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Retinitis pigmentosa (RP) denotes a family of inherited blinding eye diseases character-
ized by progressive degeneration of rod and cone photoreceptors in the retina. In most 
cases, a rod-specific genetic defect results in early functional loss and degeneration 
of rods, which is followed by degeneration of cones and loss of daylight vision at later 
stages. Microglial cells, the immune cells of the central nervous system, are activated 
in retinas of RP patients and in several RP mouse models. However, it is still a matter 
of debate whether activated microglial cells may be responsible for the amplification of 
the typical degenerative processes. Here, we used Cngb1−/− mice, which represent a 
slow degenerative mouse model of RP, to investigate the extent of microglia activation 
in retinal degeneration. With a combination of FACS analysis, immunohistochemistry 
and gene expression analysis we established that microglia in the Cngb1−/− retina 
were already activated in an early, predegenerative stage of the disease. The evidence 
available so far suggests that early retinal microglia activation represents a first step in 
RP, which might initiate or accelerate photoreceptor degeneration.

Keywords: retinitis pigmentosa, retinal degeneration, cyclic nucleotide-gated channel, microglia, innate immune 
response

inTrODUcTiOn

It is generally accepted that immune responses follow injury and damage to tissues and organs. 
Microglia are the resident immune cells within the brain and retina, commonly known as the 
macrophages of the central nervous system (CNS). In response to injury or inflammatory stimuli, 
the resting microglia can be rapidly activated to participate in pathological responses, including 
migration to the affected site, release of various inflammatory molecules, and clearing of cellular 
debris (1–3). Although microglia are essential for maintaining a healthy CNS, paradoxically they 
may undergo phenotypic changes to influence several neurodegenerative diseases and psychiatric 
disorders including Alzheimer’s disease (AD), Parkinson’s disease, and Rett syndrome (4). Moreover, 
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activation of microglia has also been detected in several retinal 
degenerative mouse models (5, 6) and in patients suffering from 
retinitis pigmentosa (RP) (7). RP describes a heterogeneous 
group of hereditary retinal degenerations with a world-wide 
prevalence of 1:4,000 (8). To date, more than 50 different genetic 
mutations have been detected, which cause non-syndromic RP 
(9). RP is characterized by an initial progressive degeneration of 
rods and followed by the loss of cones leading to severe visual 
impairment (8, 10). It should be noted that the disease severity, 
rate of disease progression, age of onset and clinical findings may 
differ significantly among patients based on the fact that RP rep-
resents a heterogeneous group of inherited retinal disorders (11). 
Typically, the earliest clinical symptom of RP is an initial night 
blindness caused by the dysfunctional rod system. Subsequent 
degeneration of cones leads to a gradual loss of the visual field, 
which initially impairs the periphery and spreads to the macula. 
The consequences include so-called “tunnel vision” and eventu-
ally complete blindness (10).

Here, we used the Cngb1 knockout (Cngb1−/−) mouse to study 
the activation of immune cells in a model of RP with slowly 
progressing photoreceptor degeneration. Cngb1 encodes the B 
subunit of the cyclic nucleotide-gated channel in rod photore-
ceptors. Cngb1−/− mice show initial signs of rod degeneration 
including gliosis already between 14 and 21  days of age (12) 
while the peak of neuronal cell death occurs around 4 weeks of 
age (13). Even though the degenerative process begins already at 
this early age, the degeneration advances very slowly and shows 
a slower progression of the disease when compared with other 
RP mouse models like the rd1 mice (14). For RP a general feature 
is that cone photoreceptors deteriorate secondary to rods with a 
considerable slower progression rate (12). In the present study, 
we found that microglia in the Cngb1−/− retina showed already 
increased cell numbers and pronounced activation in 4-week-
old mice. At this time point only a minor photoreceptor cell 
loss was detected. Our data suggest that Cngb1−/− microglia are 
potentially an early driving force, which substantially contributes 
to the retinal degeneration and long-term visual impairments 
found in RP.

MaTerials anD MeThODs

animals
Cngb1−/− were generated by us (12). All mice used in the study  
were bred on a mixed genetic background of the 129Sv and 
C57BL/6N strain. Animals were housed under standard white 
light (200 lux, 12 h dark–light periods) with free access to food 
and water. Both male and female mice were used in equal shares. 
Age-matched wild-type mice were used as controls. Day of birth 
was considered as postnatal day 1 (P1). All procedures concerning 
animals were performed with permission of the local authority 
(Regierung von Oberbayern and RP Freiburg).

