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introduction: Prevention of infectious diseases in the elderly is essential to establish 
healthy aging. Yet, immunological aging impairs successful vaccination of the elderly. 
Predictive biomarkers for vaccine responsiveness in middle-aged adults may help to 
identify responders and non-responders before reaching old age. Therefore, we aimed 
to determine biomarkers associated with low and high responsiveness toward a primary 
vaccination in middle-aged adults, for which a tetravalent meningococcal vaccine was 
used as a model.

Methods: Middle-aged adults (50–65 years of age, N = 100), receiving a tetravalent 
meningococcal vaccination, were divided into low and high responders using the func-
tional antibody titers at 28 days postvaccination. A total of 48 parameters, including 
absolute numbers of immune cells and serum levels of cytokines and biochemical 
markers, were determined prevaccination in all participants. Heat maps and multivariate 
redundancy analysis (RDA) were used to reveal immune phenotype characteristics and 
associations of the low and high responders.

results: Several significant differences in prevaccination immune markers were 
observed between the low and high vaccine responders. Moreover, RDA analysis 
revealed a significant association between the prevaccination immune phenotype and 
vaccine responsiveness. In particular, our analysis pointed at high numbers of CD4 
T cells, especially naïve CD4 and regulatory T subsets, to be associated with low vaccine 
responsiveness. In addition, low responders showed lower prevaccination IL-1Ra levels 
than high responders.

conclusion: This explorative biomarker study shows associations between the prevac-
cination immune phenotype and vaccine responsiveness after a primary meningococcal 
vaccination in middle-aged adults. Consequently, these results provide a basis for 
predictive biomarker discovery for vaccine responsiveness that will require validation in 
larger cohort studies.

Keywords: biomarkers, vaccine responsiveness, middle-aged adults, regulatory T  cells, cD4 T  cells, primary 
vaccination
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inTrODUcTiOn

Prevention of infectious diseases in the elderly is essential to 
establish healthy aging in the rapidly growing aging population. 
Yet, immunological aging impairs successful vaccination in the 
elderly (1–3). Timely vaccination of middle-aged adults may be 
an alternative option to strengthen the memory immunity before 
reaching old age. Previously, we showed that a primary meningo-
coccal vaccination, containing antigens toward which no or very 
low prevaccination immunity exists, was highly immunogenic in 
middle-aged adults (4). Moreover, we described the induction of 
T cell responses by the tetanus toxoid (TT) carrier protein that 
are in favor of efficient T cell help (5). Current research focusses 
on the identification of immune markers in older individuals to 
be able to predict the vaccine responders and non-responders (6, 
7). At present, the discovery of these predictive immune markers 
at advanced age is challenging and results are not unambiguous.

Potential biomarkers for vaccine responsiveness may relate 
to shifts in the immune phenotype from naïve to more memory 
cells during aging. This phenomenon occurs especially in the 
T cell compartment and is caused by thymus involution (8–13). 
Accordingly, the responsiveness to a yellow fever vaccine was 
found positively associated with the numbers of circulating naïve 
CD4 T cells that had recently left the thymus (14). Infection with 
persistent viruses, such as cytomegalovirus (CMV), enhances 
the numbers of late-differentiated T  cells and consequently 
may accelerate immunological aging (15, 16). High numbers of 
these late-differentiated T  cells were negatively associated with 
influenza and varicella zoster (VZV) vaccine responses (17, 
18). In addition, increased numbers of regulatory T (Treg) cells 
are observed at old age (19, 20) which may underlie the lower 
responsiveness to the influenza and VZV vaccinations (18, 21).

Age-associated changes in the B cell compartment have also 
been reported and include a decrease in naïve B cells and a sub-
sequent increase in late-differentiated and exhausted B cells, as 
well as B cells with inflammatory characteristics (22–24). Several 
vaccination studies described a positive correlation between the 
frequencies of prevaccination Ig switched memory B  cells and 
the responsiveness to influenza and hepatitis B vaccines (17, 23, 
25–27), whereas late/exhausted (CD27–IgD−) memory B  cells 
were negatively correlated with the response to the influenza vac-
cine (23). Moreover, B cell expression levels of activation-induced 
cytidine deaminase (AID) and TFN-α after in vitro stimulation 
were found predictive for humoral responses after influenza vac-
cination (23, 26, 28–30).

