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Activated natural killer (NK) cells release interferon (IFN)-γ, which is crucial for the control 
of intracellular pathogens such as Leishmania. In contrast to experimental murine leish-
maniasis, the human NK cell response to Leishmania is still poorly characterized. Here, 
we investigated the interaction of human blood NK cells with promastigotes of different 
Leishmania species (Leishmania major, Leishmania mexicana, Leishmania infantum, and 
Leishmania donovani). When peripheral blood mononuclear cells or purified NK  cells 
and monocytes (all derived from healthy blood donors from Germany without a history 
of leishmaniasis) were exposed to promastigotes, NK cells showed increased surface 
expression of the activation marker CD69. The extent of this effect varied depending on 
the Leishmania species; differences between dermotropic and viscerotropic L. infantum 
strains were not observed. Upregulation of CD69 required direct contact between mono-
cytes and Leishmania and was partly inhibitable by anti-interleukin (IL)-18. Unexpectedly, 
IL-18 was undetectable in most of the supernatants (SNs) of monocyte/parasite 
cocultures. Confocal fluorescence microscopy of non-permeabilized cells revealed 
that Leishmania-infected monocytes trans-presented IL-18 to NK cells. Native, but not 
heat-treated SNs of monocyte/Leishmania cocultures also induced CD69 on NK cells, 
indicating the involvement of a soluble heat-labile factor other than IL-18. A role for the 
NK cell-activating cytokines IL-1β, IL-2, IL-12, IL-15, IL-21, and IFN-α/β was excluded. 
The increase of CD69 was not paralleled by NK  cell IFN-γ production or enhanced 
cytotoxicity. However, prior exposure of NK cells to Leishmania parasites synergistically 
increased their IFN-γ release in response to IL-12, which was dependent on endogenous 
IL-18. CD1c+ dendritic cells were identified as possible source of Leishmania-induced 
IL-12. Finally, we observed that direct contact between Leishmania and NK cells reduced 
the expression of CD56 mRNA and protein on NK cells. We conclude that Leishmania 
activate NK cells via trans-presentation of IL-18 by monocytes and by a monocyte-de-
rived soluble factor. IL-12 is needed to elicit the IFN-γ-response of NK cells, which is 
likely to be an important component of the innate control of the parasite.

Keywords: Leishmania, natural killer cells, monocytes, innate immunity, human cutaneous and visceral 
leishmaniasis

Abbreviations: DC, dendritic cell; NK, natural killer; IFN, interferon; ILC, innate lymphoid cell; ft-lysate, freeze–thaw lysate; 
PBMC, peripheral blood mononuclear cell; Pfa, paraformaldehyde; Th, T helper lymphocytes; TW, transwell.
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inTrODUcTiOn

Natural killer (NK) cells are members of the innate lymphoid cells 
(ILCs), which do not express rearranged antigen receptors and are 
characterized by an absent or only slow clonal expansion. Based 
on their ability to rapidly release the T helper (Th) 1 signature 
cytokine interferon (IFN)-γ upon stimulation, NK cells belong to 
the type 1 ILCs. However, in contrast to other ILC1s NK cells are 
developmentally dependent on eomesodermin (eomes), require 
interleukin (IL)-15 instead of IL-7 for cell survival, and kill 
virally infected or tumor cells by exocytosis of cytotoxic granules 
[reviewed in Ref. (1)].

As a first sign of activation mouse and human NK cells upregu-
late the expression of surface CD69, a type II C-type lectin absent 
from resting NK cells (2–5). CD69 is a costimulatory molecule 
which is able to enhance NK cell effector functions (6). Depending 
on the activation signal NK cells can also produce soluble media-
tors other than IFN-γ including pro- [e.g., tumor necrosis factor 
(TNF)] or anti-inflammatory cytokines (e.g., IL-10), growth 
factors (e.g. granulocyte-monocyte colony-stimulating factor), 
and chemokines (e.g., CCL2-5 and CXCL8) [reviewed in Ref. 
(7)]. Based on these properties, mouse and human NK cells exert 
various immunoregulatory functions and contribute not only to 
the antitumor response, but also to the defense against viruses, 
bacteria, fungi, and parasites (8–15).

To acquire full effector capacity NK cells require priming by 
cytokines and accessory cells such as dendritic cells (DCs) (16–19). 
Cytokines that activate human NK cells include IFN-α/β (20, 21), 
IL-1 (22), IL-2 (23), IL-12 (24), IL-15, IL-18 (25), IL-21 (26), and 
IL-27 (27). In most cases, a combination of at least two cytokines 
is needed to achieve a full NK cell response. In addition, NK cells 
can also be activated by ligation of pattern recognition receptors 
such as toll-like receptors (TLRs) or by differential engagement 
of activating and inhibitory NK cell receptors [reviewed in Ref. 
(7, 28)]. One of the NK activating receptors, NKp46 [syn. natural 
cytotoxicity triggering receptor (NCR)1] represents the most 
specific NK cell marker in mammalian organisms (29). Besides 
NKp46, CD56, also known as neural cell adhesion molecule 1 
(NCAM1), is commonly used to define human NK  cells as 
CD56+CD3− cells. In humans, the two main NK cell effector func-
tions, cytotoxicity and cytokine production, have been associated 
with two distinct NK cell subsets: CD56brightCD16− NK cells that 
predominate in lymphatic tissues and are specialized in IFN-γ 
secretion, and CD56dimCD16+ NK cells that are mainly present in 
peripheral blood and show cytotoxic activity (30, 31). However, 
dependent on the mode of activation, both NK cell subpopula-
tions may also exhibit the “non-specialized” NK  cell effector 
function (32–34). The function of CD56 on NK cells is largely 
unknown, but published data indicate a relationship between the 
height of CD56 expression and the degree of activation (35).

Leishmania are protozoan parasites with a dimorphic cell cycle. 
The flagellated, promastigote form of Leishmania is transmitted 
by the bites of sand flies. In the mammalian host, the promastig-
otes are endocytosed by phagocytic cells and transform into the 
aflagellated stage (amastigotes) that replicates within phago(lyso)
somes (36). Depending on the Leishmania species and strain 
and the immune response and genetic background of the host, 

infections can be asymptomatic, lead to self-healing or chronic 
cutaneous leishmaniasis (CL; e.g., Leishmania major, Leishmania 
mexicana) or non-healing, progressive mucocutaneous leishma-
niasis (e.g., Leishmania braziliensis), or can cause visceral leish-
maniasis (VL; Leishmania infantum and Leishmania donovani) 
due to systemic spreading of the parasites (37). Experimental 
animal models of CL and VL led to the identification of the key 
immune mechanisms required for the control of infection, which 
include the generation of IL-12 and TNF, the expansion of IFN-γ-
producing CD4+ and CD8+ T cells and the induction of antileish-
manial effector pathways such as inducible nitric oxide synthase 
(iNOS). By contrast, induction of macrophage-deactivating 
cytokines such as IL-10 and transforming growth factor (TGF) β 
as well as overshooting production of Th2 cytokines were associ-
ated with disease progression [reviewed in Ref. (38–40)]. Many 
of the above-mentioned mechanisms also hold true in human 
leishmaniasis, as biopsies of chronic CL lesions and leukocytes of 
VL patients displayed high IL-10 and TGFβ content, whereas cells 
of cured patients produced IL-12 and IFN-γ (41–46).

Natural killer cells were found to participate in the innate 
control of Leishmania in infected mice but were not essential for 
generating a Th1 response and ultimate healing of the disease 
[reviewed in Ref. (13)]. During later stages of VL, mouse NK cells 
showed adverse effects and inhibited protective immunity in an 
IL-10-dependent manner (47). The protective function of NK cells 
in murine leishmaniasis is largely due to their release of IFN-γ and 
subsequent stimulation of iNOS-dependent killing of parasites, as 
they were not able to recognize Leishmania-infected host cells 
as targets for direct cytolysis in  vitro and in  vivo (48). During 
the early phase of infection, NK  cell activation in Leishmania-
infected mice required DC- and TLR9-dependent production of 
IL-12, T cell-mediated release of IL-2, and the presence of IL-18 
(18, 49, 50). In L. major infections of mice, IFN-α/β was neces-
sary for full NK cell activation (51). Leishmania parasites failed to 
directly activate mouse NK cells (18).