Optical coherence Tomography (OcT) 
analysis
For OCT examinations, mice received intraperitoneal injec-
tions of ketamin (0.1 mg/g) and xylazin (0.02 mg/g). Before the 

scanning procedure, Tropicamid eye drops were instilled into 
the eye for pupil dilation (Mydriadicum Stulln, Pharma Stulln 
GmbH, Stulln, Germany). Subsequently, hydroxylpropyl methyl-
cellulose (Methocel 2%; OmniVision, Puchheim, Germany) was 
applied to keep the eyes moist. The examination was performed 
with an adapted Spectralis HRA + OCT system by Heidelberg 
Engineering (Dossenheim, Germany) in combination with optic 
lenses described previously (15). OCT scans were conducted 
using a 12 circular scan mode centered at the optic nerve head. 
This procedure allowed for measurements of the photoreceptor 
layer thickness at a comparable distance from the optic nerve 
head. In detail, outer nuclear layer (ONL) thickness was meas-
ured between the clearly visible outer limiting membrane and 
the outer plexiform layer (OPL). For statistical analysis, the mean 
ONL thickness was calculated from single values measured in 
the dorsal, temporal, nasal, and ventral region around the optic 
nerve.

Microarray analysis
For microarray experiments, retinal tissue was obtained from 
mice of two different age groups (P12 and P28). For differen-
tial gene expression analysis of Cngb1−/− and wt animals, an 
Affymetrix platform was used according to the manufacturer’s 
instructions as described before (16). In short, retinas were 
dissected, shock-frozen in liquid nitrogen and stored at −80°C 
until further use. RNA was extracted using RNeasy Minikit 
(Qiagen, Hilden, Germany) according to the manufacturer’s 
instructions. RNA concentration and purity were determined 
using NanoDrop2000 (Thermo Scientific®). Fragmented and 
labeled cRNA of three wild-type and three Cngb1−/− retinas 
was hybridized on Affymetrix Mouse Genome 430 2.0 Arrays, 
respectively. A probe-level summary was determined with 
the help of Affymetrix GeneChip Operating Software using 
the MAS5 algorithm. Raw data were normalized using the 
Array Assist Software 4.0 (Stratagene, La Jolla, CA, USA) in 
combination with the GC-robust multichip average algorithm. 
Significance was determined by a t-test without multiple testing 
correction (Array Assist software), selecting all transcripts with 
a minimum change in expression level of 1.5-fold together with 
a p–value <0.05.

Quantitative Pcr
cDNA synthesis was performed with the RevertAid First Strand 
cDNA Synthesis Kit (Thermo Scientific) according to the 
manufacturer’s manual. PCR was performed on a StepOnePlus 
Real-Time PCR System (Applied Biosystems) using SYBR Select 
Master Mix (Applied Biosystems). For quantitative PCR, two 
technical replicates per gene were generated and normalized to 
the housekeeping gene aminolevulinic acid synthase. The follow-
ing primer sets were used:

gene Forward primer (5′→3′) reverse primer (5′→3′)

Irf8 GCTGATCAAGGAACCTTGTG CAGGCCTGCACTGGGCTG
Aif1/Iba-1 ATCAACAAGCAATTCCTCGATGA CAGCATTCGCTTCAAGGACATA
C1qc CCCAGTTGCCAGCCTCAAT GGAGTCCATCATGCCCGTC
Cx3cr1 GAGTATGACGATTCTGCTGAGG CAGACCGAACGTGAAGACGAG
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Flow cytometry
Cngb1−/− and wt mice were euthanized at P28 and perfused 
with phosphate-buffered saline. Retinas were removed and 
mechanically dissociated into single cell suspensions by 
pipetting. Dissociated cells were stained with live/dead dye 
(1:1,000, eBioscience) in PBS for 30  min at 4°C. In order to 
prevent unspecific binding to Fc receptors, their binding 
domains were blocked by unstained CD16/32 (1:250, 2.4G2, 
Becton Dickinson) in FACS-Buffer (2% FCS, 5 mM EDTA in 
PBS) for 20 min at 4°C. Cells were stained with CD11b (BV421, 
1:300, M1/70, eBioscience), CD45 (APC-eF780, 1:200, 30-F11, 
eBioscience), F4/80 (PE; 1:200, BM8, eBioscience), CD44 (PE, 
1:200 IM7, Becton Dickinson), and MHC class II (PE, 1:200, 
M5/114.15.2, eBioscience) in FACS-Buffer at 4°C for 20  min 
and analyzed using a FACSCanto II (Becton Dickinson). Viable 
cells were gated by forward and side scatter pattern. Data 
were acquired with FACSdiva software (Becton Dickinson). 
Postacquisition analysis was performed using FlowJo software  
(Tree Star, Inc.).

