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In rodents, low doses of CD28-specific superagonistic monoclonal antibodies (CD28 
superagonists, CD28SA) selectively activate regulatory T cells (Treg). This observation 
has recently been extended to humans, suggesting an option for the treatment of 
autoimmune and inflammatory diseases. However, a mechanistic explanation for this 
phenomenon is still lacking. Given that CD28SA amplify T cell receptor (TCR) signals, we 
tested the hypothesis that the weak tonic TCR signals received by conventional CD4+ 
T cells (Tconv) in the absence of cognate antigen require more CD28 signaling input for 
full activation than the stronger TCR signals received by self-reactive Treg. We report 
that in vitro, the response of mouse Treg and Tconv to CD28SA strongly depends on 
MHC class II expression by antigen-presenting cells. To separate the effect of tonic TCR 
signals from self-peptide recognition, we compared the response of wild-type Treg and 
Tconv to low and high CD28SA doses upon transfer into wild-type or H-2M knockout 
mice, which lack a self-peptide repertoire. We found that the superior response of Treg to 
low CD28SA doses was lost in the absence of self-peptide presentation. We also tested 
if potentially pathogenic autoreactive Tconv would benefit from self-recognition-induced 
sensitivity to CD28SA stimulation by transferring TCR transgenic OVA-specific Tconv 
into OVA-expressing mice and found that low-dose CD28SA application inhibited, rather 
than supported, their expansion, presumably due to the massive concomitant activation 
of Treg. Finally, we report that also in the in vitro response of human peripheral blood 
mononuclear cells to CD28SA, HLA II blockade interferes with the expansion of Treg 
by low-dose CD28SA stimulation. These results provide a rational basis for the further 
development of low-dose CD28SA therapy for the improvement of Treg activity.

Keywords: regulatory T cells, self-reactivity, autoimmunity, cD28 superagonists, Tgn1412, TaB08, D665

Abbreviations: CD4EM, CD4 effector memory; FIH, first-in-human; Treg, regulatory T  cells; Tconv, conventional CD4+ 

T cells; CTV, cell trace violet; CD28SA, CD28 superagonists.
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inTrODUcTiOn

CD28 superagonists (CD28SA) are a unique class of CD28-
specific monoclonal antibodies (mAb) able to activate T  cells 
without overt stimulation of the T cell receptor (TCR) (1, 2). A 
common feature of CD28SA specific for rat, mouse, and human 
CD28 is their lateral binding mode to the CD28 homodimer, 
which allows lattice formation, a feature likely to contribute to 
their strong agonistic properties (3, 4). In contrast, conventional 
CD28-specific mAb, which synergize with TCR ligation in T cell 
activation, bind monovalently at the ligand binding site (5), a 
feature which they share with the natural ligands CD80 and CD86 
(6). While CD28SA activate T cells both in vitro and in vivo with-
out TCR ligation by mAb or MHC molecules presenting cognate 
peptide antigens, this activation strictly depends on “tonic” TCR 
signals (7, 8) generated by cellular interactions (9) during the 
process known as MHC scanning, in which the TCR briefly docks 
onto MHC peptide complexes in a MHC class and allele-non-
specific fashion and rapidly dissociates unless a cognate peptide 
is recognized (10).

This strict dependence of the T cell response to CD28SA on 
preactivation through cell–cell contacts in the tissue results in the 
inability of human circulating T cells to respond to the human 
CD28SA TGN1412 (now called TAB08), which contributed to 
the failure to predict the cytokine release syndrome triggered by 
this antibody during a first-in-human (FIH) trial in 2006 (11, 
12). In the meantime, a method has been developed which resets 
human peripheral blood mononuclear cells (PBMC) to tissue-
like status, allowing the in vitro analysis of the response to this 
potent T cell activating agent (9).

Using this cell-culture system, we have recently reported the 
response of human Tconv and regulatory T cells (Treg) to titrated 
concentrations of TAB08 (13). We found that in vitro stimulation 
with CD28SA concentrations equivalent to those reached during 
the failed FIH trial of 2006 results in maximum release of pro-
inflammatory cytokines from CD4+ effector memory (CD4EM) 
T cells, accompanied by a strong expansion of Treg. Furthermore, 
reduction of the CD28SA concentration resulted in a complete 
loss of pro-inflammatory cytokine release at concentrations 
which still induced substantial Treg activation. These findings 
provided experimental support for the feasibility of a new FIH 
study, in which TAB08 was applied at doses ranging from 1/1,000 
to 1/14 of the 2006 trial dose. While no adverse effects were 
observed and the pro-inflammatory cytokines in the circulation 
remained at baseline with these low doses of CD28SA, there was a 
time- and dose-dependent release of the Treg signature cytokine 
IL-10 into the blood stream (13).