In addition, several innate immune functions, gene signatures, 
or miRNA expressions were associated with influenza vaccine 
responsiveness (25, 31, 32). Moreover, the age-associated increase 
in inflammatory mediators, also known as “inflammageing” 
(33–36), as well as modified expression of biochemical mark-
ers, such as dehydroepiandosterone sulfate (DHEAs) (37) and 
vitamin D (38), might affect the immune function at advancing 
age (39). Also, a range of vaccination responses, for example, to 
diphtheria, tetanus, and influenza, are substantially influenced by 
vaccine-specific prevaccination immunity (27, 31).

The studies mentioned provide some promising predictive 
biomarkers that require validation in other cohort studies. In the 

present study, we aimed to explore differences in the prevaccina-
tion immune phenotype between low and high vaccine respond-
ers toward a primary immune response upon a meningococcal 
vaccination in middle-aged adults.

MaTerials anD MeThODs

study Design
Data from 100 middle-aged (50–65  years of age, 50% males) 
adults who received the tetravalent meningococcal vaccine 
conjugated to TT were used in this explorative biomarker study. 
These participants were included in a larger cohort study, of 
which exclusion criteria and study procedures are described 
elsewhere (4). In short, prevaccination blood samples were drawn 
from all participants as well as 28 days, and 1-year postvaccina-
tion blood samples. Serum samples were collected at the different 
time points using serum clotting tubes (BD Biosciences) and were 
immediately kept cold and stored within 4 h in aliquots at −20 
and −80°C before further use. Blood samples were collected in 
tubes containing lithium heparin (BD Biosciences) for detailed 
cellular immune phenotyping prior to vaccination. Subsequently, 
different immune parameters, i.e., absolute immune cell counts, 
serum cytokines, CMV-specific antibodies, and biochemical 
markers were measured in the prevaccination blood samples of 
these participants. Meningococcal-specific functional antibody 
titers were measured in the prevaccination, as well as 28  days 
and 1-year postvaccination samples. A schematic overview of the 
study outline is depicted in Figure 1. In addition, all participants 
filled in a short health questionnaire.

Participant selection
Functional antibody titers for the three different meningococcal 
groups (Meningococci C, W, and Y) were measured with the 
serum bactericidal antibody assay in 100 middle-aged adults, 
as previously described (4, 40, 41). Meningococci-A-specific 
analysis was left out, due to interference of cross-reactive antibod-
ies in the antibody assays. A functional antibody titer of 8 was 
considered to be protective, whereas a functional antibody titer 
of 128 was applied as a more conservative long-term correlate of 
protection (4, 40).

The quartiles of the functional antibody titers 28 days postvac-
cination were calculated. Participants with a functional antibody 
titer matching the corresponding titer of the first quartile or below 
were considered low responders, whereas those matching the titer 
of the third quartile or above were considered high responders. 
Since part of the participants showed antibody titers equal to the 
cutoff value, the lowest and highest quartile do not include 25% 
of the participants. In total, 25, 46, and 40 low responders and 27, 
35, and 34 high responders were defined for MenC, MenW, and 
MenY, respectively.

Flow cytometric analysis
At the prevaccination time point, the absolute numbers of a 
broad range of immune cell subsets were determined as described 
previously (42–44). In brief, the absolute numbers of lympho-
cytes, T  cells, B  cells, NK  cells, monocytes, and granulocytes 
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FigUre 1 | Study outline.
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were measured in fresh whole blood samples (within 18 h after 
collection) using TruCOUNT tubes. Gating strategies as well as 
a detailed description of the antibodies used were as published 
previously (42). Example gating strategies are shown in Figure S4 
in Supplementary Material. An overview of the phenotype defi-
nitions of the different cellular subsets measured is depicted in 
Table S1 in Supplementary Material. These absolute cell numbers 
were also used to calculate the ratios between the (memory) Treg 
cells and the CD4+CD45RO+ effector memory T (TemRO) cells 
as well as between the CD4 naïve or CD4+CD45RA+CD25dim cells 
and the CD4 memory cells. The CD4 memory cells were defined 
as the sum of the CD4 central memory (CM), CD4 TemRO, and 
CD4+CD45RA+ effector memory T (TemRA) cells.

serum cytokines
A set of inflammatory (TNF-α, MCP-1, soluble CD40L, and IL-6) 
and one anti-inflammatory (IL1 receptor antagonist (IL-1Ra)) 
serum cytokines were measured in serum samples that were kept 
cool right after harvest and stored at −80°C within 4 h and pre-
vented from freeze-thaw cycles. Multiplex immunoassays (MIAs) 
were used to measure the serum cytokine levels as described pre-
viously (45, 46). Since serum levels of IL-6 were below detection 
limit, IL-6 was left out of the analysis.