retina Preparation and 
immunohistochemistry
Retinas were dissected at P28 and further processed as described 
for immunohistology and whole mount preparation (17–19). 
Primary antibodies were added overnight at a dilution of 1:500 
for Iba-1 (019-19741, WACO, Japan), 1:250 for Lamp 2 (ab13524, 
Abcam, Cambridge, UK), 1:200 for cleaved caspase-3 (9661, Cell 
Signaling Technology, Danvers, MA, USA) and 1:100 for Mhc 
class II (ab23990, Abcam), at 4°C. Secondary antibodies were 
added at the following dilution: Alexa Flour 488 1:500, Alexa 
Flour 555 1:500 and Alexa Fluor 568 1:500 for 2 h at room tem-
perature. Nuclei were counterstained with DAPI. The examined 
area was determined microscopically by a TCS SP8 confocal scan 
microscope (Leica) or a conventional fluorescence microscope 
(Olympus BX-61).

Visual cliff
The visual cliff behavior was analyzed in an open-top Plexiglas 
chamber. Half of the box protruded from the counter to provide 
a 3-foot depth. The box on the counter displayed a base with a 
checkerboard pattern and the box off the counter showed the base 
with the same checkerboard pattern, except for the 3 feet of depth. 
The mouse was placed on the dividing line between both halves 
of the chamber at the edge of the counter and was allowed to 
choose between the two sides. If the mouse stepped to the shallow 
side, time was scored as time spent on the “safe side.” Each mouse 
performed this task twice for 10 min with a time window of 1 h 
between trials. The visual cliff behavior was averaged to generate 
mean percentage of time in which the mouse chose to stay at the 
shallow side (n = 3–5 mice per group).

statistical analysis
All graphical data represent mean  ±  SEM. Sample sizes are 
provided in the figure legends. In order to test for significant 
differences, an unpaired t-test was applied. Differences were 
considered as significant when p-value <0.05.

resUlTs

At 28 days after birth (P28), minor (~15%) but significant retina 
degeneration was observed in Cngb1−/− mice (Figures  1A,B) 
(12) and more than 1,000 genes were dysregulated (>1.5-fold 
dysregulated, p < 0.05, STab.1) as seen from Affymetrix gene chip 
arrays. Already at this early time point Cngb1−/− mice displayed 
substantial visual impairment (Figure  1C). We were analyzing 
gene expression data with the help of Ingenuity Pathway Analysis 
software, to identify potential shifts in biological functions 
or in canonical pathways at early and predegenerative stages. 
Interestingly, activation of the immune system was already appar-
ent 12 days after birth (P12) as indicated by upregulated genes 
that were involved in processes like antigen presentation, immune 
cell trafficking, immunological diseases, humoral immune  
response, and inflammatory disease (Figures 1D,E). At P28 many 
of the dysregulated genes were attributed to cell death, survival, or 
neurological diseases and also to pathways and signaling cascades 
that are assigned to immunological processes (Figures  1F,G; 
Table S1 in Supplementary Material). Particularly genes linked 
to inflammatory responses, inflammatory diseases and immune 
cell trafficking were significantly altered in Cngb1−/− retinas at P28 
when compared to wt retinas. A detailed analysis of upstream 
regulators (URs), which are not directly altered in their expres-
sion level but are responsible for expression changes of their 
target genes, revealed the activation of diverse proinflammatory 
mediators like TNF, IL6, and NF-κB in Cngb1−/− retinas at P28 
(Figure 1H).