Several observations argue for a protective role of NK  cells 
also in human leishmaniasis. These include (a) a reduced NK cell 
number in the blood of patients with acute VL that was restored 
after successful chemotherapy; (b) the influx of NK  cells into 
lesions of CL patients, who showed suppressed NK cell cytotox-
icity during active disease, but positive response to treatment 
(52–54); and (c) a reduced number, TLR expression and IFN-γ 
and TNF-production by NK cells in patients with diffuse as com-
pared with localized CL due to L. mexicana infection (55, 56). 
Unlike to murine NK cells, mechanisms of human NK cell activa-
tion are less clear. Some studies claimed indirect stimulation of 
human blood NK cells by accessory cells releasing cytokines after 
contact to Leishmania (57–59). Other reports suggested direct 
activation of NK  cells by Leishmania in a lipophosphoglycan 
(LPG)/TLR2-dependent or LPG-independent manner (60, 61) 
or even excluded a NK  cell IFN-γ response in Leishmania- or 
Leishmania antigen-stimulated peripheral blood mononuclear 
cells (PBMCs) (62, 63).

To define the activation signals required for a human NK cell 
effector response to Leishmania parasites and to address the ques-
tion whether there are differences between Leishmania species, 
we performed cocultures of human PBMCs or highly purified 
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cell populations from healthy German volunteers with four 
different Leishmania species and analyzed the NK cell response. 
The data obtained show that NK cells cannot be directly activated 
by Leishmania promastigotes but require cytokine signals from 
monocytes.

MaTerials anD MeThODs

Leishmania Parasites
Promastigotes of the following Leishmania species and strains 
were used: L. infantum MHOM/DE/98/LUB1 [isolated in our 
laboratory from bone marrow (BM) of a German patient with 
VL] (64), L. infantum MHOM/DE/2012/VA21737 (isolated in our 
laboratory from BM of a German patient with VL), L. infantum 
MHOM/DE/2014/VA20763 (isolated in our laboratory from the 
skin lesion of a Croatian patient with CL), L. infantum MCAN/
ES/2010/BON (isolated in our laboratory from peripheral blood 
of a Swiss dog with VL), L. major MHOM/IL/1981/FEBNI 
(isolated from the skin lesion of an Israeli patient with CL) (65), 
L. mexicana MNYC/BZ/1962/M379 [isolated from a vesper rat 
(ATCC® 50156™); kindly provided by Sigrid Roberts, Hillsboro, 
OR, USA] and L. donovani (MHOM/SD/1962/1S-CL2D clonal 
line LdBob; originally isolated from a Sudanese patient with VL; 
kindly provided by Steve Beverley, St. Louis, MO, USA) (66). In 
case of L. infantum, the strain MHOM/DE/98/LUB1 was used 
unless otherwise stated. For all strains, aliquots of a promastigote 
culture (derived from amastigotes isolated from experimentally 
infected mice) were frozen after only two to three in vitro pas-
sages for expansion. All experiments were performed with freshly 
thawed aliquots of these promastigotes which were grown at 
28°C/5% CO2/95% humidified air in modified Schneider’s 
Drosophila insect medium as described (67) for a maximum of 
six in vitro passages. For fixation of promastigotes, parasites were 
incubated for 10 min in 4% paraformaldehyde (Pfa) at room tem-
perature (RT) followed by three washes with PBS. Freeze–thaw 
(ft) lysates of Leishmania promastigotes were generated by four 
cycles of freezing at −80°C and thawing at RT.

PBMc Preparation and Purification of 
Different cell Populations from the Blood
Mononuclear cells from EDTA-anticoagulated human periph-
eral blood (PBMCs) of healthy human volunteers living in 
Erlangen and without any history of leishmaniasis were isolated 
using density centrifugation (1.077  g/ml Biocoll, Biochrom). 
For generation of autologous plasma, blood was first centri-
fuged, and the resulting plasma supernatant (SN) was heat 
inactivated (56°C, 30  min) and filtered, while the remaining 
cell pellet was resuspended in PBS to proceed with PBMC 
preparation. Different cell populations of PBMCs including 
CD3+CD56− T  cells, CD19+ B  cells, CD56+CD3− NK  cells, 
CD14+ monocytes, CD14highCD16−CCR2high classical mono-
cytes, CD14lowCD16highCCR2− non-classical monocytes, and 
CD14highCD16lowCCR2+ intermediate monocytes were purified by 
cell sorting using the FACS Aria II instrument (BD Biosciences). 
Purification of CD1c+ DCs was performed as described with slight 
modifications (68). Briefly, leukocyte reduction cones retrieved 

from anonymous healthy adult donors were used as source 
for PBMCs. CD1c+ DCs were then enriched with the EasySep 
Pan-DC Pre-Enrichment Kit (Stemcell Technologies) and iso-
lated by cell sorting using an FACS Aria II (BD Bioscience) as 
CD3−CD14−CD19−CD20−CD56−HLA-DR+CD1c+CD11c+ cells.  
All sorted cell populations showed a purity of >96%. For immu-
nofluorescence analysis, monocytes were purified by negative 
selection using the Monocyte Isolation Kit II (Miltenyi Biotech) 
following the manufacturer’s instructions.

culture and stimulation of cells
Human leukocytes with or without Leishmania promastigotes 
were cultured in 96-well plates (PBMCs: 5 × 105 cells/well, 200 µl; 
purified NK cells: 0.5–1.5 × 105/well depending on the total recov-
ery, 200 µl), 48-well plates (PBMCs: 106 cells/well, total volume 
500 µl; purified monocytes: 5 × 105/well, 500 µl), or in 24-well 
plates with a transwell (TW) insert (0.4 µm pore size; Corning, 
Wiesbaden, Germany; 5 × 105 NK cells/insert, 0.5–1 × 106 mono-
cytes/bottom well) at 37°C and 5% CO2/95% humidified air for 
20 h using RPMI1640 (Gibco™ Life Technologies; ThermoFisher 
Scientific, cat. no. 21875-034) supplemented with 10 mM HEPES 
(ThermoFisher Scientific), 50  µM 2-mercaptoethanol (Sigma-
Aldrich), 100  U/ml penicillin and 100  µg/ml streptomycin 
(ThermoFisher Scientific), and 10% heat-inactivated autologous 
plasma. Leishmania promastigotes were added at different para-
site/host cell ratios [multiplicity of infection (MOI) 0.2, 1, 5, 10, 
or 33]. Pfa-fixed Leishmania promastigotes or Leishmania freeze–
thaw lysate were used in analogy to the MOI of viable parasites. 
When different purified leukocyte populations (e.g., NK cell and 
monocytes) were cocultured with Leishmania promastigotes, 
cell populations were used at the same ratios as present in non-
separated PBMCs of this donor, unless otherwise stated. In some 
of the experiments, leukocyte/promastigote cocultures were incu-
bated in the presence of specific blocking antibodies (Abs) against 
different cytokines [sheep-anti-IFN-α (1:350; 10,000 neutralizing 
units/ml) or sheep-anti-IFN-β antiserum (1:3; 1,000 neutralizing 
units/ml), obtained from the NIAID Repository, Braton Biotech 
Inc., Rockville, MD, USA; mouse-anti-IL-1β, 10 µg/ml, CRM56, 
eBioscience/ThermoFisher Scientific; mouse-anti-IL-2, 1 µg/ml, 
AB12-3G4, eBioscience/ThermoFisher Scientific; rat-anti-IL-6, 
5  µg/ml, MQ2-13A5, BioLegend; mouse-anti-IL-12/IL-23p40, 
20  µg/ml, C11.5, BioLegend; mouse-anti-IL-15, 1  µg/ml, ct2n, 
eBioscience/ThermoFisher Scientific; and mouse-anti-IL-18, 
1.5  µg/ml, 125-2H, MBL] or the respective control sera or 
isotype control Abs. To verify the efficacy of the Ab-treatment, 
cells were stimulated with the appropriate recombinant cytokine. 
Cytokines/chemokines used were as follows: huIFN-α and 
huIFN-β (100  U/ml; NIAID Repository, Braton Biotech Inc., 
Rockville, MD, USA), rhuIL-1β (20 ng/ml, PeproTech), rhuIL-2 
(200 U/ml; Chiron, Emeryville, CA, USA), rhuIL-4 (250 U/ml, 
PeproTech), rhuIL-6 (10  ng/ml, BioLegend), rhuIL-8 (10  ng/
ml, BioLegend), rhuIL-12p70 (10  ng/ml, PeproTech), rhuIL-15 
(12 ng/ml, PeproTech), rhuIL-18 (10 ng/ml, MBL), and rhuMIP1α 
(20 ng/ml, BioLegend). In addition, PBMCs or purified NK cells 
were stimulated with cell culture SNs (vol/vol 20–80%) of previ-
ous leukocyte/Leishmania cocultures of the same donor. In some 
cases, the SNs were incubated with blocking Abs to cytokines (see 
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above) for 1–2 h at 37°C and 5% CO2/95% humidified air before 
being added to freshly isolated cells.