serum Biochemical Parameters
Serum levels of C-reactive protein (CRP; mg/L), Rheumatoid 
factor (RF; IU/mL), reactive oxygen metabolites (ROM; IU/L), 
and total thiol (TTT; μmol/L) were measured with a clinical auto-
analyzer (Dx5, Beckman-Coulter). Dehydroepiandrosterone 
sulfate (DHEAs; μmol/L) and 25-hydroxyvitamin D (VitD; 
nmol/L) were measured using the immuno-analyzer Acces-2 
from Beckman Counter.

statistical analyses
The functional antibody titers were compared between the high 
and low responders with the Mann–Whitney U-test. The geomet-
ric means with the 95% confidence intervals (CIs) are indicated in 

the graphs. The chi-square test was used to determine significant 
differences in patient characteristics between the high and low 
vaccine responders.

The different immune markers were compared between 
the high and low responders using the Mann–Whitney U-test. 
Furthermore, the group-specific geometric mean values of the 
different immune markers were normalized to z-scores using the 
geometric means and standard deviation of the total group of 100 
participants. The normalized z-scores were displayed on a color 
scale in the heat maps, ranging from red (below the geometric 
mean of the total group) to blue (above the geometric mean of the 
total group). The color darkness is representative of the deviation 
from the total group geometric mean. For these analyses, SPSS 
V22.0 and Graphpad Prism V7 were used.

Multivariate redundancy analysis (RDA) was used to asses 
associations between vaccine responsiveness and the prevaccina-
tion immune phenotype. The absolute numbers of immune cells as 
well as the levels of serum cytokines and biochemical markers were 
imported in the analysis as biological variables, whereas vaccine 
responsiveness, age, sex, and CMV were included as explanatory 
variables. Significance of the explanatory variables was assessed 
by Monte Carlo permutation testing (MCPT). The p-values 
as well as the false discovery rates (FDRs) are given. Biological 
variables with the highest variation explained by the explanatory 
variables are depicted in the plots (FitE > 15). Canoco5 software 
for Windows (47) was used to perform this analysis. A value of p 
of < 0.05 was considered statistically significant.

resUlTs

Participant characteristics
The functional antibody titers of the low and high vaccine 
responders 28 days postvaccination are depicted in Figure 2A. 
Although the low responders possess a functional antibody titer 
below or matching the first quartile of that of the total group, 
most of these values were above the protection level (functional 
antibody titer of 8). The fold differences in functional antibody 
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FigUre 2 | The meningococcal group-specific functional antibody titers of the low (red) and high (blue) vaccine responders. The functional antibody titers 28 days 
(a) postvaccination, prevaccination (B) and 1-year postvaccination (c) of the low (red) and high (blue) vaccine responders. The protection level is indicated by the 
lowest dotted line. A more conservative long-term protection level is indicated by the # in the figures. The functional antibody titers were compared between the low 
and high responders using the Mann–Whitney U-test. MenC: low N = 25, high N = 27; MenW: low N = 46, high N = 35; and MenY: low N = 40, high N = 34. 
****p < 0.0001.

TaBle 1 | Participant characteristics.

Menc MenW MenY

low high low high low high

N = 25 N = 27 N = 46 N = 35 N = 40 N = 34

Age (95% CI) 59.1* (57.5–60.7) 56.1* (54.5–57.7) 58.3 (57.1–59.6) 56.9 (55.5–58.4) 57.7 (56.4–59.1) 56.6 (55.0–58.1)
Males (%) 13 (52%) 16 (59%) 21 (45.6%) 19 (54.3%) 20 (50%) 17 (50%)
CMV seropositive (%) 10 (40%) 17 (63%) 21 (45.6%) 18 (51.4%) 15 (37.5%) 17 (50%)
BMI (95% CI) 24.9 (23.5–26.3) 24.8 (23.5–26.2) 25.2 (24.2–26.4) 25.8 (24.7–27.0) 24.8 (23.7–26.0) 26.5 (25.2–27.8)
TT-specific prevaccination IgG Geomean (95% CI) 0.72 (0.47–1.11) 1.20 (0.77–1.88) 0.84 (0.5–1.28) 0.87 (0.55–1.37) 1.08 (0.76–1.53) 0.78 (0.51–1.17)