The generated microarray data clearly suggested the presence 
of an activated immune system in Cngb1−/− retinas. That is why 
we focused on microglial cells, which represent the immune com-
petent cells of the CNS and retina (5). Microglia tend to prolifer-
ate upon tissue destruction during neurodegeneration in order to 
clear the cellular debris and to restore tissue homeostasis (4). Thus, 
we first determined microglia cell numbers using flow cytometry 
(FACS), histological and qPCR approaches. For FACS analysis, 
we gated microglia as live CD45loCD11b+ cells (Figures 2A,B). 
Quantification of single cell suspensions prepared from Cngb1−/− 
and wt retinas 4 weeks after birth revealed significantly increased 
microglia cell numbers in Cngb1-deficient mice compared to age-
matched wt (Figure 2B). CD45hiCD11b+ cell numbers were not 
increased (Figure 2B). Immunofluorescence of Iba-1, a specific 
marker for microglia and macrophages, confirmed a strong eleva-
tion of this immune cell population in retinas of Cngb1−/− mice 
(Figures  2C,D). In addition to increased Iba-1+ cell numbers 
in degenerating retinas of Cngb1−/− mice, microglial cells also 
changed their localization. In wt retinas, microglia cells were 
mainly found in the inner plexiform layer (IPL) or OPL, while 
Iba-1-positive cells of Cngb1−/− retinas were additionally found 
in the ONL and in the photoreceptor layer close to the retinal 
epithelium (Figure 2C, asterisk; Figures 3A,C). Further analysis 
of wt and Cngb1−/− retina microarray data indicated that several 
microglia-specific genes like Cx3cr1, Aif1, Irf8, C1qc (20–22) were 
upregulated in the Cngb1−/− group (Table S1 in Supplementary 
Material). Subsequent RT-qPCR analysis of these microglia 
cell-specific genes confirmed their increased expression levels 
(Figure 2E). In summary, microglial cell numbers were strongly 
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FigUre 1 | Activation of immunological pathways in Cngb1−/− retinas at 12 and 28 days after birth. (a) Representative optical coherence tomography (OCT) images 
from Cngb1−/− (upper panel) and wild-type retinas (lower panel), which display the slow progression (P28-P312) of outer nuclear layer (ONL) thinning over time.  
(B) Quantification of ONL thickness from OCT data at P28 (****p < 0.0001, n = 6 for each genotype). (c) Performance in the visual cliff test for the study of visual 
depth perception (**p < 0.01, n = 3 for each genotype). (D–g) Biological functions and canonical pathways were significantly altered in Cngb1−/− mice compared  
to age-matched controls. A high number of genes were related to the immune system or to immune responses. (h) The indicated upstream regulators for 
proinflammatory cytokines and the NF-κB pathway were predicted to have a significantly higher activation state in Cngb1−/− retinas when compared to age- 
matched wild-type controls (p < 0.05).
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increased in Cngb1−/− mice at 4 weeks of age, which corresponds 
to an early, degenerative stage of the disease.

In response to disrupted tissue homeostasis, microglial 
cells get activated and change their morphology together with 
the expression of surface markers (4). In Cngb1−/− retinas, 
microglia showed a transition from a resting to an activated 
state (Figure  3A). The cells underwent morphological changes 
to take on an amoeboid shape with fewer branches compared to 
the resting state phenotype in wt retinas (23, 24). As specialized 
phagocytes, one of the functions microglia have is to remove 