As a positive control for the stimulation of DCs resiquimod 
(R848, 5 µg/ml, InvivoGen), a TLR7/8 agonist, was used.

cytokine Measurements in cell culture 
sns
Commercial ELISA kits were used for determining the 
content of human IL-2, IL-6, IL-18, or IL-12p35/70 (eBiosci-
ence/ThermoFisher Scientific) and IL-10 or IL-12/IL-23p40 
(BioLegend) in culture SNs. Multiplex ELISA was performed 
using the ProcartaPlex® Multiplex Immunoassay (Human 
Cytokine/Chemokine/Growth Factor Panel 1, 45 plex; eBiosci-
ence/ThermoFisher Scientific), which was analyzed with a 
MAGPIX® instrument and the xPONENT® software (eBiosci-
ence/ThermoFisher Scientific).

Flow cytometry
For surface phenotyping and cell sorting of freshly isolated or 
cultured leukocytes, fluorochrome-labeled or biotinylated Abs 
against the following antigens were used (all from eBioscience/
ThermoFisher Scientific, unless otherwise stated): CD3ε (OKT3, 
FITC, PerCP-Cy5.5, biotinylated), CD11b (ICRF44, V450, BD 
Biosciences), CD11c (3.9, PerCP-eflour®710), CD14 (61D3, 
FITC), CD16 (CB16, PerCP-eflour®710, eflour®450), CD19 
(HIB19, PE, eflour®450), CD25 (BC96, PE-Cy7), CD56 (CMSSB, 
PE-Cy7, APC), CD69 (FN50, PerCP-Cy5.5, BioLegend), 
CD192/CCR2 (K036C2, PerCP-Cy5.5, PE-Cy7; BioLegend), 
and CD335/Nkp46 (9E2, PE, Miltenyi Biotech). Staining with 
biotinylated Abs was followed by incubation with fluorochrome 
(FITC or APC)-labeled streptavidin (BD Biosciences) to allow 
detection.

Staining of blood CD1c+ DCs was done as described with 
minor modifications (68). Briefly, after enrichment of human 
DCs with the EasySep Pan-DC Pre-Enrichment Kit (Stemcell 
Technologies), cells were stained with fluorochrome-coupled 
Abs against CD1c (L161, APC/Cy7, BioLegend), CD3 (UCHT1, 
BUV395, BD Bioscience), CD11b (M1/70, Alexa Fluor 700, 
BioLegend), CD11c (3.9, PE/Cy7, BioLegend), CD14 (HCD14, 
Alexa Fluor 700, BioLegend), CD19 (HIB19, V450, BD 
Bioscience), CD20 (2H7, eflour®450), CD56 (5.1H11, Brilliant 
Violet 421, BioLegend), CD123 (6H6, BV605, BioLegend), 
CD141 (1A4, Brilliant Violet 711, BD Bioscience), CD303a 
(201A, PerCP-Cy5.5, BioLegend), and HLA-DR (L243, Brilliant 
Violet 510, BioLegend) for 30 min on ice.

The specificity of the stainings was verified by use of isotype 
control Abs. Cells were analyzed with an FACS Canto II system 
and Diva 6.1.2 (both BD Biosciences) and FlowJo 10.0.7 (FlowJo 
LLC, Ashland, OR, USA) software. DCs were analyzed with 
an FACS LSRFortessa™. For intracellular staining of IFN-γ, 
GolgiStop™ (1:1,500 µg/ml, BD Biosciences) was added during 
the final 6–10 h of cell culture to prevent secretion of cytokines. 
After staining of surface molecules, cells were fixed by Cytofix/
Cytoperm™ (BD Biosciences), washed twice with a saponin-
containing buffer, and stained for intracellular accumulated 
IFN-γ (α-huIFN-γ, 4S.B3, APC) (18).

confocal laser scanning Fluorescence 
Microscopy (clsFM) of infected 
Monocytes
After coculture of untouched purified monocytes with 
Leishmania promastigotes (MOI 10) for 20 h, 2.5 × 105 cells in 
30 µl were transferred to the marked reaction field of adhesion 
slides (Marienfeld Laboratory Glassware) prepared as recom-
mended by the manufacturer. After cell adhesion, slides were 
washed twice in PBS buffer and cells were fixed with 4% Pfa. Fixed 
monocytes were either directly stained or additionally permeabi-
lized with methanol (−20°C) before staining. For IL-18 staining, 
non-specific binding sites were blocked with PBS/2% BSA/10% 
normal goat serum and cells were stained with mouse-anti-IL-18 
monoclonal Ab (125-2H, MBL) overnight at 4°C. As specificity 
control, the mouse-anti-IL-18 mAb was pretreated with rhuIL-
18 (1.2 µg/ml, 30 min, 37°C). All Abs were diluted in PBS/0.5% 
BSA/0.5% normal goat serum. After washing with PBS/0.1% 
Tween Alexa Fluor 568-conjugated goat anti-mouse secondary 
Abs (ThermoFisher Scientific) were added for 30 min at RT. Cell 
nuclei were visualized by DAPI staining. Slides were mounted 
in Vectashield (Vector laboratories) and cover slips, dried in the 
dark for at least 12 h at 4°C, and analyzed by CLSFM (LSM700, 
Zeiss) using a 63× objective. Image processing was performed 
using the ZEN software 2009 (Zeiss).

cytotoxicity assay
Peripheral blood mononuclear cells (with the percentage of 
Nkp46+CD3− NK  cells determined by flow cytometry) were 
added to K562 tumor target cells in NK cell/target cell ratios of 
20:1, 10:1, 5:1, and 2.5:1. A standard chromium-51 release assay 
was performed (48). Briefly, K562 tumor cells were labeled with 
~150 μCi 51Cr (Perkin-Elmer) for 90 min. Cocultures of effector 
and target cells were incubated in complete RPMI1640 medium 
containing 10% heat-inactivated fetal calf serum (Sigma-Aldrich, 
cat. no. F-7524, lot. no. 036K3397) for 4  h. The release of 51Cr 
into the SNs was measured as counts per minute (cpm) using a 
TopCount NXT microplate gamma counter (Perkin-Elmer). Based 
on the spontaneous (target cells alone) and the maximum release 
(51Cr-labeled cells directly added to the LUMA measurement 
plate) % specific lysis was calculated as (cpmsample − cpmspontaneous)/
(cpmmaximum − cpmspontaneous) × 100.

rna Preparation and Quantitative rT-Pcr
Total RNA was prepared with the RNeasy Mini Kit (Qiagen). cDNA 
synthesis and quantitative RT-PCR analysis were performed (49) 
using the following assays: NCAM1 (CD56) (Hs00941830_m1), 
GAPDH (Hs02758991_g1).

