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We previously showed that in mice infected with Leishmania major type I interferons 
(IFNs) initiate the innate immune response to the parasite at day 1 and 2 of infection. 
Here, we investigated which type I IFN subtypes are expressed during the first 8 weeks of 
L. major infection and whether type I IFNs are essential for a protective immune response 
and clinical cure of the disease. In self-healing C57BL/6 mice infected with a high dose 
of L. major, IFN-α4, IFN-α5, IFN-α11, IFN-α13, and IFN-β mRNA were most prominently 
regulated during the course of infection. In C57BL/6 mice deficient for IFN-β or the  
IFN-α/β-receptor chain 1 (IFNAR1), development of skin lesions and parasite loads in 
skin, draining lymph node, and spleen was indistinguishable from wild-type (WT) mice. 
In line with the clinical findings, C57BL/6 IFN-β−/−, IFNAR1−/−, and WT mice exhibited 
similar mRNA expression levels of IFN-γ, interleukin (IL)-4, IL-12, IL-13, inducible nitric 
oxide synthase, and arginase 1 during the acute and late phase of the infection. Also, 
myeloid dendritic cells from WT and IFNAR1−/− mice produced comparable amounts of 
IL-12p40/p70 protein upon exposure to L. major in vitro. In non-healing BALB/c WT mice, 
the mRNAs of IFN-α subtypes (α2, α4, α5, α6, and α9) were rapidly induced after high-
dose L. major infection. However, genetic deletion of IFNAR1 or IFN-β did not alter the 
progressive course of infection seen in WT BALB/c mice. Finally, we tested whether type I 
IFNs and/or IL-12 are required for the prophylactic effect of CpG-oligodesoxynucleotides 
(ODN) in BALB/c mice. Local and systemic administration of CpG-ODN 1668 protected 
WT and IFN-β−/− mice equally well from progressive leishmaniasis. By contrast, the 
protective effect of CpG-ODN 1668 was lost in BALB/c IFNAR1−/− (despite a sustained 
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suppression of IL-4) and in BALB/c IL-12p35−/− mice. From these data, we conclude 
that IFN-β and IFNAR1 signaling are dispensable for a curative immune response to  
L. major in C57BL/6 mice and irrelevant for disease development in BALB/c mice, 
whereas IL-12 and IFN-α subtypes are essential for the disease prevention by CpG-
ODNs in this mouse strain.

Keywords: Leishmania major, type i interferon, interferon-alpha/beta, innate immunity, cutaneous leishmaniasis

inTrODUcTiOn

The term “type I interferons” is used for a multigene family of 
cytokines that in the mouse comprises 14 interferon (IFN)-α 
genes encoding proteins and single genes of IFN-β, IFN-κ, and 
IFN-ε (1). All type I IFNs signal via a common IFN-α/β-receptor 
(IFNAR) complex, which consists of two chains (IFNAR1 and 
IFNAR2) (2). Type I IFNs were originally described for their 
antiviral activity, which is due to the induction of genes that 
degrade mRNA, impair protein synthesis, help to sequester viral 
nucleocapsids, induce cytoplasmic viral nucleic acid detecting 
receptors, or amplify the IFN response (3–5). Since then it has 
become clear that type I IFNs also have numerous immunomod-
ulatory functions, which include both activating and inhibitory 
effects on macrophages, dendritic cells (DCs), natural killer 
(NK) cells, T  lymphocytes, and B cells (5–8). Therefore, it was 
not surprising to see that in mice exposed to certain non-viral 
pathogens (bacteria, protozoa, fungi, or helminths) or microbial 
products a deficiency of IFN-α/β signaling or the application 
of type I IFNs positively or negatively influenced the outcome 
of the infection [reviewed in Ref. (9–11)]. To date, there is little 
information available on the expression and differential activities 
of the type I IFN subtypes during non-viral infections in vivo. 
In general, IFN-β is assumed to play a master role, as in many 
cell types it induces and amplifies the expression of IFN-α genes 
and thereby dominates the entire type I IFN response (12, 13); 
however, IFN-β-independent production of IFN-α has also been 
described (14, 15).