Disease in last year (number, %)
Diabetes type II 0 (0%) 1 (3.7%) 2 (4.3%) 3 (8.6%) 1 (2.5%) 2 (5.9%)
High blood pressure 5 (20.0%) 3 (11.1%) 8 (17.4%) 5 (14.3%) 6 (15%) 8 (23.5%)
Vascular diseases 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (2.5%) 0 (0%)
Lung diseases 1 (4.0%) 1 (3.7%) 0 (0%) 4 (11.4%) 2 (5%) 2 (5.9%)
Rheumatic diseases 1 (4.0%) 1 (3.7%) 2 (4.3%) 0 (0%) 2 (5%) 0 (0%)
Gastro-intestinal diseases 0 (0%) 2 (7.4%) 2 (4.3%) 1 (2.9%) 2 (5%) 2 (5.9%)
Other diseases 1 (4.0%) 1 (3.7%) 1 (2.2%) 3 (8.6%) 1 (2.5%) 3 (8.8%)
No serious disease 18 (72%) 19 (70.4%) 35 (76.1%) 26 (74.3%) 31 (77.5%) 24 (70.6%)

Medication last 6 months (number, %)
Medication for infectiona 0 (0%) 4 (14.8%) 3 (6.5%) 4 (11.4%) 2 (5%) 2 (5.9%)
Cholesterol lowering medication 2 (8.0%) 2 (7.4%) 5 (10.9%) 5 (14.3%) 3 (7.5%) 4 (11.8%)
Diabetic medication 0 (0%) 1 (3.7%) 1 (2.2%) 3 (8.6%) 0 (0%) 2 (5.9%)
Blood pressure lowering medication 7 (28.0%) 3 (11.1%) 9 (19.6%) 6 (17.1%) 7 (17.5%) 8 (23.5%)
Immunosuppressive medication 0 (0%) 1 (3.7%) 1 (2.2%) 2 (5.7%) 1 (2.5%) 1 (2.9%)
No medication 18 (72%) 19 (70.4%) 32 (69.6%) 23 (65.7%) 30 (75%) 23 (67.6%)

infections (number, %)
Influenza < 4 weeks 0 (0%) 1 (3.7%) 1 (2.2%) 0 (0%) 1 (2.5%) 0 (0%)
Cold < 4 weeks 6 (24.0%) 3 (11.1%) 7 (15.2%) 10 (28.6%) 7 (17.5%) 6 (17.6%)
No infection < 4 weeks 19 (76.0%) 25 (92.6%) 39 (85.8%) 26 (74.3%) 33 (82.5%) 29 (85.3%)

smoking (number, %)
Cigarette smoking 6 (24.0%) 3 (11.1%) 6 (13%) 3 (8.6%) 6 (15%) 4 (11.8%)
Cigars, pipe smoking 1 (4.0%) 0 (0%) 3 (6.5%) 1 (2.9%) 3 (7.5%) 1 (2.9%)
No smoking 18 (72%) 25 (92.6%) 38 (82.6%) 32 (91.4%) 32 (80%) 30 (88.2%)

Physical activity (number, %)
Weekly or more 17 (68.0%) 19 (70.4%) 31 (67.4%) 24 (68.6%) 27 (67.5%) 25 (73.5%)
Less than weekly 4 (16.0%) 2 (7.4%) 8 (17.4%) 4 (11.4%) 6 (15%) 4 (11.8%)
No activity 4 (16.0%) 7 (25.9%) 7 (15.2%) 8 (22.9%) 7 (17.5%) 6 (17.6%)

aMedication used more than 3 months ago and mainly consisting of corticosteroids and antibiotics.
*p < 0.05, significant differences are depicted in bold and underlined. The chi-square test was used to determine statistical significances.
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titers between the low and high vaccine responders at 28  days 
postvaccination is 141.5, 15.2, and 16.7, for MenC, MenW, and 
MenY, respectively. No difference in prevaccination functional 
antibody titers was found between the low and high responders 
(Figure  2B). The functional antibody titers of part of the low 

vaccine responders had declined below the protection level at 
1-year postvaccination, whereas all high responders were still 
highly protected (Figure 2C).