debris of dying or dead cells (25). In mice, CD44 is a competent 
receptor for phagocytosis in macrophages (26) and an increase 
of CD44 expression was detected in the initial microarray data 
analysis (STab.1). Subsequent FACS expression analysis of 
CD45loCD11b+ cells could link CD44 to microglia, as the number 
of CD45loCD11b+CD44+ cells as well as the expression levels of 
CD44 in microglia in Cngb1−/− retinas were elevated (Figure 3B). 
Active phagocytosis of microglial cells can also be monitored 
in  situ by immunohistological staining of lysosome-associated 
membrane protein (lamp)-2 (19). In P28 Cngb1−/− retinas, we 
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FigUre 2 | Strong increase of retinal microglia cells in Cngb1−/− retinas 
28 days after birth. (a) Gating strategy for identifying microglia cells in retina 
lysates by size (left panel), single cells (middle panel), and living CD45+ cells 
(right panel) expression. (B) Representative gating and quantification of 
CD11b+CD45low retinal microglia (R2) and CD11b+CD45hi cells (R1) from 
wild-type or Cngb1−/− retinas. (Statistical significance was determined vs. 
percentage of wild-type cell counts, ns = non significant; ***p < 0.001, n = 3 
for each genotype.) (c) Immunofluorescence of Iba-1 (red) in the retina of 
Cngb1−/− and age-matched wt demonstrating migration of microglia into the 
photoreceptor layer of Cngb1−/− mice (asterisk). Nuclei were counterstained 
with DAPI. ONL, outer nuclear layer, INL, inner nuclear layer, scale bar 50 µm. 
(D) Quantification of Iba-1-positive cells in Cngb1−/− mice compared to wt 
animals (*p < 0.05, n = 4 for each genotype). (e) Gene expression of 
microglia-specific genes in Cngb1−/− and wt retinas. Significant increase in 
the expression of Cx3cr1, Aif1, Irf8, and C1qc in retinas of Cngb1-deficient 
mice (*p < 0.05, **p < 0.01, ***p < 0.001, n = 4 for each genotype).
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compared to wt retinas (Figure 3D), while the expression levels 
of the macrophage marker F4/80 remained unchanged in both 
genotypes (Figure 3B). Although the neurodegenerative process 
became evident at P28, microglia were activated already at P12 
(Figures 4A,C–E). At this time point no apoptotic cells as indi-
cated by the absence of positive signals for cleaved caspase 3 were 
present (Figures 4B,F).

The Ingenuity UR analysis indicated increased activity of 
diverse proinflammatory signaling cascades (Figure 1H). One of 
these cascades was the NF-κB pathway, which can be induced by 
a variety of signals to finally induce a specific pattern of transcrip-
tion. In this classical pathway, activated IKK-β, which is part of 
an IKK-α–IKK-β–IKK-γ complex, phosphorylates the inhibitory 
subunits IkB-α, IkB-β, or IkB-ϵ, leading to their proteasomal 
degradation. As a result, NF-κB homodimers and heterodimers, 
mainly composed of RelA, RelC, and p50, accumulate in the 
nucleus (27). Here, we confirmed the presence of an activated 
NF-κB-signaling pathway in microglia by the immunofluorescent 
detection of phosphorylated IκB colocalized with Iba-1-positive 
microglia, which were misplaced in the outer segment of Cngb1−/− 
retinas (Figure 5).

DiscUssiOn

Our present results link retinal degeneration to immune system 
activation, and here, more precisely, to the activation of micro-
glia. In Cngb1−/− mice, neuronal cell death does not start before 
postnatal day 15 (P15) (12). Already before this early stage of 
degeneration, retinal gene expression analysis at P12 indicated 
an immune response in biological and canonical pathways. These 
data clearly indicated that activation of the immune system starts 
prior to the actual retinal degenerative process in Cngb1−/− mice. 
Between P21 and P28 retinal degeneration reaches its maximum 
(12). We determined activation of the immune system by gene 
expression pathway analyses and immunohistochemical detec-
tion. At this early disease stage, microglia had already migrated 
entirely through the various layers of the Cngb1−/− retina toward 
the photoreceptors. Microglial cells are the local immune cells of 
the CNS and normally reside at the IPL/OPL of the retina (5, 28). 
Upon activation, microglia migrate toward the injury site, change 
their morphology from ramified cells to amoeboid phagocytes 
and start expressing several surface markers including F4/80, 
MHCII, and complement receptor 3 (CD11b/18, Ox42) (1, 5, 29).  
Our findings suggest that microglial activation occurs before 
the onset of neurodegeneration. This early microglia activation 
might be responsible for the observed high CD44 representation 
in Cngb1−/− retinas. CD44 is implicated in the pathogenesis of 
inflammation and contributes to the recruitment of inflam-
matory cells as well as to increased phagocytosis (26, 30, 31). 
Increased relative expression of the cell surface adhesion receptor 
CD44 seems to be a very general feature of retinal degeneration 
considering that it was also present in rd10 mice (32). Previous 
work using the rd10 mouse model of RP had already suggested 
a contribution of microglia in retinal degeneration (33). In this 
mouse model activated microglia infiltrate into the photorecep-
tor layer and contribute actively to photoreceptor demise via the 