Leishmania promastigotes are flagellated protozoan parasi tes 
that under natural conditions are transmitted to mammalian 
organisms by the bite of sand flies. Infections can lead to 
cutaneous, mucocutaneous or visceral disease depending on 
the parasite species and strain, the infection inoculum, and 
the immune response of the host. The experimental infection 
of different inbred strains of mice with Leishmania (subgenus 
Leishmania) major (in the following abbreviated as L. major) 
has proven to be a useful model for self-healing vs. non-healing 
cutaneous leishmaniasis and for the analysis of the components 
of the immune system that are required for parasite control and 
resolution of the infection. Previous studies showed that inter-
leukin (IL)-12, IFN-γ, tumor necrosis factor (TNF), inducible 
or type 2 nitric oxide synthase [iNOS (NOS2)], and CD4+ type 

Abbreviations: BM, bone marrow; BM-DC, bone marrow-derived dendritic cell; 
(c, m) DC, (conventional or myeloid) dendritic cell; iNOS (NOS2), inducible  
(or type 2) nitric oxide synthase; NK, natural killer; pDC, plasmacytoid dendritic 
cell; SN, supernatant.

1 T helper (Th1) cells are essential for overcoming an infection 
with L. major (16–18).

With respect to type I IFNs, earlier results pointed to a protec-
tive function in mouse L. major infections. First, in vitro simul-
taneous exposure of mouse macrophages to purified IFN-α/β  
and L. major promastigotes led to expression of iNOS and subse-
quent killing of intracellular amastigotes (19). Similarly, human 
mononuclear phagocytes acquired antimicrobial activity against 
L. major amastigotes after stimulation with IFN-β (20). Second, 
short-term neutralization of IFN-α/β immediately before cutane-
ous infection with L. major strongly reduced the expression of 
iNOS protein, the activation of NK cells, the expression of IFN-γ 
mRNA, and the containment of the parasites at days 1 and 2 
of infection in the skin and draining lymph node (dLN) (21). 
Third, prophylactic treatment of otherwise non-healing BALB/c 
mice with low doses of recombinant mouse IFN-β protected the 
majority of the mice from progressive disease (22). However, 
so far it has not been analyzed which type I IFN subtypes are 
expressed during the course of L. major infection. Furthermore, 
it is unknown whether endogenous type I IFNs are required 
for the control of primary or secondary L. major infections in 
self-healing C57BL/6 mice or for the previously reported (23) 
immunoprophylactic effect of CpG-oligodesoxynucleotides 
(ODN) in BALB/c mice. Finally, it has never been investigated 
whether type I IFN signaling contributes to the susceptibility 
of L. major-infected BALB/c mice as suggested by the disease-
aggravating role of type I IFNs observed in infections with other 
Leishmania species (24–26).

In this study, we were able to address these issues with the 
help of recombinant mice that were deficient for IFN-β (IFN-β−/− 
mice) or type I IFN signaling (IFNAR1−/− mice) and that were 
thoroughly backcrossed to the C57BL/6 or BALB/c background.

MaTerials anD MeThODs

Mice
Wild-type (WT) C57BL/6 and BALB/c mice were purchased 
from Charles River Breeding Laboratories (Sulzfeld, Germany). 
IFNAR1−/− mice, which were originally generated on a 129/SvEv  
background (27), were backcrossed to C57BL/6 for more 
than 20 generations (B6.IFNAR1−/−) by one of us (UK) at the 
Paul-Ehrlich-Institute, Langen, Germany. Breeding pairs of 
IFNAR1−/− mice (27) backcrossed to BALB/c for seven genera-
tions (28) were kindly provided by Daniel Portnoy (University 
of California, Berkeley, USA) and were then used for further 
backcrossings to BALB/c background (BALB/c.IFNAR1−/−) for 
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four generations using speed congenic technology (29). IFN-β−/− 
mice (12) were backcrossed to C57BL/6 (B6.IFN-β−/−) or BALB/c 
background (BALB/c.IFN-β−/−) for 12 or 15 generations, respec-
tively. IL-12p35−/− mice backcrossed to C57BL/6 background 
for 11 generations were obtained from the Jackson Laboratories 
(Bar Harbor, ME, USA). Breeding pairs of IL-12p35−/− mice 
(30) backcrossed to BALB/c background for five generations 
were generously supplied by G. Alber (University of Leipzig, 
Germany).