statistical analysis
Results were displayed as mean ± SEM or as median and were sta-
tistically analyzed by the Mann–Whitney U test using GraphPad 
Prism software v.4. Significant differences between unstimulated 
and stimulated samples were marked by asterisks, significant 
differences between stimulated samples by diamonds. Significant 
p values are indicated as follows: *,#p  <  0.05; **,##p  <  0.01; 
***,###p < 0.001.
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FigUre 1 | CD69 is upregulated on natural killer (NK) cells after contact with Leishmania. Human peripheral blood mononuclear cells were cocultured for 20 h  
with Leishmania promastigotes of different species (a), strains (B), amounts (c), or integrity (D), and with or without host cell/parasite contact (e) or interleukin 
(IL)-12 and IL-18 (10 ng/ml) (a,B), followed by surface expression analysis of CD69 on NKp46+CD3− NK cells by flow cytometry. Unless otherwise indicated the 
multiplicity of infection (MOI) was 10. (a) Results of 129/117/107/83/21/88 blood samples for the six stimulations. Medians are indicated by red lines. FACS plots 
show results of NKp46+CD3− NK cells of one representative experiment. (B) Leishmania infantum strains isolated from human patients with visceral leishmaniasis (VL) 
(VL1, VL2) or CL or a dog [canine leishmaniasis (CanL)]. Mean ± SEM of 9/9/9/9/7/9 donors. (c) Mean ± SEM of 119/43/17/119 donors for the four stimulations. 
(D) Mean ± SEM of 22/22/18/18 (viable), 8/9/6 [paraformaldehyde (Pfa)-fixed], and 17/15/14 [freeze–thaw lysate (Ft-lysate)] donors. (e) Mean ± SEM of six donors. 
Abbreviation: TW, transwell. *,#p < 0.05; **,##p < 0.01; and ***,###p < 0.001 two-tailed Mann–Whitney U test.
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resUlTs

nK cells within PBMcs, but not nK cells 
alone Upregulate cD69 in response to 
Leishmania
To investigate whether Leishmania parasites themselves and/
or host cell-derived factors activate human NK cells, PBMCs of 
healthy volunteers without history of leishmaniasis were cultured 
in the presence of promastigotes of different Leishmania species. 
Blood NK  cells gated as NKp46+CD3− viable single cells were 
analyzed for surface expression of the early activation marker 
CD69 by flow cytometry after 6, 12, and 20 h of incubation. As 
induction of CD69 was most prominent after 20 h (Figure S1 in 
Supplementary Material) and the viability of NK cells decreased 
thereafter, this time point was chosen for further analyses. 
Stimulation with promastigotes of all Leishmania species tested 
induced upregulation of CD69 on human NK  cells in a large 
number of different blood donors (total of 36), most of which were 
tested several times in independent experiments (Figure  1A). 

The average induction of CD69+ NK  cells by L. infantum was 
lower than by L. major, L. mexicana, and L. donovani. There were 
no differences observed between viscerotropic and dermotropic 
human strains or a canine strain of L. infantum (Figure 1B). The 
percentage of CD69+ NK cells increased with the parasite/host 
cell ratio used (Figure 1C). Fixed or lysed parasites still caused an 
induction of CD69 on NK cells, which, however, was tentatively 
or significantly reduced when compared with viable parasites 
(Figure  1D). By contrast, CD69 induction on NK  cells was 
abolished when Leishmania promastigotes were separated from 
PBMCs by a membrane (pore size 0.4 µm) (Figure 1E).

Having seen that direct contact between Leishmania and 
NK cells or other cell types within the PBMC culture was nec-
essary to upregulate CD69, we next investigated whether the 
parasite was able to directly activate human NK  cells. To this 
end, highly purified CD3−NKp46+ NK  cells as well as whole 
PBMCs of the very same donor were stimulated by promastigotes 
(Figure  2A). Whereas NK  cells within the PBMC/Leishmania 
coculture readily upregulated CD69, purified NK cells failed to 
do so, irrespective of the Leishmania species used. From these 
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FigUre 2 | Upregulation of CD69 on natural killer (NK) cells after coculture with Leishmania requires the presence of monocytes. (a) Peripheral blood mononuclear 
cells (PBMCs) or sorted NKp46+CD3− NK cells with or without autologous, sorted CD3+NKp46− T cells, CD19+ B cells, or CD14+ monocytes were cocultured with 
Leishmania spp. promastigotes (multiplicity of infection 10). (B) Using the surface markers CD16 and CCR2, classical, intermediate, or non-classical CD14+ 
monocytes were sorted and cocultured with autologous sorted NK cells and Leishmania spp. promastigotes (MOI 33). After 20 h, surface expression of CD69 on 
NKp46+CD3− NK cells was determined by flow cytometry. Mean ± SEM of (a) 15/14/14/7 (PBMC/NK + Mo), 15/14/14/4 (NK), and 7/7/6/2 (NK + T/NK + B) and 
(B) 5/5/4/4 donors for the four stimulations. #p < 0.05, ##p < 0.01, and ###p < 0.001 two-tailed Mann–Whitney U test.
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data we conclude that the upregulation of CD69 on NK cells in 
response to Leishmania is dependent on the presence of acces-
sory cells.

Upregulation of cD69 on nK cells 
requires infected Monocytes Trans-
Presenting il-18
To elucidate which additional cell population is needed 
to activate human NK  cells in response to promastigotes, 
CD3+Nkp46− T  cells, CD19+ B  cells, and CD14+ monocytes 
were sorted and added separately to a coculture of Leishmania 
and purified NK cells of the same donor. Addition of monocytes 
to the NK cell/parasite culture restored induction of CD69 on 
NK cells to a similar level as observed in whole PBMC cocultures, 
whereas addition of T or B cells did not support the expression 
of CD69 on NK cells (Figure 2A). As human CD14+ monocytes 
are subdivided in classical (cMo, CD14highCD16−CCR2high), 
intermediate (intMo, CD14highCD16lowCCR2+), and non-
classical monocytes (ncMo, CD14lowCD16highCCR2−) (69), the 
three subpopulations were purified and evaluated for their 
capacity to induce CD69 on NK cells after a 20 h coculture with 
Leishmania and purified NK cells. All three types of monocytes 
were able to induce CD69 on NK cells in response to Leishmania 
(Figure 2B).

To define whether infected monocytes stimulated NK cells 
via a soluble factor or by a cell contact-dependent mecha-
nism, a TW system was used. Whereas NK  cells of a mixed 
NK cell/monocyte/Leishmania culture showed an increase in 
CD69 expression after 20 h of incubation, NK cells that were 
separated from infected monocytes by a membrane did not 
(Figure 3). Likewise, NK cells did not become activated in TW 
experiments, in which NK cells and Leishmania were separated 

from uninfected monocytes (two independent experiments, 
data not shown). Thus, direct contact between infected human 
monocytes and NK  cells is essential to upregulate CD69 on 
NK cells.

In murine leishmaniasis NK  cell activation is mediated by 
cytokines [reviewed in Ref. (13)]. We therefore hypothesized 
that this might also apply for human NK cells and screened for 
NK cell-activating cytokines that are trans-presented by myeloid 
cells to the respective receptor on NK cells without being neces-
sarily secreted. As both IL-15 and IL-18 were reported to be 
trans-presented by human monocytes (70, 71), we tested whether 
they are involved in the induction of CD69. Using neutralizing 
Abs, we found that the expression of CD69 on NK  cells in 
infected PBMCs was partially dependent on IL-18 (Figure 4A). 
In the case of NK  cell/monocyte/Leishmania cocultures, a 
similar effect was observed, which, however, did not quite reach 
the level of significance (Figure  4A). By contrast, neutraliza-
tion of IL-15 did not affect the expression of CD69 on NK cells 
(Figure  4B). Two observations argue for monocyte-mediated 
trans-presentation rather than secretion of IL-18: first, in most 
of the SNs of PBMC/Leishmania, NK cell/monocyte/Leishmania 
or monocyte/Leishmania cocultures IL-18 was not measurable 
by ELISA (detection limit was 20 pg/ml); only in few of them 
(mostly after L. major stimulation) low levels of IL-18 (≤500 pg/
ml) were found (Table S1 in Supplementary Material). Second, 
IL-18 was visualized on the surface of purified monocytes which 
had been in contact with L. major for 20  h and were stained 
for IL-18 after fixation with Pfa without permeabilization 
(Figure 5). Permeabilization of infected monocytes intensified 
the IL-18 staining, because intracellular IL-18 became addition-
ally detectable (Figure  5). Together, these data suggest that 
Leishmania-infected monocytes trans-present IL-18 to human 
NK cells.
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FigUre 3 | CD69 induction on natural killer (NK) cells requires contact with 
infected monocytes. Sorted NKp46+CD3− NK cells and autologous sorted 
CD14+ monocytes were cocultured in the presence of Leishmania spp. 
promastigotes (multiplicity of infection 10 relative to the number of NK cells), 
either in one single well or in a transwell (TW) system in which the NK cells (in 
the insert) were separated from the monocytes and Leishmania (in the 
bottom well) by a membrane (pore size 0.4 µm). After 20 h, CD69 surface 
expression of NKp46+CD3− NK cells was determined by flow cytometry. 
Mean ± SEM of 6/5/6/3 and 3/5/6/3 donors for the four stimulations.