These results confirmed for humans what had initially been 
observed in rodents, i.e., the particular sensitivity of Treg as 
compared to Tconv to CD28SA stimulation, a finding which had 
formed the basis of the translational development of the CD28SA 
TGN1412 for the treatment of autoimmune and inflammatory 
conditions. Thus, both in rats (14) and in mice (15), application 
of low CD28SA doses results in selective expansion of Treg, 
whereas both conventional and Treg cells are activated by high 
CD28SA doses. It is worth mentioning that even when high 
doses of CD28SA are applied to rodents, no toxic cytokine release 

syndrome is observed because the few CD4EM T cells present in 
clean laboratory rodents are effectively controlled by the powerful 
Treg response (15).

While the selectivity of low-dose CD28SA treatment for 
Treg activation opens a therapeutic window for the treat-
ment of autoimmune and inflammatory diseases, it is, so far, 
mechanistically not understood. Here, we hypothesized that 
this effect is due to a stronger TCR input signal perceived by 
the self-reactive regulatory as opposed to the non-self-specific 
conventional CD4+ T cells which receive only the weak signal 
generated by MHC scanning, providing more substrate for 
signal amplification through the CD28 pathway. Indeed, ex vivo 
biochemical analysis of the TCR complex in mice has revealed 
a higher degree of TCRζ phosphorylation in Treg over Tconv, 
which was abolished by preventing MHC class II recognition 
through mAb blockade (16). We here show that indeed, the high 
sensitivity of murine and human Treg to CD28SA stimulation 
depends on MHC II recognition in  vitro and that prevention 
of self-peptide recognition by genetic interference with MHC 
II peptide loading (17) similarly abrogates preferential Treg 
activation in vivo.

MaTerials anD MeThODs

Peripheral Blood Mononuclear cells
Human PBMC were prepared from healthy donors as a byprod-
uct of platelet concentrates obtained with leukoreduction system 
chambers (Gambro Trima Accel aphaeresis apparatus, Pall 
Corporation) (18) and diluted in versene solution (0.7 mM EDTA 
in PBS).

Mice
C57BL/6 (Harlan Winkelmann, Borchen, Germany), OT-I 
Thy1.1+/−, and OT-II Thy1.1+/+ mice were bred in the institute’s 
barrier facility. H-2M−/− (17, 19), C57BL/6.CD11c-DOG (20), 
and MHC II−/− mice (C57BL/6.129S2-H2dlAb1-Ea/J) (21) were 
generously provided by Wei-Ping Fung-Leung (LLC Janssen 
Research & Development, San Diego, CA, USA), Andreas 
Beilhack (Department of Internal Medicine II, University 
Hospital Würzburg, Würzburg, Germany), and Lars Nitschke 
(Division of Genetics, Department of Biology, University of 
Erlangen-Nürnberg, Erlangen, Germany), respectively.

cell culture and stimulation assays 
(human)
Cells were cultured in RPMI 1640 supplemented with l-glu-
tamine (Gibco), non-essential amino acids (Gibco), HEPES 
(Applichem), β-mercaptoethanol (Gibco), sodium pyruvate 
(Gibco), penicillin/streptomycin, and 10% AB-positive heat-
inactivated human serum (Sigma) (AB medium). PBMC were 
first cultured for 2  days at a high cell density (1  ×  107/ml) in 
AB medium to reset them to tissue-like conditions without 
changing their cellular composition, thereby allowing reactivity 
to TGN1412/TAB08 in the secondary cultures. For these, cells 
were harvested and cultured under standard conditions (1 × 106/
ml) in 48-well flat-bottom tissue culture plates in a final volume 
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of 0.6  ml of supplemented RPMI/AB medium for 5  days in a 
humidified incubator at 37°C with 5% CO2. GMP-grade TAB08 
was provided by TheraMAB GmbH. Pan HLA II-specific Tü39 
antibodies were provided by Hans-Georg Rammensee from 
Tübingen, Germany. Isotype control IgG2a was from Abcam. 
Fab fragments were prepared using the Pierce Fab Preparation 
Kit (Thermo Scientific).