detected Lamp-2-positive microglia particularly in the ONL and 
photoreceptor layer (Figure 3C). Increased MHC class II expres-
sion, which indicates microglial activation, was further observed 
by FACS and immunohistochemistry in Cngb1−/− retinas when 
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FigUre 3 | Amoeboid microglia morphology in Cngb1−/− is accompanied by the expression of activation markers. (a) Whole mount images of Iba-1-stained 
microglia in the outer nuclear layer (ONL) of Cngb1−/− mice induced morphological changes from a resting to an amoeboid phenotype at P28. Nuclei were 
counterstained with DAPI. Upper panel: maximum projection. Lower two panels: single images with an increment of 1.3 µm. Scale bar. 10 µm. (B) Flow cytometric 
analysis of retinal microglia for the expression of F4/80, CD44, and MHC class II (left panel). Quantification of the numbers (middle panel) and geometric mean 
fluorescent intensities (gMFI, right panel) of F4/80, CD44, and MHC class II are depicted. Results were obtained from two independent experiments with at least 
three replicates (*p < 0.05, **p < 0.01, ***p < 0.001, n = 3 for each genotype, blue line = wt, red line = Cngb1−/−, grey = isotype control). (c) Misplaced microglia in 
the ONL in Cngb1−/− coexpressed activation marker Lamp-2. Scale bar 25 µm. (D) Confirmation of MHC II expression by costaining of Iba-1 (red) and MHC class II 
(green) in wt and Cngb1−/− retinas. Scale bar 25 µm.
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phagocytotic clearance of viable photoreceptors and the secre-
tion of proinflammatory cytokines that potentiate photoreceptor 
apoptosis (33, 34). It still remained unclear whether microglial 
activation was responsible for further photoreceptor cell death. 
Even though, genetic depletion of microglia slowed down the 
degenerative process in rd10 mice (33). In follow-up experiments, 
it would be interesting to investigate whether microglial cells are 
actually the main detrimental force in Cngb1-deficient retinas. 
This could either be achieved by allowing CX3CR1+ retinal 
microglia to express diphtheria toxin and be specifically ablated 
upon tamoxifen administration (33, 35) or by pharmacological 
ablation using the CSF1R inhibitor (36).