FigUre 4 | Upregulation of CD69 on natural killer (NK) cells depends on interleukin (IL)-18. Peripheral blood mononuclear cells (PBMCs) or sorted NKp46+CD3− 
NK cells ± autologous, sorted CD14+ monocytes were cocultured with Leishmania spp. promastigotes (multiplicity of infection 10) in the presence or absence of 
neutralizing antibodies against (a) IL-18 (1.5 µg/ml) or (B) IL-15 (1 µg/ml). After 20 h, the CD69 surface expression of NKp46+CD3− NK cells was determined by flow 
cytometry. Mean ± SEM of (a) 16/15/16/8/5 (PBMCs) or 8/8/8/5/6 (NK + Mo) donors and (B) 19/8/6/3/10 (PBMCs) or 2/2/2/2/2 (NK + Mo) donors for the five 
different stimulation conditions. #p < 0.05, ##p < 0.01, and ###p < 0.001 two-tailed Mann–Whitney U test.
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a heat-labile soluble Factor of 
Monocyte/Leishmania cocultures 
contributes to the Upregulation of cD69 
on human nK cells
To investigate whether soluble factors released by infected 
monocytes are additionally involved in human NK  cell activa-
tion, freshly isolated PBMCs or purified NK cells were incubated 
with culture SNs of Leishmania-stimulated (a) PBMCs, (b) 
purified NK  cells (with or without monocytes), or (c) purified 

monocytes, all from the same blood donor. SNs of host cell-free 
Leishmania cultures were included as control. In the presence of 
SNs from previous PBMC/Leishmania or monocyte/Leishmania 
cultures, both NK  cells within PBMCs and purified NK  cells 
showed an upregulation of CD69, indicating that monocytes and/
or Leishmania release a soluble factor after contact to each other 
that activates NK  cells; SNs of promastigotes cultured without 
host cells had no effect (Figure  6A, upper and lower panels). 
The stimulatory effect of SNs derived from PBMC/Leishmania 
cocultures was concentration-dependent and, except for L. mexi-
cana, as strong as direct stimulation of PBMCs by the parasite 
(Figures 6B,C). SNs of PBMCs incubated with dead parasites did 
not upregulate CD69 on NK  cells (Figure  6D). The activity of 
the SNs was also lost, when they were boiled before addition to 
the PBMCs. By contrast, filtration (pore size 0.22  µm) did not 
influence their activity excluding host cell or parasite debris as 
stimuli (Figure 6E). Together, these data indicate that the NK cell 
stimulating activity of the SNs presumably results from a heat-
labile protein released by infected monocytes.

Next, we analyzed the spectrum of cytokines and chemokines 
secreted by Leishmania-activated monocyte/NK cell cultures of 
three different donors. We focused on L. major, because SNs from 
L. major-stimulated cell cultures were on average most potent in 
upregulating CD69 on NK  cells. Using a Procarta® Multiplex 
Immunoassay, substantial amounts of several cytokines and 
chemokines were measured in the SNs of all three tested individu-
als (Table S2 in Supplementary Material). In further experiments, 
we concentrated on those factors that were strongly induced and 
had already been linked to NK cell activation (IL-1β, IL-6, IL-8, 
IL-18, and MIP-1α) (72–78). In addition, IL-2, IL-12, IL-15, 
IL-21, and IFN-α/β, all known as NK cell stimulatory cytokines 
(7), were included in the analysis. IL-12p40 protein was detected 
in low amounts in the SNs of Leishmania-stimulated PBMCs 
but was absent when monocytes had been depleted (Figure 6F), 
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FigUre 5 | Interleukin (IL)-18 is detectable on fixed, but non-permeabilized 
monocytes after exposure to Leishmania. Purified CD14+ monocytes 
attached to an adhesion slide were incubated with or without Leishmania 
major promastigotes (multiplicity of infection 10) for 20 h. Thereafter, 
monocytes were either fixed with paraformaldehyde (Pfa) or fixed with Pfa 
and permeabilized with methanol, before being stained for IL-18 (white) and 
with DAPI (blue). As controls, the mouse-anti-IL-18 antibody (Ab) was 
pre-absorbed with rhuL-18, or the cells were incubated with the secondary 
Ab alone. Representative images of one of three independent experiments 
are shown.
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indicating that it is released by Leishmania-triggered monocytes. 
The reason for the differential induction of IL-12p40 by the three 
Leishmania species (Figure 6F) tested is currently unknown, but 
is in line with previous observations that parasite species causing 
self-healing CL (L. major) elicit higher production of IL-12 as 
compared to parasite species associated with visceral disease (L. 
donovani) (79). Upregulation of CD69 on NK cells was clearly 
seen after stimulation of PBMCs with IL-2, IL-15, IL-18, or 
IFN-α/β, to a minor extent also with IL-1β and IL-6, but was not 
detectable following exposure of PBMCs to IL-8, IL-12, IL-21, 
or MIP-1α (Figure  7A). To determine whether one or several 
of the CD69-inducing cytokines represent the crucial NK cell-
stimulatory component within the SNs of PBMC/Leishmania 
cocultures, SNs were preincubated with neutralizing Abs or 
respective isotype controls. We did not observe any alteration in 
NK cell CD69 expression upon addition of individual neutraliz-
ing Abs or combinations thereof, although the stimulatory effect 
of the respective recombinant cytokine was clearly abrogated 
by the Ab treatment (Figure 7B). We conclude that none of the 
CD69-inducing cytokines (IL-1β, IL-2, IL-12, IL-15, IL-18, and 

IFN-α/β) represents the soluble NK  cell stimulating factor in 
supernatants of PBMC/Leishmania cocultures.

il-12 is required to elicit nK cell iFn-γ 
release in response to Leishmania in 
PBMc or nK/Monocyte cultures
Upregulation of CD69 is a first sign of NK  cell activation but 
does not automatically entail the production of IFN-γ required 
for parasite control in mouse and human leishmaniasis (13). We 
therefore analyzed, whether IFN-γ was expressed by Leishmania-
stimulated PBMCs. IFN-γ was neither detectable in culture SNs 
by ELISA (Figure 8A) nor in NK cells by intracellular cytokine 
staining (Figure 8B), whereas stimulation with IL-12/IL-18 elic-
ited a clear IFN-γ response of NK cells (Figures 8A,B). Likewise, 
IL-12/IL-18, but not exposure to Leishmania enhanced the 
cytotoxic activity of NK cells (Figure 8C). Thus, stimulation of 
PBMCs by Leishmania was not sufficient to induce NK cell effec-
tor functions. Interestingly, stimulation of PBMCs with IL-12/18 
and Leishmania promastigotes further increased NK  cell cyto-
toxicity as compared with cells activated by IL-12/IL-18 alone 
(Figure 8C).

To determine whether exogenously added IL-12 and IL-18 dif-
ferentially contributed to the NK cell effector response, PBMCs 
were cocultured with parasites in the presence of either IL-12 or 
IL-18. Whereas IL-18 was largely ineffective (Figure 9A), IL-12 
and Leishmania, but not IL-12 alone, triggered the release of IFN-
γ in PBMC cultures (Figure 9B). Titrating IL-12, a concentration 
of 300  pg/ml was sufficient to induce IFN-γ in the presence 
of Leishmania (Figure  9C). Blockade of IL-18 abolished the 
IL-12/Leishmania-induced IFN-γ response (Figure 9D).