cell Proliferation assay Using cFse or 
cell Trace Violet (cTV)-labeled cells
T  cell proliferation was monitored by the stepwise dilution of 
fluorescence in CFSE- or CTV-labeled cells. To label with CFSE 
(Life technologies, Eugene, DR, USA) or CTV (Life technologies, 
Eugene, DR, USA), the cells were washed with PBS and incu-
bated with 5 µM CFSE or CellTrace™ Violet for 5–20 min at RT. 
To remove excess dye, the cells were washed twice with RPMI 
medium.

cell culture and stimulation assays 
(Mice)
Purified CD4+ cells from C57BL/6 mice were cultured for 4 days 
in U-bottomed 96-well plates (1 × 105 cells/well) together with 
T cell-depleted splenocytes from C57BL/6 or MHC II ko mice 
(2.5  ×  105 cells/well) and various concentrations of CD28SA 
D665 (5) (manufactured by Exbio, Prague, Czech Republic), in 
the presence and absence of IL-2 (200  U/ml, Novartis, Basel, 
CH). To follow proliferation, cells were labeled with CFSE. 
Fold increase was calculated as: absolute cell number with × 
μg CD28SA/absolute cell number put into culture on day 0. 
Average cell division (acd) numbers were calculated as ∑[% 
of cells in generation (n) × n]/100 (n = number of generation).

antibodies and Flow cytometry
The following anti-human antibodies were used: CD4-PE/Cy5, 
CD25-FITC, and Foxp3-Alexa647 from BioLegend (San Diego, 
CA, USA). Mouse cells were stained with fluorochrome-labeled 
mAbs to CD4-Pacific Blue, Brilliant Violet 605 and Alexa-
700 (RM4-5), CD8-Pacific Blue (53-6.7), CD25-APC (7D4), 
Ki-67-PE (Ki-67), and Thy1.1-PercP (Ox-7) from BioLegend. 
Foxp3-APC (FJK-16s), dead cell marker Viability Dye eFluor™ 
780, and staining reagents from eBioscience (San Diego, CA, 
USA) were used according to the manufacturer’s instructions. 
To analyze expression of surface proteins, the cells were stained 
with the appropriate antibodies for 20 min at 4°C, washed once 
with FACS buffer (PBS, 0.1% BSA, and 0.02% NaN3), and fixed 
with 2% paraformaldehyde. For intracellular staining of Foxp3 
and Ki-67, the cells were first surface stained, permeabilized 
with Fix/Perm (eBioscience), and stained with Foxp3 and 
Ki-67 antibodies diluted in Perm/Wash (eBioscience). To 
calculate absolute Treg numbers, unlabeled microbeads (BD 
Biosciences, Franklin Lakes, NJ, USA) were added to the 
stained cells and the following formula was used: absolute 
Treg numbers =  (beads used × Treg events)/beads measured. 
Acquisition was performed on a BD™ LSR II or FACSCalibur, 
and data were analyzed using FlowJo software (TreeStar Inc., 
Ashland, OR, USA).

cell isolation, labeling, and  
cell Transfer (Mice)
Single-cell suspensions of lymph nodes were stained with a 
cocktail of biotin-labeled antibodies (BD Biosciences), followed 
by incubation with Streptavidin MicroBeads. CD4+ and CD8+ 
T cells were prepared by negative selection using the MACS sep-
aration system (Miltenyi Biotec, Bergisch Gladbach, Germany). 
Purified CD4+ T cells and CD8+ T cells of untreated C57BL/6, 
OT-II Thy1.1+/+, or OT-I Thy1.1+/− mice were labeled with CFSE 
or CellTrace™ Violet, resuspended in PBS (cell numbers as indi-
cated), and transferred i.v. 12–24 h before CD28SA stimulation. 
Per mouse 25–150 µg CD28SA was injected intraperitoneally. 
Mice were analyzed 3–4 days after cell transfer. Average cell divi-
sion (acd) numbers of transferred cells were calculated as ∑[% 
of cells in generation (n) × n]/100 (n = number of generation).

statistical analysis
Data are presented as mean  ±  SD. Statistical significance was 
analyzed by unpaired t-test or two-way ANOVA using GraphPad 
Prism Software. Values of P < 0.05 were considered to be statisti-
cally significant.

