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Perspective on Protein Arginine 
Deiminase Activity—Bicarbonate  
is a pH-independent regulator  
of citrullination
Yebin Zhou*, Nanette Mittereder and Gary P. Sims*

Department of Respiratory, Inflammation, and Autoimmunity, MedImmune LLC, Gaithersburg, MD, United States

Protein citrullination catalyzed by peptidyl arginine deiminase (PADs) is involved in 
autoimmune disease pathogenesis, especially in rheumatoid arthritis. Calcium is a key 
regulator of PAD activity, but under normal physiological conditions it remains uncertain 
how intracellular calcium levels can be raised to sufficiently high levels to activate these 
enzymes. In pursuit of trying to identify other factors that influence PAD activity, we 
identified bicarbonate as a potential regulator of PAD activity. We demonstrate that 
physiological levels of bicarbonate upregulate citrullination by recombinant PAD2/4 and 
endogenous PADs in neutrophils. The impact of bicarbonate is independent of calcium 
and pH. Adding bicarbonate to commercial PAD activity kits could increase assay 
performance and biological relevance. These results suggest that citrullination activity 
is regulated by multiple factors including calcium and bicarbonate. We also provide 
commentary on the current understanding of PAD regulation and future perspective of 
research in this area.
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iNtrODUctiON

Protein citrullination (or deimination) is the conversion of peptidylarginine to citrulline. This 
process is mediated by a family of enzymes; peptidyl arginine deiminase (PADs), including five 
isozymes in human (PAD1-4, PAD6) (1–3). These isozymes are expressed in different tissues and are 
involved in distinct functions. Among them, PAD2 and PAD4 are expressed mainly in leukocytes, 
especially enriched in neutrophils and are widely studied in immune dysregulations. Elevated pro-
tein citrullination was observed in inflamed joints of patients with rheumatoid arthritis (RA) (4–7). 
Autoantibodies against citrullinated proteins (ACPA) are present in approximately 70% of patients 
with RA and are highly diagnostic for the disease (8–10).

Of the five arginine deiminases, only PAD4 contains a nuclear localization sequence and its main 
physiological function appears to be histone citrullination (11, 12). Citrullination regulates binding 
of histone 1 to chromatin, alters the gene expression, and regulates stem cell differentiation (13). 
According to some reports, histone hypercitrullination leads to chromatin decondensation and 
the formation of neutrophil extracellular trap (NET formation) (12, 14). PAD4 activity also regu-
lates antimicrobial defense in soft tissue infections (14). Increased NET formation is evident and 
considered pathogenic in systemic lupus erythematosus and ANCA-associated vasculitis (15–20). 
PAD4 and citrullinated proteins are found in NETs, so, NET formation may be a critical source of 
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citrullinated autoantigen in RA (21–24). Neutrophil hypercitrul-
lination mediated by calcium influx was also found in synovial 
fluid from patients with RA (25). Consequently, PADs are being 
increasingly recognized as therapeutic targets (26). Inhibition of 
PAD activity suppressed pathology in murine models of autoim-
mune disease (27–30). These effects have been attributed mainly 
to the inhibition of PAD4 (31).

Recent studies have focused on PAD activity in pathological 
conditions; however, little is known about the physiological 
functions of PADs, and how these enzymes are regulated at a 
biochemical level (32). It is clear that calcium ions are essential for 
PAD activity. X-ray crystallography has revealed that PAD4 binds 
to five calcium ions (33). Two calcium ions are in the C-terminal 
domain of PAD4 at the bottom of the active domain. The binding 
of those two calcium ions to the acidic concave surface of the 
C-terminal domain is crucial for recognition of the substrate 
and PAD activity (33). Another three calcium ions reside on the 
molecular surface of the PAD4 N-terminal domain, and these 
ions may stabilize protein structure and are important for the full 
activation of PAD4 (34). Other than calcium, reduced glutathione 
(GSH) was recently described as an in vivo PAD co-activator to 
maintain the reduced state of Cys645 in PAD4 catalytic domain 
(Cys647 in PAD2) (35). There could well be an oxidation/reduc-
tion (redox) balance regulation of PAD activity (36).