In the mouse system, DCs are IL-12 producers during the early 
phase of Leishmania infection (18, 80). To investigate whether pri-
mary human DCs are capable to respond to Leishmania parasites 
by secreting IL-12, CD1c+ DCs of human PBMCs were purified 
by cell sorting and cultured in the presence of Leishmania pro-
mastigotes. After 20 h, an average of 800 (±116) pg/ml IL-12p40 
(mean  ±  SEM of four donors) was detected in the SNs of the 
DC cultures (Figure 10). By contrast, CD14+ monocytes sorted 
in parallel did not release measurable amounts of IL-12p40 in 
response to Leishmania (Figure 10). Interestingly, when CD1c+ 
DCs were incubated together with parasites and sorted mono-
cytes and NK cells, the 20 h culture SNs contained an increased 
concentration of IL-12p40 (1,485  ±  213  pg/ml, mean  ±  SEM 
of four donors). Also, in the presence of all three host cells and  
L. major parasites low amounts of bioactive IL-12p70 (ca. 90 pg/
ml) became detectable in two of four analyzed donors, whereas 
CD1c+ blood DCs or monocytes alone or cultures of monocytes 
and NK cells failed to generate IL-12p70 in response to Leishmania 
(data not shown).

Taken together, these data demonstrate that the absent NK cell 
effector response in PBMC/Leishmania cocultures is most likely 
due to an insufficient IL-12 production that presumably results 
from the low number of DCs in human PBMCs (68). Once IL-12 
is added (or released by DCs after contact with NK  cells and 
monocytes), endogenous IL-18 (produced and trans-presented 
by monocytes) acts synergistically with the IL-12 to elicit the 
expression of IFN-γ in NK cells.
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FigUre 6 | CD69 on natural killer (NK) cells is induced by a heat-labile soluble factor derived from infected monocytes. Human peripheral blood mononuclear cells 
(PBMCs) [(a) (top panel), (B–e)] or purified NKp46+CD3− NK cells [(a) (bottom panel)] were stimulated with supernatants (SN) of various cell-Leishmania-cocultures 
for 20 h. CD69 expression of NKp46+CD3− NK cells was determined by flow cytometry. Unless otherwise indicated (c), SNs were added (a,B,D,e) at a final 
concentration of 60% (vol/vol) and used untreated (a–D), sterile filtered (e), or heat-inactivated (e). [(a) top panel] Mean ± SEM of 59/59/50/49 (SN PBMC), 4/3/4/3 
(SN NK), 4/4/4/2 (SN NK + Mo), 4/4/4/4 (SN Mo), or 8/8/6 donors (SN Leishmania only). [(a) bottom panel] Mean ± SEM of 7/7/6/5 (SN PBMC), 3/3/2/3 (SN NK), 
or 6/6/6/6 (SN Mo) donors for the four stimulations. (B) Mean ± SEM of 24/23/20/15 donors for the four stimulations. (c) Mean ± SEM of 11/4/3/4 (Leishmania 
spp.), 9/9/7/8 (20% SN), 10/11/7/7 (40% SN), or 9/9/7/9 (80% SN) donors for the four stimulations. (D) Mean ± SEM of seven (SN viable), seven (SN pfa-fixed), and 
four [SN freeze–thaw lysate (ft-lysate)] donors. (e) Mean ± SEM of 10/10/8/10 (SN untreated), 9/9/7/9 (SN filtered), and 9/9/6/8 (SN heat-inactivated) donors for the 
four stimulations. (F) PBMCs or PBMCs depleted of monocytes were cocultured with Leishmania spp. promastigotes (multiplicity of infection 10) for 20 h. The 
concentration of interleukin (IL)-12p40 in culture SNs was determined by ELISA (values below detection limit are marked by triangles). Mean ± SEM of 6/6/5/5 
(PBMC) and 6/5/5/6 (PBMC w/o monocytes) donors for the four stimulations. *,#p < 0.05, **p < 0.01, and ***p < 0.001 two-tailed Mann–Whitney U test.
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expression of cD56 on human nK cells is 
Downregulated after contact with 
Leishmania
When analyzing the activation of NK cells within human PBMCs 
or of sorted NKp46+CD3− human NK cells after coculture with 
Leishmania promastigotes, we noticed that the surface expression 
of the NK cell marker CD56 (NCAM1), whose functional role is still 
unknown, was reduced. The downregulation of CD56 was depend-
ent on the parasite/host cell ratio and the parasite species, with L. 
infantum and L. mexicana causing more pronounced effects than 
L. donovani or L. major (Figures 11A,B). The decrease of CD56 
was observed in both the CD56bright and CD56dim NK cell popula-
tion (data not shown; see also below in Figure 14, panel “medium” 

vs. “L. infantum”). Separation of NK cells and Leishmania using a 
TW culture system abolished the effect (Figure 11C), indicating 
that direct contact between NK cells and parasites was required. 
To exclude that Leishmania (products) occupy certain epitopes 
on NK cells and thereby prevent the detection of CD56, we tested 
different monoclonal Abs against human CD56 (clones CMSSB, 
HCD56, and MEM-188), all of which yielded similar results (data 
not shown). For L. infantum, the decrease in CD56 expression 
was not observed when fixed or lysed instead of viable parasites 
were used, whereas the downregulatory effect of L. major or  
L. mexicana promastigotes on CD56 was maintained even after 
lysis or fixation of the parasites (Figure 11D). A limited, but still 
significant suppression of CD56 was also seen with SNs from pure 
parasite cultures or from PBMC/Leishmania cocultures, but only 
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FigUre 8 | Coculture of peripheral blood mononuclear cells (PBMCs) with Leishmania neither induced natural killer (NK) cell interferon (IFN)-γ response nor NK cell 
cytotoxicity. Human PBMCs were cocultured with Leishmania spp. promastigotes (multiplicity of infection 10) and/or interleukin (IL)-12 and IL-18 (10 ng/ml each) for 
20 h. IFN-γ production was determined by (a,B) ELISA of cell culture supernatants or (B) flow cytometry of intracellular IFN-γ in NKp46+CD3− NK cells. (c) NK cell 
cytotoxicity was determined by measurement of specific lysis of 51Cr-labeled K562 tumor cells in a chromium-release assay. (a) Mean ± SEM of 76/71/55/46/74 
donors for the five stimulations. (B) Mean ± SEM of 17/14/15/8/17 donors for the five stimulations; FACS plots show results of one representative donor.  
(c) Mean ± SEM of six (PBMC) or nine (PBMC + IL-12/18) donors. *,#p < 0.05; **,##p < 0.01; and ***,###p < 0.001 two-tailed Mann–Whitney U test.

FigUre 7 | CD69 upregulation on natural killer (NK) cells by supernatants (SNs) of peripheral blood mononuclear cell (PBMC)/Leishmania cocultures is maintained 
after neutralization of NK cell-activating cytokines. Human PBMCs were stimulated with different (a) recombinant cytokines or (a,B) SNs of PBMC/Leishmania 
cocultures of the respective donors for 20 h, followed by analysis of CD69 surface expression on NKp46+CD3− NK cells by flow cytometry. (B) Before stimulation, 
the cytokines or SNs were pretreated with either one or several neutralizing antibodies (Abs) (37°C, 1–2 h). The concentrations of the cytokines and Abs were as 
described in Section “Materials and Methods.” (a) Mean ± SEM of 57/57/17/11/12/8/19/8/7/3/3 donors for the 11 stimulations. (B) Mean ± SEM of 7/7/7/6/7/7/7 
[SN + anti-interferon (IFN)-α/β, anti-interleukin (IL)-12, and anti-IL-18], 7/7/7/7/6/7 (SN + anti-IL-1β), 9/9/9/7/8/9 (SN + anti-IL-15), 5/5/5/5/5/5 (SN + anti-IL-2), or 
4/4/4/4/4/4 (SN + anti-IL-6) donors for the different stimulations. #p < 0.05, ##p < 0.01, and ###p < 0.001 two-tailed Mann–Whitney U test.
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in the case of viable L. infantum and not with any of the other 
Leishmania species (Figures 12A–C).