resUlTs

Mhc class ii Deletion on aPc impairs 
expansion of cD4+ T cells by cD28sa 
In Vitro
In our initial in vitro experiments using mouse cells, we stimu-
lated purified CFSE-labeled C57BL/6 CD4+ T  cells cocultured 
with T  cell-depleted spleen cells as APC with increasing con-
centrations of the mouse CD28SA D665 (5) and evaluated the 
number of recovered cells and of average cell divisions (acd), 
and expression of the nuclear proliferation marker Ki-67 in 
conventional and regulatory CD4+ T  cells 4  days later. Sample 
dot plot and histogram data are provided in Figures 1A,B. These 
illustrate that even without CD28SA stimulation, coculture with 
MHC II+, but not with MHC II− APC in this optimized system 
leads to an upregulation of Ki-67 and Foxp3 expression levels and 
cell division in some Treg. Inclusion of 1.1 µg/ml of D665 (“low 
dose”) to cultures with MHC II+ APC increases the frequency 
of Foxp3+ cells threefold, most of which now express Ki-67 and 
indeed strongly proliferate; this effect is greatly reduced if MHC 
II-deficient APC are employed. Tconv respond only moderately 
to this CD28SA dose with Ki-67 expression and CFSE dilution in 
only a small fraction of cells.

As shown in Figures 1C,D for CD28SA concentrations from 
0.12 to 30  µg/ml, both Tconv and Treg CD4+ T  cell numbers 
increased in a dose-dependent manner in the presence of WT 
APC. As expected, Treg expanded much more than Tconv, result-
ing in a sevenfold recovery over input at the highest CD28SA 
dose employed (30  µg/ml) as compared to a twofold recovery 
of conventional CD4+ T  cells (Figure  1C). Moreover, 10-fold 
more CD28SA was required for Tconv than for Treg to surpass 
the input cell number (10 versus 1.1 µg/ml). These results were 
paralleled by an increase in the fraction of cells expressing the 
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FigUre 1 | Effect of MHC II on expansion of regulatory T cells (Treg) induced by CD28 superagonists (CD28SA) in vitro. 1 × 105 CFSE-labeled CD4+ T cells from 
C57BL/6 mice were cultured together with 2.5 × 105 T cell-depleted APC of WT or MHC II ko mice and 0–30 µg/ml CD28SA. On day 4, cell numbers, proliferation, 
CD4, Foxp3, and Ki-67 expression were analyzed. (a) Flow cytometric analysis of Foxp3 and Ki-67 expression on day 0 and day 4 of CD4+ cell stimulated with WT 
or MHC II ko APCs and 0 or 1.1 µg/ml of CD28SA. (B) Comparison of CFSE dilution in Treg and Tconv stimulated with WT APC (blue) or MHC II ko APC (red). (c,D) 
Fold increase over input on day 0, average cell division (acd) and frequency of Ki-67+ cells of Treg (black) and Tconv (gray) in cultures with WT (left) or MHC II ko APC 
(right) in the absence (c) and presence (D) of IL-2. Fold increase over input was calculated from absolute cell numbers of Treg (CD4+Foxp3+) and Tconv 
(CD4+Foxp3−) in correlation with absolute cell numbers put into the culture on day 0. Average cell division (acd) numbers were calculated as ∑[% of cells in 
generation (n) × n]/100 (n = number of generation). Two-way ANOVA: *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; and ****P < 0.0001. Data are mean ± SD of triplicate 
samples. Data are representative of at least three independent experiments with similar results.
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nuclear proliferation marker Ki-67 and the average number of 
cell divisions (Figure 1C). Furthermore, calculating the average 
number of cell divisions within the dividing population of each 
culture indicated that clonal expansion was similar for those cells 
that were triggered to proliferate regardless of the magnitude of 
the overall response (data not shown). When MHC II-deficient 
instead of WT APC were used, the superior clonal expansion of 
Treg was greatly reduced. Furthermore, the unstimulated “back-
ground” response of Treg cocultured with WT APC with regard 
to cell division and Ki-67 expression was lost, and the dose–
response profiles of both populations became indistinguishable 
for Treg and Tconv cells with regard to the number of cell divi-
sions and much more similar than in WT APC-complemented 
cultures with regard to Ki-67 expression. These data support the 
hypothesis that the preactivated status of Treg that recognize 
self-peptides presented by MHC II renders them more sensitive 
to CD28SA stimulation than Tconv cells that receive only tonic 
TCR signals.