Here, we demonstrated that bicarbonate is important for optimal 
recombinant PAD2/4 activity. Neutrophil histone citrullination 
and hypercitrullination at physiological calcium concentrations 
was also regulated by bicarbonate. The impact of bicarbonate on 
citrullination was observed at different calcium concentrations 
and was independent of pH. Our work has revealed a previously 
unknown role of bicarbonate on PAD activity regulation. Based 
on these findings, we propose that in vivo PAD activity could be 
under complex regulation by factors including calcium, bicarbo-
nate, and redox.

recOMBiNANt PAD2/4 reQUire 
BicArBONAte FOr OPtiMAL HistONe 
citrULLiNAtiON

To assess inhibitors of PAD activity, various assays are in use, 
which consist of recombinant enzyme, a simple buffer or tissue 
culture media (e.g., Tris–HCl pH 7–8, HBSS, RPMI, or DMEM), 
calcium, a reduction reagent, and an arginine containing substrate. 
A biochemical or antibody-based approach is then used to detect 
the citrullinated substrate. One intriguing difference between 
these citrullination assays is the amount of bicarbonate included 
in the buffer. Human serum contains 17–29 mM bicarbonate (37), 
whereas Tris–HCl buffer contains no bicarbonate, HBSS, RPMI, 
and DMEM media contain 4.17, 23.81, and 44.05 mM of bicarbo-
nate, respectively. Initially, we verified the importance of calcium 
for PAD activity in a histone H3 citrullination assay containing 
HBSS (Figure 1A). We next assessed the impact of bicarbonate on 
PAD4 and PAD2 activity on histone H3 citrullination in DPBS/
HEPES (adjusted to pH 7.2) with 0.9 mM calcium. Increased cit-
rullination was detected with both recombinant PAD4 and PAD2 
in the presence of low amounts of bicarbonate (Figures 1A,B). 

The requirement for bicarbonate appeared greater for PAD4 
than PAD2 activity, since minimal histone H3 citrullination was 
observed with PAD4 in the absence of bicarbonate (Figure 1A). 
PAD2 activity increased with increasing amounts of bicarbonate 
from 1 to 22 mM (Figure 1B). Since the pH was maintained at 
a consistent pH 7.2 in these assays, the results could indicate 
that the impact of bicarbonate on recombinant PAD activity was 
independent of pH.

To further confirm the pH-independent effect of bicarbonate 
and explore the effect of pH on PAD activity, we performed 
histone H3 citrullination with recombinant enzyme under dif-
ferent pH levels adjusted by HCl and NaOH. Both PAD2 and 
PAD4 showed higher activity at pH of 6.4 compared to 7.2 and 
8.0 (Figure 1C). Our data suggest that, for PAD2/4, their optimal 
pH for histone citrullination could be at a more acidic condi-
tion. Since higher bicarbonate levels would increase pH (without 
additional adjustment), these results confirm that bicarbonate 
increases PAD activity independent of pH.

BicArBONAte iMPrOves PAD ActivitY 
iN eLisA-BAseD FiBriNOGeN 
citrULLiNAtiON AssAYs

To verify that the impact of bicarbonate was not limited to his-
tone H3 citrullination or related to the western blot detection 
method, we examined the impact of bicarbonate on an ELISA-
based fibrinogen citrullination assay, again using DPBS/HEPES 
(adjusted to pH7.2) with 0.9 mM calcium. Bicarbonate signifi-
cantly increased fibrinogen citrullination by PAD2 and PAD4 in a 
dose-dependent manner (Figure 1D). These results demonstrate 
that the impact of bicarbonate on PAD activity was independ-
ent of substrates or detection methods and provide additional 
supportive evidence that bicarbonate regulates recombinant PAD 
activity.

BicArBONAte iMPActs NeUtrOPHiL 
HistONe H3 citrULLiNAtiON

To determine if bicarbonate impacts endogenous PAD activity, 
we examined neutrophil citrullination induced by ionomycin-
mediated calcium influx. Interestingly, in the presence of calcium, 
ionomycin-treated neutrophils in DMEM showed much stronger 
histone H3 citrullination when bicarbonate was present (pH was 
adjusted to 7.2 with HEPES in all DMEM media, Figure  2A). 
A previous study suggested that high glucose in diabetes was 
associated with elevated neutrophil PAD4 expression and NET 
formation (38). However, we found that added extracellular 
glucose did not affect ionomycin/calcium-induced citrullination 
(Figure  2A). This suggests that glucose does not impact PAD 
activity directly.

We confirmed that neutrophil histone citrullination was 
also increased with bicarbonate in DPBS, a much simple buffer 
without vitamins, amino acids, and other factors present in tissue 
culture media (Figure 2B).