As CD56 also exists in a soluble form which is directly secreted 
or released from the cell surface (81, 82), we considered the 
possibility that Leishmania parasites induce CD56 shedding by 
NK cells. However, the concentration of soluble CD56 detected 
in SNs of purified NK cell/Leishmania spp. cocultures was com-
parable to the amount of sCD56 found in SNs of NK cell cultures 
without parasites (Figure  13A). Instead, exposure of sorted 

Nkp46+CD3− NK cells to Leishmania caused a significant reduc-
tion of CD56 mRNA in a dose-dependent manner (Figure 13B). 
Thus, Leishmania-induced transcriptional suppression of CD56 
mRNA rather than shedding of CD56 surface protein accounts 
for the decrease in CD56+ NK cells after contact with Leishmania.

Finally, we addressed the question, whether the Leishmania-
induced down-modulation of CD56 influences NK cell cytokine 
responsiveness. Therefore, PBMCs were simultaneously exposed 
to Leishmania and IL-12/18. As under these conditions the IFN-γ 
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FigUre 9 | Effect of exogenous interleukin (IL)-12 and IL-18 on interferon (IFN)-γ production of natural killer (NK) cells in peripheral blood mononuclear cell 
(PBMC)-Leishmania cocultures. Human PBMCs were cocultured with Leishmania spp. promastigotes (multiplicity of infection 10) in presence or absence of 
exogenous IL-12 and/or IL-18 (10 ng/ml each, or as indicated) and neutralizing IL-18 antibody (1.5 µg/ml) for 20 h. Thereafter, IFN-γ production was measured 
either by ELISA of cell culture supernatants [(a,B) (left graph), (c,D) (left graph)] or by flow cytometry of intracellular IFN-γ in NKp46+CD3− NK cells [(B) (right 
graph), (D) (right graph)]. Values below detection limit are marked by triangles. (a) Mean ± SEM of 6/6/6/3/1/6 donors for the six stimulations. (B) Mean ± SEM of 
22/22/22/21/18/22 (ELISA, left panel) or 9 (ICS, right panel) donors. (c) Mean ± SEM of 6/6/3 donors for the three stimulations (medium, Leishmania infantum, 
and Leishmania major). (D) Mean ± SEM of six (ELISA, left panel) or five (ICS, right panel) donors. *,#p < 0.05, **,##p < 0.01, ###p < 0.001 two-tailed Mann–Whitney 
U test.
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production by NK cells was higher as with cytokine stimulation 
alone and CD56dim/negative NK cells turned out to be strong IFN-γ 
producers (Figure 14), we conclude that a lack of CD56 does not 
hamper NK cell activation by IL-12/IL-18.

DiscUssiOn

Human blood NK  cells will be in contact with Leishmania 
promastigotes during the first hours of natural infection, as the 
sand flies vectors regurgitate the parasites into a blood pool 
generated by laceration of skin capillaries. Previous analyses of 
the effector responses of human blood NK cells to Leishmania 
parasites yielded controversial results and did not identify the 
host-derived signals required for NK cell activation [reviewed in 
Ref. (13); see discussion below]. In this study, we investigated the 

effect of different parasite species and strains and aimed to define 
the cellular and humoral prerequisites for Leishmania-induced 
NK cell activation. We used blood NK cells of volunteers from a 
non-endemic area that were incubated with Leishmania promas-
tigotes for 20 h in the presence of 10% autologous plasma, thus 
mimicking the early phase of infection and the microenviron-
ment of a naïve host during primary infection.

cD69 and activation of human Blood nK 
cells by Leishmania: Monocyte contact 
Dependent vs. soluble signals
Our experiments revealed that efficient upregulation of the early 
activation marker CD69 on Leishmania-stimulated NK  cells 
required (a) cell–cell contact between NK cells and monocytes 
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FigUre 11 | CD56 surface expression on natural killer (NK) cells is 
suppressed after contact with Leishmania promastigotes. (a) Purified 
NKp46+/CD3− NK cells or (B–D) human peripheral blood mononuclear cells 
(PBMCs) were cocultured with viable (a–D), paraformaldehyde (Pfa)-fixed 
(D), or freeze–thaw-lysed (D) Leishmania spp. promastigotes [multiplicity of 
infection (MOI) 10 unless otherwise indicated] for 20 h. CD56 surface 
expression on NKp46+/CD3− NK cells was measured by flow cytometry.  
(a) Mean ± SEM of 17/16/12/12 donors for the four stimulations.  
(B) Mean ± SEM of 132/121/114/97/20 donors for the five stimulations.  
(c) Mean ± SEM of 6/6/6 donors for the three stimulations [transwell (TW)]. 
(D) Mean ± SEM of 22 (medium), 22/17/18 (untreated and viable parasites), 
8/9/6 (Pfa-fixed parasites), or 17/14/14 [freeze–thaw lysate (ft-lysate)] donors. 
*,#p < 0.05; **,##p < 0.01; an ***,###p < 0.001 two-tailed Mann–Whitney U test.

FigUre 10 | Blood CD1c+ dendritic cells (DCs) but not monocytes are a 
source of interleukin (IL)-12p40 in response to Leishmania major. Human 
blood CD1c+ DCs, CD14+ monocytes and NKp46+CD3− natural killer (NK) 
cells were sorted and stimulated by L. major promastigotes (multiplicity of 
infection 10) for 20 h either alone or in combinations. R848 (5 µg/ml) was 
used as control. IL-12p40 content of the cell culture supernatants was 
measured by ELISA. Mean ± SEM of 4/4/3 donors for the three stimulations.
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and (b) a soluble, heat-labile factor released by infected mono-
cytes. This two-signal model is based on the observations that 
on the one hand upregulation of CD69 was prevented following 
physical separation of NK cells and monocytes, whereas on the 
other hand native, but not heat-treated SNs of cocultures of 
viable Leishmania promastigotes with monocytes were able to 
induce CD69 expression on NK  cells. The findings were true 
for all Leishmania species tested [L. infantum (dermotropic and 
viscerotropic strains), L. major, L. mexicana, and L. donovani], 
although the extent of CD69 upregulation varied between the 
numerous donors analyzed and differed significantly between 
Leishmania species.

Several results obtained in this study strongly support the 
idea that IL-18 trans-presented by infected monocytes to 
NK cells constitutes the contact-dependent signal: (i) IL-18 was 
detectable on the surface of non-permeabilized monocytes after 
exposure to Leishmania; (ii) culture SNs of infected monocytes 
contained little or no IL-18; and (iii) neutralizing Abs to IL-18 
largely prevented CD69 induction on NK  cells when added 
directly to PBMC/Leishmania cultures, but did not abolish the 
CD69-inducing activity of SNs from previous PBMC/Leishmania 
cultures. The available data, however, do not formally exclude the 
possibility that pro-IL-18, which lacks a secretory leader sequence, 
is nevertheless locally released into synapses between NK  cells 
and monocytes via directed exocytosis of secretory lysosomes as 
described for NK/DC interactions (83) and that anti-IL-18 is  able 
to access and neutralize IL-18 in such a scenario.