Participant characteristics were compared between the low 
and high vaccine responders (Table  1). Only for MenC, the 
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FigUre 3 | Comparison of prevaccination immune markers between the high and low vaccine responders. Heat maps comparing the absolute immune cells 
numbers (a), serum cytokines and biochemical markers (B) between the low and high vaccine responders for the different meningococcal serotypes separately. The 
absolute immune cell numbers as well as the concentrations of the serum markers were normalized to z-scores using the geometric means. The geometric means 
of the two groups were compared with the overall group geometric mean and standard deviation. The normalized z-scores are displayed on a color scale, ranging 
from red (below the geometric mean of the total group) to blue (above the geometric mean of the total group). The white color indicates values that are equal to the 
group geometric mean. The stronger the deviation from the group geometric mean, the darker the color. The different immune markers were compared between the 
low and high responders using the Mann–Whitney U-test. #p < 0.1, *p < 0.05, **p < 0.01. MenC: low N = 25, high N = 27; MenW: low N = 46, high N = 35; and 
MenY: low N = 40, high N = 34.
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low responders were significantly older as compared with the 
high responders. All participants possessed prevaccination 
TT-specific antibodies. Sex distribution, the number of CMV 
seropositive participants, and BMI were comparable between the 
low and high responders. Moreover, no significant differences in 
disease incidence (within the last year), medication use (within 
the last 6 months), the incidence of recent infections (within the 
last 4 weeks), smoking, or physical activity were observed. Not all 
participants were identified as low or high responder consistently 
for all meningococcal groups.

Differences in Prevaccination immune 
Markers between high and low Vaccine 
responders
At first, the absolute numbers of immune cells were compared 
between the high and low responders for the different meningo-
coccal groups separately (Figure 3A). Low responders to MenC 
possessed significantly higher absolute numbers of naïve Treg 
(p = 0.033), CD45RA+CD25dim (p = 0.005), CD4 naïve (p = 0.021), 
CD4 TemRA early (p = 0.024), and CD8 CM (p = 0.038) cells 
as compared with the high responders (Figure  3A; Figures 
S1A,C,D,F,G in Supplementary Material). Moreover, trends 
toward higher absolute numbers of memory Treg (p = 0.084) and 
CD4 TemRA (p = 0.057) cells were found in the low responders 

(Figure 3A; Figures S1B,E in Supplementary Material). In addi-
tion, the low responders to MenC showed lower serum levels 
of IL-1Ra (p  =  0.035) as compared with the high responders 
(Figure 3B; Figures S1H,I in Supplementary Material), as well as 
a trend toward lower VitD levels (p = 0.075) (Figure 3B; Figure 
S1J in Supplementary Material).

Low responders for MenW possessed significantly higher 
absolute numbers of memory Treg cells (p = 0.039) (Figure 3A; 
Figure S2A in Supplementary Material) as well as a trend toward 
lower levels of IL-1Ra (p  =  0.057) (Figure  3B; Figure S2B in 
Supplementary Material) as compared with the high responders.

Finally, the low responders for MenY had significantly higher 
absolute numbers of CD45RA+CD25dim cells (p = 0.022) as well as 
lower absolute numbers of natural effector (CD27+IgD+) B cells 
(p = 0.008), T cells (p = 0.043), CD4 TemRO intermediate cells 
(p = 0.011), CD8 TemRO cells (p = 0.027), and CD8 TemRO late 
cells (p = 0.036) than the high responders (Figure 3A; Figures 
S3B,D,E,H,I,K in Supplementary Material). Moreover, trends 
toward lower absolute numbers of total B  cells (p  =  0.060), 
CD27+memory B  cells (Bmem) (p  =  0.062), CD4RO T  cells 
(p = 0.070), CD4RO early T cells (p = 0.081), and CD8 TemRO 
intermediate T cells (p = 0.090) (Figure 3A; Figures S3A,C,F,G,J 
in Supplementary Material) as well as a trend to a lower BMI 
(p = 0.053) (Figure 3B; Figure S3I in Supplementary Material) 
were observed in the low responders.
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FigUre 4 | Redundancy analysis (RDA) assessing the association between the prevaccination immune phenotype and the meningococcal vaccine response. RDA 
of samples collected 28 days postvaccination for MenC (a), MenW (B), and MenY (c). Low vaccine responders are shown in red circles; High responders are 
shown in light blue squares. The first and second ordination axes are plotted, including the percentages of explained variation. Overall, 14.5, 10.4, and 12.0% of the 
variation in the datasets was explained for MenC, MenW, and MenY, respectively. The vaccine response variable (i.e., low or high responder) was significantly 
associated with the immune phenotype for MenC (p = 0.012, FDR = 0.07) and MenY (p = 0.028, FDR = 0.098), but not for MenW (p = 0.068, FDR = 0.16). CMV 
was significantly associated with the immune composition for MenW (p = 0.002, FDR = 0.014) and MenY (p = 0.002, FDR = 0.014) but not for MenC (p = 0.098, 
FDR = 0.23). Other environmental variables tested (i.e., BMI, age, and sex) did not significantly influence the variation in the dataset. The biological variables with the 
highest variation explained by the explanatory variables are depicted in the plots (FitE > 15). The length of the arrows relates to the strength of the association.
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Multivariate rDa revealing significant 
associations between the Prevaccination 
immune Phenotype and Vaccine 
responsiveness
In order to determine whether high or low vaccine responsiveness 
at day 28 postvaccination was significantly associated with all 
measured prevaccination immune markers combined, hereafter 
called the immune phenotype; a multivariate RDA was performed 
for the three meningococcal groups separately (Figures 4A–C). 
Overall the included variables (age, sex, CMV, BMI, and vaccine 
response) explained 14.5, 10.4, and 12.0% of the total variation in 
immune phenotype for MenC, MenW, and MenY, respectively.