Taken together, we conclude that bicarbonate promotes intra-
cellular PAD activity.
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FiGUre 1 | Bicarbonate impacts recombinant protein arginine deiminase (PAD) activity. (A) Histone H3 citrullination by recombinant human PAD4 for 1 h  
at 37°C with 5% CO2 in HBSS or DPBS with different bicarbonate concentrations. Total histone H3 was used as loading control. (B) Histone H3 citrullination  
by recombinant human PAD2 for 1 h at 37°C with 5% CO2 in DPBS with different bicarbonate concentrations. Results are representative of three independent 
experiments. (c) Histone H3 citrullination by recombinant human PAD2/4 for 1 h at 37°C with 5% CO2 in DPBS with 0.9 mM calcium under different pH levels  
in the absence of bicarbonate. Total histone H3 was used as loading control. (D) Recombinant human PAD2/4 activity in DPBS with different bicarbonate 
concentrations measured by ELISA-based fibrinogen citrullination assay. r2 values of nonlinear regression curve fit were higher than 0.98 for all conditions.  
Significant increase of PAD activity in DPBS with 25 mM bicarbonate was confirmed with two-way ANOVA analysis (P < 0.0001).
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BicArBONAte iMPActs NeUtrOPHiL 
citrULLiNAtiON At DiFFereNt 
cALciUM LeveLs

Since high levels of calcium are critical for PAD activity, we 
sought to determine if bicarbonate could promote citrullination 

independent of calcium concentrations. Bicarbonate increased 
neutrophil histone H3 citrullination (Figure 2C) and hyper cit-
rullination (Figure 2D) at three different calcium concentrations 
from 0.5 to 2 mM. pH was adjusted to 7.2 with HEPES in DPBS 
and DMEM used. These results demonstrate that bicarbonate 
promotes intracellular citrullination at sub-physiological and 
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FiGUre 2 | Bicarbonate level impacts neutrophil citrullination. (A) Ionomycin-induced neutrophil histone H3 citrullination with HBSS and DMEM (30 min at 37°C  
with 5% CO2). (B) Bicarbonate dose–response of neutrophil histone H3 citrullination stimulated by ionomycin (30 min at 37°C with 5% CO2). GAPDH used  
as loading control. (c) Ionomycin-induced neutrophil histone H3 citrullination with different bicarbonate and calcium levels. (D) Neutrophil hypercitrullination  
detected by anti-citrulline antibody F95 of panel (c). Results are representative of three different donors.
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physiological levels of serum calcium. Although there is a require-
ment for calcium for citrullination, bicarbonate independently 
increases PAD activity.

DiscUssiON

Current research on PAD biology has focused on the role of 
citrullination in disease pathogenesis and efforts to inhibit them. 
Little progress has been made on how PADs are activated and 
their functions under non-pathogenic conditions. The only 
essential factor known for PAD enzyme activity is calcium (1), 
although a reducing environment is also required to prevent 
oxidation of cysteine in the catalytic domain (36). We show for 
the first time that bicarbonate also has a profound impact on the 
activity of recombinant PAD enzymes and intracellular citrul-
lination in neutrophils. The increased PAD activity promoted by 
bicarbonate is independent of its pH buffering capacity, and it acts 
independently of calcium and glucose. Therefore, bicarbonate 
may function as an important regulator of PAD activity.

Bicarbonate is the main buffering component in blood and an 
important in vivo signaling molecule (37, 39). Human serum con-
tains 17–29 mM bicarbonate, which maintains serum pH levels 
at 7.4 (37). Bicarbonate and CO2 concentrations are also essential 
in maintaining optimal tissue culture growth conditions  (40). 
Because of its important role in pH buffering, it is essential to 
separate the impact of pH and bicarbonate in biological functions. 

To focus on the impact of bicarbonate only in citrullination, we 
used HEPES to adjust all media pH to 7.2, then added different 
concentrations of bicarbonate. These results were consistent with 
different media such as DMEM, RPMI (data not shown), and 
DPBS that contained different inorganic ions and other weak acid 
and base-buffering pairs. The effect of bicarbonate on citrullina-
tion was consistent across different media and buffers, further 
demonstrated that the impact was indeed due to bicarbonate, 
independent of pH, and not from many other components in the 
tissue culture media.

Interestingly, we observed that recombinant histone H3 citrul-
lination was increased by both recombinant PAD2 and PAD4 at 
a mildly acidic pH of 6.4. This further confirmed the impact of 
bicarbonate was independent of pH since higher bicarbonate 
leads to more alkaline pH levels. Previous studies with a different 
substrate—Benzoyl l-arginine ethyl ester (BAEE) showed opti-
mal pH of 7.6 for PAD4 (41). This difference is likely due to the 
different substrates used in experiments, as BAEE, unlike histone, 
is a small molecule substrate.