In order to test whether the preferential expansion of Treg 
was due to IL-2 scavenging, which would inhibit proliferation of 
Tconv dependent on autocrine IL-2 production, exogenous IL-2 
was included in parallel cultures of CD4+ T cells using either WT 
or MHC II-deficient APC (Figure 1D). While this improved the 
recovery and proliferative activity of Tconv somewhat, the Treg 
response remained superior in these parameters. Of note, the 
MHC II-dependent “background” responses of Treg with regard 
to cell division and Ki-67 expression observed in the absence of 
exogenous IL-2 (Figure 1C) became less MHC II dependent in 
the presence of IL-2, suggesting that IL-2 stimulation had main-
tained the Treg, which constitutively express high-affinity IL-2 
receptors, in their activated state.

absence of an Mhc ii-Presented Peptide 
repertoire abolishes the Preferential 
response of Treg to cD28sa In Vivo
Since the previous experiment established the role of MHC II 
recognition in the CD28SA response, but failed to distinguish 
between the effects of self-peptide recognition from tonic 
TCR–MHC interactions, we addressed this issue in an in  vivo 
experiment employing H-2M mutant mice. These mice have a 
peptide-loading defect, resulting in the expression of MHC II 
molecules exclusively loaded with the CLIP peptide at the cell 
surface (17, 19). 1  ×  107 CTV-labeled purified CD4+ T  cells 
(Tconv and Treg) were transferred to either WT or H-2M−/− mice, 
which were injected with 25 or 150 µg of the D665 antibody 1 day 
later. As shown in Figures 2A,B, high-dose application in WT 
recipients resulted in a similar frequency of divided Tconv and 
Treg, whereas low-dose stimulation resulted in a much stronger 
response of the Treg as compared to the Tconv subset. In H-2M 
knockout recipients, on the other hand, the advantage of Treg 
over Tconv to low-dose CD28SA stimulation was completely 
lost, indicating that it is indeed the recognition of self-peptides, 
which renders Treg highly sensitive to CD28SA-driven expan-
sion. As expected and similar to our in  vitro experiments, 
Treg also showed some spontaneous cell division in wild-type 
recipients, in line with their known turnover, which depends on 

costimulation-supported self-recognition (22, 23), but did not 
divide without CD28SA stimulation in H-2M−/− hosts.

low-Dose cD28sa application In Vivo 
expands Treg and Partially inhibits 
expansion of conventional autoreactive 
T cells
Since autoreactivity of Treg is important for their preferential 
response to low-dose CD28SA, it has to be considered that autore-
active and thus potentially pathogenic conventional T cells might 
also be further expanded under these conditions, thereby abro-
gating the protective effect of CD28SA therapy in autoimmunity. 
While in all of the many rodent models of autoimmunity studied 
(24), decreased rather than increased autoimmune pathology has 
been observed as a result of CD28SA treatment, we nevertheless 
directly tested this possibility by injecting 3 × 104 CFSE-labeled 
OVA/Kb-specific OT-I and 6 × 104 OVA-IAb-specific OT-II cells 
into CD11c-DOG mice which express OVA in dendritic cells 
(20) or, as a control, into WT C57BL/6 mice. 25 µg of CD28SA 
was injected 12 h later in order to allow the initial activation of 
the autoreactive conventional CD8+ and CD4+ T cells. Three days 
later, the number and proliferative history of the recovered cells 
were determined along with the effect of CD28SA stimulation on 
endogenous Treg. As seen in Figure 3A, OT-I and OT-II cells both 
divided extensively in CD11c-DOG, but not in control recipient 
mice. Moreover, CD28SA treatment resulted in the expected 
expansion of host Treg in both types of recipients. Importantly, 
the number of OT-I and OT-II cells recovered from lymph nodes 
from CD11c-DOG mice was not increased but rather decreased 
by CD28SA treatment (Figure  3B, log scale). For OT-II cells, 
the number of cell divisions induced by in vivo recognition of 
OVA was also reduced by this treatment (Figure 3C), whereas an 
effect on the proliferative history of OT-I cells was not discern-
able, presumably because the ability to detect cell division by 
this assay was in saturation. Note that the cells harvested from 
lymph nodes do not reflect the total number of cells generated 
in response to the self-antigen OVA in the mouse and that both 
expansion and cell death contribute to the final score. Hence, 
differences in acd are not expected to directly correspond to the 
differences in the number of OT-I and OT-II cells recovered 
from lymph nodes. Nevertheless, these data collectively show 
that the expansion of autoreactive cells within the conventional 
CD4+ and CD8+ T cell populations is negatively influenced in 
CD28SA-treated mice, most likely because they are controlled 
by the much larger population of concomitantly activated Treg.