For MenC and MenY, the variable “vaccine response” was 
significantly associated with the immune phenotype (MenC: 
p  =  0.012, FDR  =  0.07 and MenY: p  =  0.028, FDR  =  0.098) 
(Figures  4A,C). As expected, based on the heat map depicted 
in Figure 3A, for MenW no significant association between vac-
cine response and immune phenotype was observed (p = 0.068, 
FDR = 0.16) (Figure 4B).

For MenC group, higher levels of DHEA, TTT, and ROM as 
well as higher absolute numbers of memory Treg cells, naïve Treg 
cells, CD45RA+CD25dim cells, CD4 TemRA early cells, CD4 naïve 
cells, lymphocytes, and CD4 T cells were strongly associated with 
low responsiveness, whereas higher levels of IL-1Ra were related 

with high responsiveness (Figure 4A). For MenY group, higher 
levels of DHEA and higher absolute numbers of CD4 naïve, 
CD45RA+CD25dim, CD8 naïve, and naïve Treg cells were strongly 
associated with low vaccine responsiveness, while high absolute 
numbers of Bmem cells were linked to high vaccine responsive-
ness (Figure 4C).

In addition, CMV seropositivity was significantly associated 
with the immune phenotype (Figure 4A: p = 0.098, FDR = 0.23, 
Figure 4B, p = 0.002, FDR = 0.014, and Figure 4C, p = 0.002, 
FDR = 0.014). In these analyses, CMV seropositivity was associ-
ated with higher absolute numbers of CD4RO late, CD4RA late, 
and CD8RA late T  cells, and not related to either low or high 
vaccine responsiveness. Of note, the explanatory variables BMI, 
age, and sex were not significantly associated with the immune 
phenotype.

Differences in immune cell ratios in the 
cD4 T cell compartment between the 
high and low Vaccine responders
In relation to the mentioned findings of higher naïve CD4 
T cells and memory Treg cells in the low vaccine responders, we 
determined whether the ratio of naïve to memory cells, as well 
as the ratio of Treg to effector cells in the CD4 T cell compart-
ment was different between the low and high vaccine responders 
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(Figure 5). No difference in the ratio between the total Treg cells 
and the number of CD4 TemRO T cells was observed (Figure 5A), 
whereas the ratio of memory Treg cells to CD4 TemRO T cells was 
significantly higher in the low responders for MenC and MenY 
as compared with the high responders (Figure 5B). In addition, 
the low responders for MenC and MenY possessed a significantly 
higher ratio of the naïve CD4 T cells and the total CD4 memory 
cells (Figure 5C), as well as a higher ratio of the post thymically 
expanded CD45RA+CD25dim cells and the total CD4 memory 
cells (Figure 5D). Thus, the higher numbers of both naïve CD4 
T cell subsets and Treg cells as seen in low responders at baseline 
(prevaccination) give rise to clear compositional changes in the 
peripheral CD4 T cell compartment.

