn, NOD2 expression is 
dependent on the intestinal microbiota, suggesting a feedback 
mechanism in the maintenance of intestinal homeostasis (101). 
In line with the above findings, Nod2 gene mutations were identi-
fied in patients with CD (102, 103), suggesting that Nod2 gene 
mutations may be associated with changes in the commensal 
microbiota that may facilitate disease progression.

The genetically engineered interleukin-10-deficient mouse 
(IL-10−/−) provides a model of spontaneous intestinal inflamma-
tion (104) and has been extensively used as an experimental tool to 
mirror the multifactorial nature of IBD. Evidence for the require-
ment of resident enteric bacteria for the development of colitis in 
IL10−/− mice stemmed from studies in germ-free animals, where 
colitis development was not observed (105). It has been shown 
that the gram-positive intestinal bacterium E. faecalis drives distal 
colonic inflammation in IL-10−/− mice following monoassocia-
tion (106, 107). Furthermore, increased mucosal growth of, and 
specific antibody-titers against, E. faecalis have been shown in 
patients with UC, also correlating with disease severity (108, 109). 
Findings from our own group identified that the virulence factor 
gelatinase E (GelE) partially impairs intestinal epithelial barrier 
integrity in IL-10−/− mice (110), and that the colitogenic activity 
of E. faecalis was partially and almost completely abrogated when 
deficient for the enterococcal polysaccharide antigen (ΔepaB) 
and lipoproteins (Δlgt) envelope structures, respectively (111). 
Monoassociation of IL-10−/− mice with the commensal bacteria 
E. faecalis, E. coli, or Pseudomonas fluorescens demonstrated that 
different commensal species selectively initiate distinct immune-
mediated intestinal inflammation in the same host (107). Such 
results invite the hypothesis that particular microbial effectors, 
or a combination of effectors from different bacteria, are required 
to elicit pathogenesis or maintain the necessary barrier function 
for intestinal homeostasis. Additionally, not only the specific 
bacterium, but the susceptibility of the host plays a major role 
in disease progression, as shown by the induction of colitis by 
Bacteroides vulgatus in HLA/B27-β2m transgenic rats, but not in 
IL-2−/− mice (107, 112, 113).

Identifying bacterial gene products that drive protective 
rather than pathogenic inflammation in the intestine is crucial to 
rebalance homeostasis in inflammatory diseases and malignan-
cies. Lactobacillus species, such as Lactobacillus acidophilus, are 
normal inhabitants of the intestinal microbiota and have received 
considerable attention as beneficial ecosystem members (114, 
115). Several studies have shown that TLR2 regulates epithelial 
barrier function and enhances tight junction formation, as 
well as playing a crucial role in driving acute intestinal inflam-
mation, but not chronic intestinal inflammation (116–118).  
L. acidophilus stimulates DCs through TLR2 via lipoteichoic acid 
(LTA) to trigger the production of inflammatory and regulatory 
cytokines (119–121). Deletion of the phosphoglycerol transferase 
gene (LBA0447) that synthesizes LTA generated an L. acidophilus 
derivative (NCK2025) that diminishes colitis when administered 
orally in a murine colitis model (122), confirming the role of LTA 
in inducing inflammation (123, 124). Of note here is that LTA, 
among others, may not present a true TLR2 ligand, as the large 
number of structurally diverse putative ligands may rather show 

their effects due to lipopeptide/lipoprotein (LP) contamination. 
In another example, L. paracasei, a single strain derived from the 
VSL#3 bacterial mixture clinically shown to reduce inflammation 
in IBD patients (125–127), was found to secrete the prtP-encoded 
protease lactocepin with anti-inflammatory effects via the degra-
dation of proinflammatory chemokines (128, 129).

Collectively, the above findings support the notion that the 
colitogenic activity of opportunistic pathogens can be assigned 
to specific bacterial structures, and that such characterizations 
are indispensable in understanding host–microbe interactions 
relevant for the development of intestinal inflammation.