With respect to the soluble factor, which is heat-labile and 
awaits further characterization, the NK cell-activating cytokines 
IFN-α/β, IL-1β, IL-2, IL-6, IL-8, IL-12, IL-15, IL-18, IL-21, and 
MIP-1α were excluded to account for the CD69-upregulating 
effect of the culture SNs. At this stage, we cannot rule out that 
the soluble factor is a Leishmania-derived protein that is only 
released by infected monocytes [e.g., via exosomes (84)], but not 
by the parasite itself, as SNs of pure Leishmania cultures had no 
effect on CD69 expression of NK cells. Considering that culture 
SNs of Leishmania-infected monocytes remained active after 
passage through a 0.22 µm sterile filter, it was unexpected that 
NK  cell activation was completely prevented when monocytes 
and Leishmania were separated from NK  cells by a membrane 
with 0.4 µm pore size using a TW system. A plausible explanation 
is that in case of the culture SNs the starting concentration of the 
unknown factor is much higher (as it accumulated over 20 h), 
whereas in the TW setting the factor is newly produced and only 
slowly builds up.

cD69 and activation of human Blood nK 
cells by Leishmania: Direct vs. indirect 
stimulation
The observation that myeloid cells were necessary to activate 
human NK cells by Leishmania is in line with our observations in 
murine leishmaniasis (18, 49, 80). There are also a few previous 
studies, in which human blood NK cells alone failed to respond 
to Leishmania antigen (57) and required the presence of adherent 
PBMCs (58, 59); however, in these reports only proliferation and 
cytokine production of NK cells, but not their expression of CD69 
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FigUre 12 | Supernatants (SNs) from peripheral blood mononuclear cell (PBMC)/Leishmania infantum cocultures downmodulate CD56 expression on natural killer 
(NK) cells. SNs from PBMC/Leishmania cocultures (multiplicity of infection 10) or from pure Leishmania cultures were used at a concentration of 60% (vol/vol) to 
stimulate (a,c) PBMCs or (B) purified NKp46+/CD3− NK cells for 20 h. CD56 surface expression on NKp46+/CD3− NK cells was determined by flow cytometry. (a) 
Mean ± SEM of 61 (medium), 59/59/53/50/15 (SN PBMC/Leishmania-coculture), or 8/8/6 (SN Leishmania only) donors. (B) Mean ± SEM of eight (medium), eight 
(SN PBMC/Leishmania-coculture), or two (SN Leishmania only) donors. (c) Mean ± SEM of 8/8/8/7/5 donors for the five stimulations. **p < 0.01; and ***p < 0.001 
two-tailed Mann–Whitney U test.

FigUre 13 | Mechanism of Leishmania-induced reduction of surface CD56 
on natural killer (NK) cells. (a) Purified human NKp46+CD3− NK cells were 
cocultured with Leishmania promastigotes [multiplicity of infection (MOI) 10] 
for 20 h. The concentration of soluble CD56 in the cell culture supernatants 
was determined by ELISA. Mean ± SEM of 9/7/6/7/3 donors for the five 
stimulations. (B) Purified human NKp46+CD3− NK cells were cocultured with 
Leishmania promastigotes at different parasite/host cell ratios for 20 h. 
mRNA expression of CD56 was quantified by TaqMan RT-PCR. The 
expression was normalized against the endogenous control (huGAPDH), and 
the fold change was calibrated to the respective medium value. Mean ± SEM 
of 8/3/8/2/5 donors for the five stimulations. *p < 0.05, **p < 0.01, and 
***p < 0.001 two-tailed Mann–Whitney U test.
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were analyzed. On the other hand, our current results clearly 
contrast with earlier findings that viable or dead promastigotes 
of Leishmania aethiopica, L. mexicana, and L. donovani directly 
triggered IFN-γ release by sorted NK cells (60, 61). In one of these 
studies purified Leishmania LPG was claimed to directly bind 

to TLR2 on NK cells (61), whereas Nylen et al. (60) found that 
LPG-deficient L. mexicana mutants were as potent as wild-type 
parasites in activating NK  cells. Notably, the same group later 
failed to recapitulate accessory cell-independent NK cell activa-
tion by Leishmania using two different strains of L. major (85). 
Possible explanations for the lack of direct NK cell stimulation 
by Leishmania in our hands are (a) a higher degree of NK cell 
purity [>96 vs. 90% (60)], (b) a shorter stimulation period [20 
vs. 48 h (60)], and/or (c) the use of blood cells from donors of a 
non-endemic vs. endemic area (61).

The variable degree of monocyte-dependent NK cell activation 
we have seen with the four tested Leishmania species might reflect 
species-specific differences in the monocyte/parasite interaction. 
For example, L. infantum promastigotes were less efficiently 
phagocytosed by human monocytes than L. major promastigotes 
(86), whereas twice as many L. major promastigotes were needed 
to achieve the same infection rate in monocytes as with L. dono-
vani (87). Thus, the differential uptake of Leishmania parasites by 
monocytes exactly correlates with our results on the upregulation 
of CD69 on NK cells (L. donovani > L. major > L. infantum). The 
possibility that differences in CD69 induction are indeed deter-
mined by the infection rate of monocytes is further supported 
by three observations. First, higher parasite/host cell ratios were 
associated with an increased percentage of CD69+ NK cells in the 
culture. Second, fixed parasites, which are morphologically intact 
and therefore likely engage phagocytosis-accelerating receptors 
(36), were more potent in upregulating CD69 than parasite 
lysates. Third, non-classical monocytes, which tentatively showed 
the weakest effect on CD69 induction, were reported to exhibit 
low phagocytic activity (88).

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


14

Messlinger et al. Leishmania and Human NK Cells

Frontiers in Immunology | www.frontiersin.org January 2018 | Volume 9 | Article 24

nK cell effector response upon 
stimulation by Leishmania
Despite induction of CD69 neither NK cells within Leishmania-
stimulated PBMCs nor purified NK cells cocultured with infected 
monocytes produced IFN-γ or showed an upregulation of 
cytotoxic activity. However, the parasites acted as costimulus by 
augmenting IL-12/IL-18-induced NK cytotoxicity in PBMC cul-
tures. Furthermore, NK cells within PBMC/Leishmania cultures 
were capable to secrete IFN-γ following addition of exogenous 
IL-12 (≥300 pg/ml). This result is in accordance with previous 
observations reporting a lack of IFN-γ production by NK cells in 
pure PBMC/promastigote cocultures (62, 63) or in human NK/
DC cocultures after neutralization of IL-12 (89). Furthermore, it 
is known that activation of NK cell effector responses frequently 
requires cooperation between cytokines (e.g., IL-12 and IL-2 or 
IL-15; IL-2 and IL-15; IL-12 and IL-18) (25, 49, 90–92). Especially 
IL-18 was shown to prime NK cells to become responsive to IL-12 
(16, 83, 93). Our results on IL-12- and Leishmania-mediated 
induction of IFN-γ secretion by human NK  cells represents a 
further example of the cooperative interaction between IL-12 
and endogenously generated IL-18 and confirm our findings in 
the mouse (18, 49).

Interleukin-12 production in pure PBMC/Leishmania promas-
tigote cocultures was ineffective. Infected monocytes produced 
only low amounts of IL-12 during the 20 h culture period, and 
DCs, which can release IL-12 in response to Leishmania (79, 94), 

are rare in PBMCs (68). Primary CD1c+ blood DCs stimulated 
by L. major promastigotes secreted IL-12p40 without any further 
maturation signal. In contrast to previous work (94), the sorted 
CD1c+ DCs reacted to promastigotes and not only to amastigotes. 
Coculture of CD1c+ DC with monocytes, NK cells and L. major 
even led to the detection of IL-12p70. As CD1c+ DCs are also 
present in the skin (95), the primary site of Leishmania infection, 
they likely become activated during the early immune reaction 
and might contribute to NK cell activation in situ by release of 
IL-12. Also, in secondary lymphoid organs DCs were reported 
to colocalize with NK cells (89). Thus, close interaction between 
NK  cells, DCs, and infiltrating monocytes during Leishmania 
infection appears plausible also in other organs such as spleen 
and liver, which are main targets of the parasite in VL.

suppression of cD56 by Leishmania
Direct contact of Leishmania promastigotes with NK cells caused 
reduction of CD56 mRNA and protein. While the decrease in 
CD56 mRNA was comparable for L. major, L. infantum, and  
L. mexicana, surface CD56 was less strongly downregulated by  
L. major as compared with L. infantum and L. mexicana. 
Differential secretion or shedding of CD56 was excluded. 
However, as NK cells are able to export CD56 in exosomes (96), 
the divergent regulation of CD56 protein might result from 
Leishmania species-specific induction of CD56+ exosomes and 
their release by NK cells.

FigUre 14 | Suppression of natural killer (NK) cell CD56 expression by Leishmania does not affect cytokine-induced interferon (IFN)-γ production. Human 
peripheral blood mononuclear cells were stimulated by Leishmania promastigotes (multiplicity of infection 10) in the absence or presence of interleukin (IL)-12 and 
IL-18 (10 ng/ml each) for 20 h. Intracellular IFN-γ in NKp46+CD3− NK cells was measured by flow cytometry. Results of one of two donors analyzed are shown.
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