Our results indicate that microglia activation is an important 
step in the degenerative process of rods in RP. The intriguing 
question however is whether microglia get activated during a 
predegenerative state or whether signals from a small number of 
degenerating cells is sufficient to initiate the activation of micro-
glia before the actual “degeneration peak.” In the rd10 retina acti-
vated microglia infiltrate the ONL at P16. Since photoreceptor 
apoptosis started only at P19 microglia activation preceded the 
initiation of photoreceptor apoptosis (37). Comparable findings 
of microglia proliferation and activation at early time points were 
also described in rd1 and rd10 mice, which represent further 
mouse models of RP (37–39). Both RD models are induced by a 
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FigUre 4 | Time course of early photoreceptor apoptosis and microglia activation. (a) Costaining of Iba-1-positive microglia (pink) in the ONL and INL of 
Cngb1−/− and wt mice at P12, P19 and P28 with the activation marker Lamp-2 (green) and MHC class II (red). (B) Immunofluorescence of cleaved caspase 3 (red) in 
Cngb1−/− and wt mice. Nuclei were counterstained with DAPI (blue). (c) Quantification of Iba-1-positive cells and the percentage of Iba-1+ MHC class II− (D) or 
Iba-1+ Lamp-2-positive cells (e) in Cngb1−/− mice compared to wt animals. (F) Cleaved caspase 3-positive cells in Cngb1−/− and wt mice at indicated time points. 
ONL, outer nuclear layer, INL, inner nuclear layer, scale bar 20 µm; insert 10 µm (*p < 0.05, **p < 0.01, ***p < 0.001, n = 5 for each genotype).
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FigUre 5 | Activation of proinflammatory signaling in Cngb1−/− mice. Immunofluorescence of Iba-1 (red) and pIκBα (green) in Cngb1−/− and wt mice at P28. 
Quantification of double-positive cells in wt and KO revealed exclusive presence of active NF-κB-signaling in Cngb1−/− mice (n = 3 for each genotype). Insert: 
Iba-1-positive resting microglia in the OPL. Nuclei were counterstained with DAPI. ONL, outer nuclear layer, IS, inner segment, OS, outer segment, OPL outer 
plexiform layer, scale bar 20 µm, nd = not detectable.
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mutation in the rod photoreceptor-specific Pde6b gene (40, 41).  
In fact, retinal architecture in rd10 mice displayed alterations from 
as early as P5, which is at least 13  days before photoreceptor 
loss (39). These alterations included increased proliferation of 
microglia within the retina, which ultimately led to increased 
numbers of activated microglia. At the same time there was 
a significant decrease of glutamine synthetase in Müller glia 
followed by an increase in glial fibrillary acidic protein immu-
nofluorescence, which is expressed in Müller glia and astrocytes 
(39). A similar activation of astrocytes might be present in 
Cngb1-deficient retinas when one considers the abundant 
LAMP-2 labeling outside microglial cells. To what extent this 
reactive gliosis contributes to photoreceptor degeneration in 
both mouse models is not clear. The observed microglia activa-
tion can play a critical role in neuroinflammation and impose 
subsequent damage with progressive photoreceptor loss (42). 
In contrast, microglia might also be beneficial during retinal 
degeneration. This assumption is based on studies showing 
that microglia-derived trophic support protects photoreceptors 
in  vivo under stressful conditions (43). Our data suggest that 
resident microglia and not monocyte-derived macrophages 
are mainly involved in the neurodegenerative process. Both 
cell populations are phenotypically distinguishable with a 
unique microglial CD45lo CD11clo F4/80lo I-A/I-Elo profile and a 
monocyte-derived macrophage CD45hiCD11bhi signature (44). 
However, it has also been shown that activated retinal microglia 
upregulate CD45 (45) and that differentiation of monocytes 
into macrophages may be associated with downregulation of 
CD45 sometimes to levels that make the two cell populations 
indistinguishable (46). The small CD45hi CD11b− cell population 
found in Cngb1-wt and Cngb1-ko retinas presumably represents 
circulating retina-specific T cells (47), which have been reported 
to protect against spontaneous organ-specific autoimmunity 
(48). At the molecular level, inflammation is often regulated by 
numerous molecules and factors, including the transcription fac-
tor NF-κB (49). The activation of NF-κB in microglia, as seen in 

our present RP mouse model, is often associated with the release 
of reactive oxygen species and proinflammatory cytokines (such 
as IL-1β, interferon-γ, and TNF-α) that can cause secondary 
neurotoxicity and neuronal cell death including the degeneration 
of photoreceptors (50). Dying photoreceptor cells, in turn, induce 
NF-κB in microglial cells and thereby further their activation 
(51). Detrimental NF-κB-signaling in microglia has a key role 
in several degenerative processes of the CNS as documented 
for aging including AD (52), amyotrophic lateral sclerosis (53), 
and multiple sclerosis (54). When mice and rats express mutant 
rhodopsin, they experience photoreceptor cell death and, much 
as humans, develop the clinical signs of autosomal dominant 
retinitis pigmentosa (ADRP). During the progression of ADRP, 
microglia get activated and display heightened NF-κB-signaling 
(55). Increased expression of NF-κB protein and NF-κB DNA-
binding activity in microglia of the retina has also been reported 
during photoreceptor degeneration of rd mice. In this model, the 
neurotoxic role of microglial NF-κB activation in photorecep-
tor apoptosis was mediated by increased TNF-α production in 
microglial cells (56). Several studies have also indicated that 
NF-κB activation leads to enhanced IL-1β secretion by micro-
glia, which makes them contribute to rod degeneration in RP by 
potentiating apoptosis (33).

In terms of therapy, targeting microglia may reduce the 
production of several proinflammatory mediators and may 
therefore result in broader therapeutic effects than inhibition 
of single cytokines. However, chemical or genetic depletion 
of microglia would provide an approach with only short-term 
beneficial effects since microglia has been shown to repopulate 
once the treatment ends (35, 36). Particular attention should be 
paid to unwanted depletion or damage to other cells like optic 
nerve oligodendrocyte precursor cells. As an example, secondary 
to microglia depletion by the CSF-1R inhibitor BLZ945, oligo-
dendrocyte precursor cells are reduced in early, postnatal mouse 
brains (57). As recently described, tamoxifen, a selective estrogen 
receptor modulator approved for the treatment of breast cancer 
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