BACTeRiAL SigNALiNg MeCHANiSMS  
iN CRC

Colorectal cancer is one of the leading causes of death in the 
western society, being ranked third most lethal neoplasia in 
the United States in both men and women (130). Multiple lines 
of evidence show that the gut microbiota plays a major role in 
CRC development, both quantitatively and qualitatively. The 
significant role played by bacteria in inflammation-driven 
tumorigenesis is evident by the decreased tumor formation found 
in several CRC mouse models housed in germ-free conditions 
(131–133), or under antibiotic treatment (134). Accordingly, the 
inhibition of microbial recognition through the loss of PRR sign-
aling or T-helper cell activation leads to a diminished neoplastic 
transformation (29, 131, 135, 136). Numerous bacterial species 
including, but not limited to, Streptococcus bovis, Bacteroides 
fragilis, and E. coli have been found in CRC samples. The best-
known association is that of S. bovis bacteremia and CRC (137). 
It was demonstrated that S. bovis and its wall antigens induce IL-8 
production, leading to the formation of nitric oxide (NO) and 
reactive oxygen species (ROS), which contribute to the neoplastic 
process (138). More recently, Peptostreptococcus anaerobius was 
identified as a candidate to be significantly enriched in the stool 
and mucosa of patients with CRC (139–141). A study assessed 
the association of P. anaerobius in stool and colonic tissue 
from patients with colorectal adenomas and adenocarcinomas, 
providing mechanistic insights that the actions of P. anaerobius 
are mediated via interaction with TLR2/4 on host cells to induce 
ROS production, increase cholesterol biosynthesis, and activate 
pro-oncogenic factors and pathways to promote CRC (142).

Approximately 80% of sporadic colorectal tumors are associ-
ated with mutations in the adenomatous polyposis coli (APC) 
gene (143); a central gatekeeper protein in CRC. Multiple 
intestinal neoplasia mice with a point mutation in Apc (ApcMin/+) 
mimic sporadic cancer and familial adenomatous polyposis, and 
have been used to study the role of TLR signaling in intestinal 
tumorigenesis through the crossing with MyD88-deficient mice 
(MYD88-deficient × ApcMin/+). While tumor incidence was 
similar in these mice compared with ApcMin/+ mice, a reduction 
in tumor number and size was observed, which was linked to 
a reduced expression of the tumor growth-promotor COX2 
(29, 144). These data suggest that TLR signaling is involved in 
tumor growth, but not tumor initiation. Further evidence for the 
contribution of TLR signaling to the development of sporadic 
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FigURe 2 | Schematic representation of pattern recognition receptor (PRR) surveillance in the homeostatic and pathogenic state. PRRs (TLR, NLR, and RLR) signal 
on the apical and basolateral membrane of intestinal epithelial cells (IECs), contributing to the surveillance of the non-sterile (apical) and sterile (basal) environments. 
In the homeostatic state, immune tolerance, mucus production, and antimicrobial peptides add to the maintenance of an effective barrier (blue). In the pathogenic 
state, IEC damage, immune activation, and proinflammatory mediators result in an ineffective barrier (green).
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cancer, and colitis-associated cancer, stemmed from the use of 
TLR4-deficient mice that were protected against tumorigen-
esis following azoxymethane (AOM) and DSS treatment (145). 
Furthermore, TLR4 activation on tumor cells can prevent their 
lysis, thereby protecting cancer cells (146). This is of particular 
relevance with regard to cancer treatment strategies, as the 
immunosuppressant drug Rapamycin decreases TLR4 expres-
sion and its prostaglandin E2 production (147). Findings from 
animal models of CRC are corroborated by human studies; the 
TLR4/MyD88 co-receptor complex showed enhanced expression 
in approximately 20% of CRC patient samples, compared with 
normal mucosae and adenomas (148, 149).

Mechanistically, bacteria may promote tumorigenesis by 
numerous processes, including toxic metabolite production and 
genotoxic biosynthesis (150), thereby providing further CRC 
treatment tactics. One study aimed at inhibiting toxic effects of 
colibactin toxin-producing E. coli; frequent colonizers of CRC 
(151). Here, two identified boronic acid-based com pounds were 
shown to bind to the active site of the ClbP enzyme involved in 
the synthesis of colibactin, and shown to suppress DNA damage 
and tumorigenesis induced by pks-harboring [conserved genomic 
island coding for nonribosomal peptide synthetases (NRPS) and 
polyketide synthetases (PKS) bacteria (152)]. These findings 
not only confirm the role of colibactin toxin-producing E. coli 
in carcinogenesis but also provide a novel family of inhibitors to 
target pks-harboring bacteria in the treatment of CRC.

Injection of specific bacteria into tumor tissue may help 
eradicate tumors through the stimulation of inflammation and 
anti-tumor responses (153). In line with the above comment 
that a combination of multiple effectors may be necessary to 
maintain homeostasis or elicit pathogenesis: two bacteria can be 
better than one in cancer immunotherapy. A recent study applied 
an approach to cancer immunotherapy through the use of an 
attenuated Salmonella typhimurium strain engineered to secrete 
Vibrio vulnificus Flagellin B (FlaB) (154). Zheng et  al. showed 
that FlaB-mediated tumor suppression is associated with TLR5-
mediated host reactions and dependent on TLR4 and MyD88 
signaling, as shown with TLR/MyD88 knockout mice and cell 
lines. Evidently it is feasible that non-virulent tumor-targeting 
bacteria can release multiple TLR ligands, and can be used as 
cancer immunotherapeutics.