In Vitro Blockade of hla ii interferes with 
the Preferential expansion of Treg in 
human PBMc cultures
Freshly isolated human PBMC fail to respond to the human 
CD28SA TGN1412/TAB08 in soluble form because they have 
lost the tonic signals generated by T cells in the tissues through 
cellular interactions (9). We have recently introduced a system, 
which corrects this defect (9). In brief, PBMC, which are refrac-
tory to TAB08 stimulation when freshly isolated, are precultured 
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FigUre 2 | Prevention of MHC II/peptide recognition interferes with proliferation of regulatory T cells (Treg) induced by low dose CD28 superagonists (CD28SA) 
in vivo. 1 × 107 Cell Trace Violet (CTV)-labeled CD4+ T cells from C57BL/6 mice were transferred into H2M−/− or C57BL/6 mice. One day after cell transfer recipient 
mice received CD28SA injection (0, 25, and 150 µg). Three days later transferred cells were analyzed for proliferation, CD4 and Foxp3 expression (a) and 
frequencies of divided cells in transferred Treg (CD4+Foxp3+) and Tconv (CD4+Foxp3−) (B). Unpaired Student’s t-test: *P < 0.05; **P ≤ 0.01; and ***P ≤ 0.001. Data 
are mean + SD from three mice per group. Data are representative of two independent experiments.
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at high cell density for 2 days to allow cellular interactions and 
thereby restoration of tonic signaling in the T  cells, rendering 
them highly reactive to CD28SA stimulation. Such “RESTORE” 
cultured PBMC were CFSE labeled and stimulated for 5 days with 
graded concentrations of TAB08, and the role of MHC II recog-
nition was tested by blockade with Fab fragments derived from 
the pan-HLA II-reactive mAb Tü39. Note that the stimulatory 
activity of TAB08 for human T cells is about 10-fold higher than 
that of D665 for mouse cells (compare Figures 1 and 4). Panels A 
and B of Figure 4 show representative dot plots and histograms 
using 0.11 µg/ml TAB08 for stimulation. Complete titrations are 

shown in Figure 4C, and in Figure 4D for IL-2 supplemented 
cultures to account for possible IL-2 scavenging effects of Treg 
cells on Tconv proliferation.

CD28 superagonist stimulation resulted in a much larger 
increase in recovered Foxp3+ as compared to Foxp3−CD4+ 
T  cells both in the absence (Figure  4C) and in the presence 
of exogenous IL-2 (Figure  4D). This is in agreement with our 
recently published results, where we also demonstrated that 
CD28SA expanded CD4+Foxp3+ cells are functional Treg (13). 
While the extent of this increase (up to 40-fold) is not sufficiently 
explained by the number of cell divisions but is, in part, due 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FigUre 3 | Low-dose stimulation with CD28 superagonists (CD28SA) reduces expansion of conventional autoreactive T cells in vivo. 3 × 104 CD8+Thy1.1+ T cells 
from OT-I Thy1.1+/− mice and 6 × 104 CD4+Thy1.1+ T cells from OT-II Thy1.1+/+ mice were CFSE-labeled and transferred into congenic CD11c-DOG or C57BL/6 
mice. 12 h later recipient mice received CD28SA injection (0 or 25 µg). (a) Three days after cell transfer endogenous cells in lymph nodes were analyzed for CD4 
and Foxp3 expression and transferred CD4+ and CD8+ cells for CFSE dilution. Data represent absolute cell numbers in transferred T cell (B) and numbers of average 
cell divisions (acd) (c). Average cell division (acd) numbers were calculated as ∑[% of cells in generation (n) × n]/100 (n = number of generation). Unpaired Student’s 
t-test: *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; and ****P < 0.0001. Data are mean + SD from three mice per group. Results are representative of two independent 
experiments.
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to downregulated Foxp3 expression in unstimulated PBMC 
(unpublished observations, see Discussion), the increase in the 
average number of cell divisions and the frequency of Ki-67 
expressing cells independently show the superior sensitivity of 
Treg to CD28SA stimulation.

To investigate the role of HLA II recognition in this phenom-
enon, we included Fab fragments derived from the pan-HLA 
II-reactive mAb Tü39 in parallel cultures. This strongly reduced 
the proliferation and cell recovery of both subsets and abolished 
the superior reactivity of Treg to very low CD28SA doses. Thus, 
also human Treg rely on MHC II recognition for their high sen-
sitivity to CD28SA stimulation, presumably because they receive 

full stimulation through the recognition of self-peptide/HLA II 
complexes.