Leppkes et  al. first discovered that pancreatic juice could 
induce NET formation (42). Bicarbonate is a main component 
in pancreatic juice and was found to increase NET formation 
through histone citrullination. Later studies have shown that 
bicarbonate in media could impact NET formation through pH 
(43, 44). We limited the stimulation time in neutrophil citrullina-
tion assays to 30 min to focus on PAD enzymatic activity rather 
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than downstream NET formation. The impact of bicarbonate on 
PAD2 and PAD4 activity was independent of pH and substrate. It 
remains possible that other pathways involved with NET forma-
tion may be impacted by bicarbonate through increased pH.

We showed that bicarbonate greatly impacted citrullination in 
biochemical assays with recombinant PADs and in neutrophils. 
The profound interest in PADs has led to an increase in different 
citrullination assays (45, 46). Those assays consider calcium levels 
and the reducing environment. All PADs require high calcium 
levels to be active (1), and the PAD catalytic domain contains a 
critical cysteine, which requires a reducing environment to main-
tain proper enzymatic function (35). Bicarbonate is a common 
but sometimes overlooked component in tissue culture media, 
which is necessary for optimal PAD activity. Our work suggests 
that a reconfiguration of assay buffers is needed to reflect the 
biology of citrullination.

More importantly, our study has indicated that the regula-
tion of PAD activity is rather more complicated than previously 
known. Both bicarbonate and calcium can act as physiological 
signaling molecules. Remarkably, there are few examples of how 
bicarbonate regulates enzyme activity. A well-characterized 
example of this would be soluble adenylyl cyclase (sAC) (47). 
sAC is the only intracellular adenylyl cyclase that produces cAMP 
in response to calcium or bicarbonate signals (48, 49). sAC is 
conserved from cyanobacteria to mammals, with a wide range of 
functions including neuron activation to spermatozoa (50, 51). 
Intriguingly, the crystal structure showed that bicarbonate binds 
adjacent to Arg176 in human sAC, which acts as a switch that ena-
bles formation of the catalytic cation sites (52, 53). It is interesting 
to speculate that PADs could function by a similar process to sAC 
with citrullination regulated as a potential secondary messenger 
as seen with cAMP. Future crystallography studies are needed 
to understand whether bicarbonate impacts PAD structure, and 
how it could regulate citrullination activity.

In conclusion, we demonstrate that bicarbonate is a potential 
regulator of PAD activity. PADs could well be under a complex 
web of regulating factors including calcium and bicarbonate, 
responding to different in  vivo signals through specific citrul-
lination events. Dissecting those regulating signals, citrullination 
events and functional consequences could unlock a new level 
understanding of biology far beyond autoimmunity.

PersPective ON FUtUre PAD BiOLOGY

Despite the focus on PADs and citrullination in the context of 
autoimmune diseases, there remains much to learn about the 
normal physiological functions of PADs. We recently reported 
that human neutrophils express active PAD4 on the surface and 
secrete active PAD2 (54). The role of extracellular PADs remains 
undefined but may modulate extracellular protein functions and 
fine tune inflammation. Within the cell, nuclear-located PAD4 
could also regulate gene expression in concert with other histone 
modification enzymes (13, 55, 56). These physiological functions 
would require a precise regulation of PAD activity.

Although we showed that bicarbonate can impact citrullina-
tion independent of calcium and pH, there are still important 
gaps in our understanding of PAD regulation. For example, the 

millimolar concentrations of calcium required for PAD activa-
tion do not normally exist intracellularly even following cellular 
activation (25, 54, 57). So, how can PAD function inside a cell 
with nanomolar level intracellular calcium? It is plausible that 
high calcium concentration may exist in localized regions/specific 
organelles within a cell where PADs could be active. Alternatively, 
PADs could have other intracellular binding partners or co-
factors that lower the calcium threshold for activation. Indeed, it 
has been shown that anti-PAD3/4 autoantibodies from patients 
with RA can increase PAD activity in low calcium conditions 
(58, 59). This calcium paradox for PAD activity is critical for our 
understanding of intracellular PAD activity, is largely overlooked, 
and requires further investigation.