DiscUssiOn

In this explorative study, we investigated whether the prevaccina-
tion immune phenotype was significantly different between the 
middle-aged adults being either low or high responder after a 
primary meningococcal vaccination. Interestingly, the numbers 
of several CD4 T cell subsets differed between the low and high 
vaccine responders. More specifically, low vaccine respond-
ers possessed higher numbers of naïve Treg, memory Treg, 
naïve CD4 cells, and the subset of post thymically expanded 
CD4+CD45RA+CD25dim T cells, whereas high responders showed 
high levels of serum IL-1Ra. These results suggest that the pre-
vaccination CD4 signature may be used to identify middle-aged 

adults who are potential non/low responders to a primary menin-
gococcal vaccine. Identification of these middle-aged adults may 
help improve timely vaccination strategies, since vaccination 
schemes, doses, and adjuvant use might be adapted to improve 
the vaccine responsiveness in these adults.

Numbers of Treg cells are known to increase with advancing 
age and suggest elevated immune suppression in older adults, 
although the exact functionality of these Treg cells in aging 
individuals is still under investigation (19, 48). Accordingly, 
high numbers of Treg cells were previously associated with low 
VZV vaccine responses in nursing home elderly (18). Within our 
study, high absolute numbers of both naïve and memory Treg 
cells were associated with low vaccine responsiveness. Naïve Treg 
cells express CCR7 enabling these cells to migrate to lymphoid 
organs, whereas memory Treg cells home to the sites of inflamma-
tion along with effector T cells (49, 50). Accordingly, our results 
suggest enhanced suppression of the vaccine response both in the 
lymphoid organs as well as the site of vaccination in low respond-
ers. Elevated numbers of Treg cells might suppress T cell responses 
toward the tetanus carrier in this conjugated meningococcal 
vaccine and/or inhibit B cell responses directly (51). Our results 
confirm previous findings of high numbers of memory Treg cells 
in low vaccine responders to influenza (21), whereas we are the 
first showing an association between low vaccine responsiveness 
and high numbers of naïve Treg cells. Of importance, we observed 
a higher ratio of memory Treg to effector CD4 T cells in the low 
responders, suggesting a shift in the Treg/Teffector balance, as 
previously observed with advancing age (21).
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The consistent association found between high numbers of 
CD4 naïve and the post thymically expanded 
CD4+CD45RA+CD25dim cells and a higher ratio of these naïve 
cells to the memory CD4 T cell compartment with low vaccine 
responsiveness was unexpected, since a naïve T cell repertoire 
is generally accepted to be beneficial in older adults (9, 11). 
Previously, the CD4+CD45RA+CD25dim subset was found 
to represent a broad and functional reservoir of naïve CD4 
T cells, although some contraction in certain TCR Vβ families 
was observed in comparison to naïve CD4 T cells that recently 
left the thymus (52). Since no prior studies were available that 
linked the numbers of CD4+CD45RA+CD25dim cells to vaccine 
responses, our findings indicate the necessity for further research 
into repertoire size and functionality of these cells. However, the 
increase in memory Treg cells might be the dominant factor in 
predicting vaccine response, overruling the presence of a capable 
naïve CD4 T cell repertoire.

In line with the different studies investigating biomarkers for 
influenza and hepatitis B vaccine responses in the elderly (17, 
23, 25), we observed trends toward lower numbers of switched 
memory CD27+ B  cells in the low responders. In contrast, we 
did not find increased numbers of CD27-memory B cells in the 
low responders, as reported by others in vaccine recipients aged 
over 65 years (23). In addition, low numbers of natural effector 
CD27+IgD+ B cells that were previously found to decrease with 
age (24) were observed in the low vaccine responders. Since we 
previously described that IgM is essential in the antibody func-
tionality against the meningococcal groups (4), lower numbers of 
these natural effector cells, mainly producing IgM, likely explain 
the lower functional antibody titers.

Currently, effects of latent CMV infection on vaccine 
responses are controversial (53). Despite the clear associations 
between CMV seropositivity and higher numbers of late dif-
ferentiated T cells, we did not find an association between CMV 
seropositivity and meningococcal vaccine responsiveness. As this 
meningococcal vaccine response is primarily B cell mediated, the 
effect of CMV might be limited. Hence, the effects of CMV on 
T  cell-mediated vaccine responses, i.e., to influenza and VZV 
vaccination should be further elucidated. Although frequently 
suggested by others (54–57), we did not observe any effects of 
sex and BMI on the vaccine responses. Moreover, the effect of 
chronological age was inconsistent, although low responders to 
MenC were significantly older than high responders.