Wild-type and knockout mice were age- and sex-matched in 
the experiments. All mice were kept under specific pathogen-
free conditions in the facilities of (a) the Institute of Medical 
Microbiology and Hygiene at the University Hospital Freiburg, 
(b) the Microbiology Institute at the University Hospital Erlangen, 
or (c) the Franz-Penzoldt-Zentrum for Animal Research, 
Friedrich-Alexander-University of Erlangen-Nürnberg. The 
infection experiments were approved by the governmental ani-
mal-welfare committees of the Regierungspräsidium Freiburg, 
Germany and of the Government of Middle Franconia, Ansbach,  
Germany.

Parasites and infection
The origin of the L. major strain MHOM/IL/81/FEBNI was 
described before (31, 32). Promastigotes were maintained 
in vitro in RPMI1640 plus 10% FCS on Novy–Nicolle–MacNeal 
(NNN) rabbit blood agar slants for a maximum of six passages. 
Fresh L. major promastigotes were derived from amastigotes 
that were isolated from non-ulcerated skin lesions of infected 
BALB/c mice (33). For in  vitro expansion, L. major promas-
tigotes were transferred from the NNN-cultures into com-
plete Schneider’s Drosophila insect cell medium [Genaxxon 
Bioscience; supplemented with 10% (v/v) heat-inactivated FCS, 
10 mM HEPES, 1 mM sodium pyruvate, 2 mM l-glutamine, 
0.27 mM l-asparagine, 0.55 mM l-arginine, 100 U/ml penicil-
lin G, 100  µg/ml streptomycin, and 2% (v/v) normal human 
urine in modification of previous protocols (34, 35)] and grown 
to stationary phase. Mice were infected with 3 × 106 stationary 
phase L. major promastigotes (derived from NNN-cultures) 
in 50  µl of PBS subcutaneously (s.c.) into one or both hind 
footpads. For control purposes, mice were injected with PBS 
alone in some experiments. Footpad swelling was determined 
once or twice weekly with a metric caliper (in mm; Kroeplin, 
Schlüchtern, Germany). The relative footpad thickness increase 
was calculated in relation to the other footpad (in unilateral 
infection experiments) or the footpad thickness before infection 
(in bilateral primary infection experiments or after secondary 
infection).

Quantification of Parasite Burdens
Tissue parasite burdens were determined by limiting dilution 
analysis using twofold, threefold, or fivefold dilution steps and 
12 replicates per dilution in complete Schneider’s Drosophila 
medium (see above) as described before (33, 36). The statistical 
analysis was performed with the L-Calc™ (StemSoft Software, 
Vancouver, BC, Canada) or ELIDA software, which analyses 
data by applying the Poisson distribution and by the χ2 test (37). 

Statistical significance was assumed when 95% confidence inter-
vals did not overlap.

Treatment of Mice with cpg-ODns
Following a published protocol (23), BALB/c mice (WT, IFN-
β−/−, or IFNAR1−/−) were treated twice with 10 nmol CpG-ODN 
1668 or 2216 (Thermo Electron, Ulm, Germany), i.e., 2 h before 
and 10  h after the infection with L. major promastigotes.  
At each time-point,  half of the dose (5 nmol) was given s.c. at the 
site of infection in 40 µl PBS (20 µl per footpad in experiments 
with bilateral infection), while the other half was administered 
intraperitoneally (i.p.) in a volume of 500 µl PBS. Alternatively, 
the total applied dose of CpG-ODN was reduced to 10 nmol 
(with 5  nmol given s.c. at 2  h before infection and 5  nmol 
injected i.p. at 10 h after infection), which was equally effective 
in pro tecting WT BALB/c mice. Control mice received PBS 
alone.