Remarkably, intracellular protein citrullination is mostly 
observed with large calcium influx under membrane lytic con-
ditions (25, 57, 60, 61). Detection of intracellular citrullination 
under normal healthy conditions is challenging. This may be a 
consequence of the limited citrullination detection methods and 
their low sensitivity. Improvements in technology may enable 
better assessment of intracellular citrullination. Alternatively, 
we should also consider the possibility that PADs may have 
functions other than citrullination. It is notable that besides the 
cysteine present at the catalytic domain (35, 36), PAD2 and PAD4 
both exhibit in excess of 10 free surface exposed cysteines. This 
remarkably unusual characteristic must have some physiological 
relevance, whether this is related to binding substrate, or some 
other function such as acting as scavenger for ROS, remains to 
be determined. In any case, it is clear that there remains much 
to learn about the regulation and function of PADs in health and 
disease, and future research efforts will inevitably unravel new 
and exciting biology.

MAteriALs AND MetHODs

Human Donors and Neutrophil isolation
Blood from healthy volunteers was obtained with informed 
consent under MedImmune, LLC’s blood donation program, and 
studies using human cells were performed in accordance with the 
Institutional Review Board guidelines. Neutrophils were isolated 
from heparin anticoagulated blood on a discontinuous Ficoll 
gradient as previously described (62).

Antibodies and reagents
Antibodies for detection of citrullinated histone H3 (R2 citrul-
lination, Ab176843) and total histone H3 (Ab24834) were from 
Abcam (Cambridge, MA, USA). Anti-citrullinated fibrinogen 
antibody (20B2) was from ModiQuest (Oss, Netherlands). 
Antibody for detection of pan citrullination, F95 was from EMD 
Millipore (Billerica, MA, USA).

Recombinant human PAD2 and recombinant human PAD4 
were generated in-house. Recombinant human histone H3 was 
from Cayman Chemicals (Ann Arbor, MI, USA).

DMEM without bicarbonate was from Agilent. DMEM with 
bicarbonate, RPMI, DPBS with 0.9mM calcium, HBSS, HEPES, 
glucose, 7.5% sodium bicarbonate, ionomycin, and 1M calcium 
chloride were from Invitrogen (Carlsbad, CA, USA).
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pH Level Adjustment of Media and Buffers
pH of all buffers and media were tested with pH meter (Thermo 
Fisher Scientific). For experiments with different pH levels, pH 
was adjusted with HCl and NaOH. In all other experiments, 
HEPES was used to adjust pH of buffers and media to 7.2. pH 
levels of buffers adjusted with HEPES at the start and the end of 
each experiment were tested (pH levels were between 7.0 and 7.4 
after experiments).

Western Blot Analysis
Equivalent amounts of cells were separated by SDS-polyacrylamide 
gel electrophoresis (4–12% gel) and then transferred to a nitro-
cellulose membrane. Membranes were then probed using 
anti-citrullinated histone H3 (Ab176843) and anti-total histone 
H3 (Ab24834) antibodies using the iBind (Invitrogen) system 
with 1:1,000 dilution. An HRP-conjugated anti-mouse IgG and 
anti-rabbit IgG were used as the secondary detection antibodies 
(1:5,000 dilution) before visualization of immunoreactive bands 
with an ECL reagent (Thermo Fisher). F95 western blot detection 
of pan citrullination used methods described before (57).

citrullination Assays
Recombinant human PAD2 (5 ng) or PAD4 (20 ng) was incubated 
with histone H3 (5 µg) in different media for 1 h at 37°C with 
5% CO2. One million neutrophils were resuspended with 100 µl 
media and stimulated with 1 µM ionomycin for 30 min at 37°C. 
All reactions were performed in closed capped Eppendorf tubes 
and stopped with the addition of lithium dodecyl sulfate sample 
buffer (Invitrogen) and boiling.

Fibrinogen citrullination eLisA Assay
Nunc Maxisorp plates were coated with 1 µg/ml human fibrino-
gen overnight at 4°C. After blocking with PBS containing 1% 

BSA, rhuPAD2 and rhuPAD4 were titrated in Deimination 
buffer [40 mM Tris–HCl (pH 7.5), 5 mM NaCl, 1 mM DTT] and 
added to coated plates. After a 90-min incubation at 37°C with 
5% CO2, anti-citrullinated Fibrinogen IgG (20B2) followed by 
rabbit anti-mouse IgG HRP (ab6728) were added to the plates 
followed by detection with a colorimetric substrate (TMB and 
Stop Solution, KPL). The absorbance was read on a plate reader 
at 450 nm and the data were analyzed using Softmax Pro soft-
ware. Statistical analysis was performed with Prism GraphPad 
(GraphPad Software, La Jolla, CA, USA).
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