Of note, high levels of IL-1Ra were found in the high respond-
ers. IL-1Ra is known as the receptor antagonist of the IL-1 
family, executing anti-inflammatory functions (58, 59). These 
results possibly suggest that IL-1Ra acts as an anti-inflammatory 
counterpart of the “inflammageing” process. Of note, a trend 
toward high levels of MCP-1 was found in the low responders. 
MCP-1 is classified as a pro-inflammatory cytokine, attracting 
monocytes to the site of inflammation, and serum levels were 
shown to increase with age (60). Consequently, our findings may 
suggest a higher pro-inflammatory state in the low responders 
(33, 34). Nevertheless, serum levels of other inflammatory 
cytokines, such as IL-6 and TFN-α were still low in all partici-
pants. Remarkably, trends toward higher levels of sCD40L were 
found in the low responders for MenC, as compared with lower 

levels in the low responders for MenW and MenY, which needs 
further evaluation.

Of importance, associations with the immune phenotype were 
primarily found between the extremes in the vaccine response, 
being either low or high responders. The intermediate group 
showed high variability of immune markers. In addition, our 
results may imply meningococcal group-specific associations 
between the prevaccination immune phenotype and vaccine 
responsiveness. Noteworthy, the difference in functional antibody 
titers between the low and high vaccine responders was largest 
for MenC, possibly explaining the higher numbers of immune 
parameters found associated with the vaccine response for this 
meningococcal group. Moreover, the participants that were classi-
fied as low or high responder did not completely overlap between 
the different meningococcal groups. This might be explained by 
the structural differences in the meningococcal polysaccharides 
by which different meningococcal epitopes will induce distinct 
immune responses (61), also shown previously for several pneu-
mococcal conjugated polysaccharides (62). Possible structural 
differences will affect the B cell processing and subsequently the 
quality and quantity of the T cell help provided by the carrier, that 
might cause differences in antibody functionality to the various 
polysaccharides. Currently, differences between meningococcal 
group-specific polysaccharides conjugated to TT are not known 
(63). Furthermore despite similar prevaccination functional anti-
body titers in the low and high vaccine responders, differences in 
numbers of meningococcal group-specific memory B cells in the 
bone marrow could have been present due to historical contacts 
(64) and affect the vaccine response. Nevertheless, the finding 
of meningococcal group-specific associations between vaccine 
responsiveness and immune phenotype is remarkable and 
requires further research. Of note, we previously found that most 
participants possessed high prevaccination TT-specific antibody 
levels (4). Importantly, no direct correlation between the antibody 
responses to TT or the different polysaccharides and the strength 
or classification of the T cell response induced by the TT-carrier 
protein was observed (5). In this study, the similar prevaccina-
tion TT-specific antibody levels in the low and high responders, 
suggests that the prevaccination immunity against the TT carrier 
protein did not largely affect the immune responses.

An important strength of this study is the ability to compare 
multiple antigens and multiple immune parameters within the 
same group of participants. Also, the primary nature of the vac-
cination allowed us to explore the use of biomarkers, without the 
strong interference of prevaccination meningococcal immunity, 
as often seen in other studies. Unfortunately, the presence of pre-
vaccination immunity in some participants did interfere with the 
long-term functional antibody titers (after 1 year). Consequently, 
we were not able to investigate the associations between pre-
vaccination immune phenotype and the long-term vaccine 
responsiveness, since exclusion of participants with detectable 
prevaccination functional antibody titers dramatically reduced 
the power of the statistical analysis. In addition, information on 
the genetic background of the participants could have added to 
the predictive factors in our analysis, since several studies found 
associations between genetic signatures and vaccine responsive-
ness (25, 31, 32).
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Future studies, analyzing large cohorts, using different vac-
cines, and using similar biomarker analyzing techniques are 
warranted to validate the use of the suggested biomarkers. Hence, 
systems vaccinology, combining data on genetic background, and 
environmental factors such as diet, stress, and infections, and even 
microbiome composition is a promising tool to discover these 
predictive biomarkers (65). Moreover, future research should 
compare the suitability of biomarkers in cohorts of different ages, 
in order to determine the predictive values of these markers over 
the entire lifespan.

In conclusion, our explorative biomarker analysis suggests 
several associations between the prevaccination immune phe-
notype and vaccine responsiveness after primary meningococcal 
vaccination in middle-aged adults. In general, an altered CD4 T cell 
signature, involving high absolute numbers of naïve Treg, memory 
Treg, naïve CD4 T cells, and CD45RA+CD25dim T cells might be 
used as a predictive immune phenotype for low vaccine respon-
siveness in middle-aged adults. Accordingly, these findings support 
the development of vaccination strategies to enhance the memory 
immunity before reaching old age, in the rapidly aging population.
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