In a latest study, Sahu et al. linked the dysbiotic behavior of 
a constitutively invasive variant of commensal non-pathogenic  
E. coli to CRC tumorigenesis (155). Aberrant host invasion leads 
to realignment of multiple host signal transduction cascades 
through reciprocal modulation of microbe sensing pathways 
Nod1/Rip2 and TLR/MyD88, leading to an expansion of the 
cancer stem cell population. This supports the notion that 
microbe-driven tumorigenesis may result from self-derived and 
contextual cues, which determine the role of such microbes in 
homeostasis and carcinogenesis, rather than strict correlations 
with commensal virulence.
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Lactobacillus acidophilus NCK2025, discussed earlier with 
regards to the regulation of inflammation in a colitis model, was 
investigated in a mouse model of colonic polyposis (TS4Cre × 
APClox468) to assess its moderation of pathogenic inflamma-
tion within the tumor microenvironment (156). Khazaie et  al. 
reported that oral treatment with the LTA-deficient L. acidophilus 
NCK2025 normalized innate and adaptive pathogenic immune 
responses, causing a regression of established precancerous 
colonic polyps. This work demonstrates the ability of the probiotic 
strain with anti-inflammatory properties to reverse preneoplasia, 
rendering this L. acidophilus strain as a potential candidate for 
regulating intestinal immunity in the protection against inflam-
mation and CRC susceptibility. Additional investigations are key 
to further characterize bacterial gene products that can influence 
inflammation to restore intestinal homeostasis, to provide novel 
avenues for the treatment and prevention of inflammatory and 
cancer pathologies.

In light of high-sensitivity-detection of pre-cancerous lesions 
still posing a great challenge, the potential of fecal microbiota 
for the early-stage detection of CRC was recently investigated 
(157). In a metagenomic sequencing study to identify taxonomic 
markers in CRC patients, Zeller et  al. found functional and 
taxonomic associations with CRC from noninvasive fecal sample 
readouts. Furthermore, general dysbiosis common to inflam-
mation was addressed by including published metagenomes 
from IBD patients in the marker species classifier, showing that 
stronger associations were observed with CRC, with only modest 
influences by inflammation-related microbiota changes. This 
study demonstrates the possibility of CRC detection from fecal 
microbial markers, and the potential for further identification of 
cancer-associated differences in gene function, gene content and 
genomic variation through additional metagenomic data.

CONCLUDiNg ReMARKS

Over the years, it has become evident that the intestinal microbiota 
is not merely a bystander in the complex events that regulate intes-
tinal homeostasis, but that it plays a fundamental role in eliciting 
both beneficial and detrimental effects in the host. Collectively, 
the studies outlined in this review highlight the diverse and 
multifaceted roles of IECs and the intestinal microbiota in the 
maintenance of intestinal homeostasis, and the complexity of the 

relationship between the two. The diverse barrier functions of the 
intestinal epithelium play a crucial role in microbe–host mutual-
ism. Cells of the intestinal epithelium express a range of PRRs that 
sense and respond to a variety of microbial signals to maintain an 
effective barrier and respond to pathogens (Figure 2). Evidence of 
the importance of PRR signaling stems from studies in mice with 
specific defects in such signaling pathways, which show increased 
susceptibility to developing disease (28). Regarding the host side 
of the mutualism, future studies to increase our understanding of 
how mucus, AMPs, and sIgA dynamics can be regulated to main-
tain barrier function will provide avenues to develop therapeutic 
interventions for preserving intestinal homeostasis. Probiotic and 
prebiotic treatment options available to consumers are currently 
drawn from a narrow range of organisms. Increasing knowledge 
of the intestinal microbiota with its constituents is changing this 
paradigm; however, due to the complex and dynamic nature of 
the intestinal ecosystem, the mechanistic understanding of the 
integration of bacterial signals remains a great challenge to this 
field. Antibiotics selectively targeting bacterial pathogens have 
been extensively used in the prevention and treatment of numer-
ous diseases (158, 159). In light of antibiotics disrupting the 
composition of the enteric intestinal microbiota and promoting 
antibiotic resistance, future mechanistic experimental efforts to 
elucidate (yet) unidentified mechanisms of bacterial effector pro-
teins to enable the development of novel drugs aimed at targeting 
rather than killing bacterial pathogens, seems like the logical step 
forward. To this end, animal models of inflammation and cancer 
provide useful approaches to demonstrate functionality, given the 
high interindividual variation and nature of studies using human 
cohorts.
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