DiscUssiOn

In view of the still increasing list of disorders that have been shown 
in rodent models to respond to Treg-based therapies, which have 
moved beyond immunopathologies to include dysregulated and 
damaged tissues, e.g., after heart attack, myocardial infarction, 
inflammation of adipose fatty tissue, and muscle injury (25–27), 
the strategy of inducing a transient wave of polyclonal activation 
of Treg that seek out inflamed and damaged sites seems to be 
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FigUre 4 | HLA II blockade interferes with TGN1412-induced expansion and proliferation of human regulatory T cells (Treg). High-density precultured peripheral 
blood mononuclear cells (PBMC) were cultured in 0.6 ml AB medium for 5 days at 1 × 106 cells/ml in 48-well flat-bottom tissue culture plates. PBMC were 
stimulated with TAB08 in the presence or absence of 10 µg/ml of the Fab fragment of the pan-HLA II-reactive monoclonal antibodies (mAb) Tü39 (Fab Tü39) or a 
mouse IgG2a isotype control mAb. (a) Flow cytometric analysis of Foxp3 and Ki-67 expression on day 0 and day 5 of stimulation with 0.11 µg/ml TAB08 in the 
absence or presence of HLA II blockade. (B) Comparison of CFSE dilution in Treg and Tconv stimulated with 0.11 µg/ml TAB08 in the absence or presence of HLA II 
blockade. (c,D) Fold increase over input on day 0, average cell division (acd), and frequency of Ki-67+ cells of TAB08-stimulated Treg (black) and Tconv (gray) in the 
absence (left) or presence (right) of HLA II blockade without (c) or with (D) addition of IL-2. Fold increase over input was calculated from absolute cell numbers of 
Treg (CD4+Foxp3+) and Tconv (CD4+Foxp3−) in correlation with absolute cell numbers put into the culture on day 0. Average cell division (acd) numbers were 
calculated as ∑[% of cells in generation (n) × n]/100 (n = number of generation). Two-way ANOVA: ****P < 0.0001; ns = not significant. Data are mean ± SD of 
triplicate samples. Data are representative of at least three independent experiments with similar results.
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attractive. Beyond the presently studied approach of CD28SA-
mediated induction of Treg proliferation, IL-2/anti-IL-2 com-
plexes with selective binding to high-affinity IL-2R have shown 
such Treg-promoting activity in mice (28), and a CD4-specific 
mAb binding to a specific epitope on human CD4+ T cells was 
reported to have a similar effect (29).

With regard to CD28SA-mediated polyclonal Treg activation, 
pronounced therapeutic effects have been observed not only in 
rodent models for major human autoimmune diseases such as 
rheumatoid arthritis, multiple sclerosis, or type 1 diabetes (14, 
30, 31) but also in graft versus host disease (32, 33), solid-organ 
transplantation (34–36), infection-associated inflammation (37), 
and recovery from myocardial infarction (25) and stroke (38). 
Moreover, CD28SA-activated Treg were indeed shown to switch 
to a tissue-migrating and IL-10-secreting phenotype and to 
accumulate at sites of insult (39).

While the original description of the preferential response 
of Treg to CD28SA in rats was more than a decade ago (40), 
before being confirmed in mice (15) and, most recently, in 
humans (13), the mechanistic basis for this effect had not been 
addressed so far. In fact, the disastrous 2006 FIH study with 
the human CD28SA TGN1412 (now called TAB08) (11), which 
resulted in a life-threatening release of pro-inflammatory 
cytokines from CD4EM cells, obviously questioned the con-
cept of a particular sensitivity of Treg over T-effector cells to 
CD28SA stimulation. In the meantime, it is clear that at the 
dose applied during this study, maximum activation of both 
Treg and T effectors occurred (13). This had gone unnoticed 
in preclinical toxicity studies because CD4EM cells of humans, 
but not of the macaques employed, express CD28 (41), and 
human PBMC fail to respond to soluble CD28SA in vitro for 
lack of a preactivated signaling machinery which is switched 
off upon exit from tissue into the blood stream (9). Indeed, just 
as had been reported for rats (14) almost 10 years earlier, dose-
reduction suffices to restrict the human CD28SA response to 
Treg (13).

Here, we tested the hypothesis that it is the autoreactivity 
of Treg itself which makes them so particularly sensitive to 
CD28SA-mediated stimulation. This idea was based on the obser-
vation that in contrast to what was originally thought, CD28SA 
stimulation is strictly dependent on the presence of a functional 
TCR signaling machinery (7, 8), which provides the SLP76/Itk 
signalosome as a substrate for amplification. However, because of 
the strong CD28 signaling input at a high level of crosslinking of 
CD28 by CD28SA, weak “tonic” TCR signals suffice as a substrate 
for signal amplification. Accordingly, we hypothesized that the 
stronger TCR signaling input achieved by self-recognition of 
Treg would be enough to activate Treg at a lower level of CD28SA 
stimulation. Indeed, both murine (42, 43) and human Treg (44) 
constantly turn over in vivo. That this is driven by a costimulated 
response to self-peptides is indicated by the higher level of TCRζ 
phosphorylation in Treg as compared to Tconv (16) and by a mas-
sive reduction of this turnover upon induced deletion of CD28 
in Treg (23).

Here, we show that prevention of MHC II recognition in vitro 
(mice, humans) interferes with the Treg and Tconv CD4+ T cell 
responses to CD28SA, in particular at low doses where the 

stronger excitability of Treg as compared to Tconv is most obvious 
(Figures 1 and 4).

With regard to human PBMC, the fold Treg expansion we 
presently report (up to 40-fold in 5 days) is surprising and can-
not be explained by the number of cell divisions (three, resulting 
in eightfold expansion). This discrepancy is explained by a low 
level of Foxp3 expression in a large fraction of circulating T cells, 
which is caused by transient cytokine withdrawal (45), leading to 
a failure to detect a large fraction of them as CD4+Foxp3+ cells. 
Cytokine, TCR, or CD28SA stimulation leads to rapid upregula-
tion of Foxp3 in these “latent” Treg (compare Foxp3 levels on day 
0 and day 4, Figure 4A).

Beyond a requirement for MHC II expression in the CD28SA 
response as such, we directly tested the hypothesis that the recog-
nition of self-peptides is of key importance for the high sensitivity 
of Treg to CD28SA stimulation. This was achieved by transferring 
a mixture of CFSE-labeled Tconv and Treg into H-2M knockout 
mice which express MHC II loaded only with the CLIP peptide 
(17, 19). In this situation, which allows tonic but not cognate TCR 
signaling to occur, the ability of Treg to respond to CD28SA at a 
low dose which is unable to trigger Tconv was greatly diminished 
(Figure 2). Moreover, when a high dose of CD28SA was applied 
which was known to trigger proliferation of both types of CD4+ 
T cells, both responded with proliferation in the same fashion, 
suggesting that in H-2M knockout hosts, they both relied on 
tonic TCR signals for their activation by a strong CD28 signal.

While our present results clearly identify cognate self-
recognition by Treg as a prerequisite for their high sensitivity to 
low-dose CD28SA stimulation, other cell-intrinsic differences 
between signaling cascades in Treg versus Tconv [reviewed in 
Ref. (46)] as well as the ability of Treg to scavenge IL-2 (47) are 
likely to additionally contribute to the Treg-dominated expansion 
at low CD28SA doses.

At face value, our present results suggest that low-dose CD28SA 
treatment might not only activate Treg but also autoreactive 
Tconv, thereby exacerbating autoimmunity. This has, however, 
not been observed in any of the multiple models of autoim-
mune diseases investigated so far. We now hypothesized that the 
activation of, potentially, all Treg would keep a small population 
(the autoreactive part) of Tconv effectively under control, even 
if they are themselves responsive to low-dose CD28SA stimula-
tion because of their preactivation by self-recognition. Indeed, 
low-dose CD28SA treatment decreased rather than increased 
the expansion of both CD4+ and CD8+ TCR-transgenic Tconv 
in hosts expressing their cognate antigen, where they strongly 
expand without further CD28SA treatment (Figure  3). Thus, 
in addition to being preferentially activated by CD28SA treat-
ment at the population level, CD28SA-activated Treg efficiently 
dampen responses of autoimmune T cell clones within the Tconv 
population.

Importantly, our conclusion from mouse experiments that the 
preferential response of Treg to low-dose CD28SA stimulation 
depends on MHC II recognition was reproduced in vitro using 
human PBMC that had been reset to tissue-like conditions to 
allow a CD28SA response (Figure 4). After the promising results 
of low-dose application of the human CD28SA TGN1412/
TAB08 to humans, which resulted in selective release of the Treg 
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signature cytokine IL-10 into the bloodstream (13), these mecha-
nistic insights should lend further support to the development 
of CD28SA-based Treg activation in a wide spectrum of human 
pathologies in which, according to the corresponding rodent 
models, Treg may contain or even heal the disease.
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