gene expression analysis
Excised organs and tissues were directly stored in RNAlater 
reagent (Qiagen, Hilden, Germany) for at least 24 h. Organs 
were then homogenized in a Mixer Mill MM 200 (Retsch, 
Haan, Germany) before extracting total RNA using TRIZOL 
reagent (Life Technologies Invitrogen, Darmstadt, Germany). 
Contaminating genomic DNA was removed with DNase 
(DNAfree, Life Technologies Ambion®). Presence of genomic 
DNA was excluded by performing a PCR reaction with 1 µl of the 
RNA sample as template and primers for mouse β-actin (sense: 
5′-CACCCGCCACCAGTTCGCCA-3′; antisense: 5′-CAGGT 
CCCGGCCAGCCAGGT-3′). Five to ten micrograms of 
RNA were reverse transcribed with the High Capacity 
cDNA Reverse Transcription Kit (Life Technologies Applied 
Biosystems). For quantitative PCR, 100  ng of each cDNA 
was analyzed in triplicates using the ABI PRISM HT7900 
system (Life Technologies Applied Biosystems) and the 
following gene-specific assays (TaqMan Gene Expression 
Assays; Life Technologies Applied Biosystems): mIFN-α2 
(Mm00833961_s1), mIFN-α4 (Mm00833969_s1), mIFN-α5 
(Mm00833976_s1), mIFN-α6 (Mm01258374_s1), mIFN-α9 
(Mm00833983_s1), mIFN-α11 (Mm01257312_s1), mIFN-α12 
(Mm00616656_s1), mIFN-α13 (Mm00781548_s1), mIFN-α14 
(Mm01703465_s1), mIFN-β (Mm00439546_s1), mIFN-γ 
(Mm00801778_m1), mIL-2 (Mm00434256_m1), mIL-4 
(Mm00445259_m1), mIL-10 (Mm00439616_m1), mIL-12p35 
(Mm00434165_m1), mIL-12p40 (Mm00434170_m1), mIL-13 
(Mm00434204_m1), mIL-15 (Mm00434210_m1), mIL-18 
(Mm00434225_m1), IL-23p19 (Mm00518984_m1), murine 
iNOS (NOS2) (Mm00440485_m1), and murine arginase 
1 (Arg1) (Mm00475988_m1). The gene for mouse hypox-
anthine guanine phosphoribosyl transferase 1 (mHPRT-1; 
Mm00446968_m1) was used as an endogenous control for 
quantification of mRNA levels. All mRNA levels were deter-
mined in duplicates or triplicates with the help of the SDS 2.3 
Software (Life Technologies Applied Biosystems®). Relative 
expression levels were calculated using the following formula: 
relative expression  =  2−(Ct(Target Gene)−Ct(Endogenous Control))  ×  f, with 
f = 104 as an arbitrary factor.
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Dcs and stimulation by Leishmania  
and cpg-ODns
Bone marrow (BM) was isolated from hind legs of naïve WT, 
IL-12p35−/− or IFNAR1−/− mice after anesthesia and subsequent 
cervical dislocation. Femoral and tibial bones were opened on 
both sides under sterile conditions, and bone marrow cells were 
flushed out with PBS using a 27G hollow needle.

Bone marrow-derived conventional (or myeloid) DCs (cDCs 
or mDCs) were differentiated by culturing 6 × 106 BM cells in 
RPMI1640 medium [containing 2  mM l-glutamine, 10  mM 
HEPES, 50  µM 2-mercaptoethanol, 100  U/ml penicillin G, 
100 µg/ml streptomycin, 10% (v/v) FCS, and 10% (v/v) culture 
supernatant (SN) of Ag8653 myeloma cells transfected with a 
murine GM-CSF expression plasmid (38)]. BM  cells were cul-
tured for 7 days in 60 cm2 culture dishes with initially 10 ml of 
medium, before on days 3 and 6, 10 ml fresh medium was added. 
mDC cultures contained 60–80% CD11b+CD11c+ mDC on day 
7 and were purified as immature CD11b+CD11c+CD86− cells by 
flow cytometric cell sorting (MoFlo) (purity of >99%).

Bone marrow-derived plasmacytoid dendritic cells (pDCs) 
were generated from total BM cells in the presence of Flt3 ligand 
(39). After incubation in red blood cell lysis buffer for 5 min, 
cells were washed twice with 20 ml PBS. Bone marrow cells were 
cultured in 5 ml RPMI1640 [containing 2 mM l-glutamine, 1× 
non-essential amino acids, 1 mM sodium pyruvate, 100 µg/ml  
kanamycin, 50  µM 2-mercaptoethanol, 10% (v/v) FCS, and 
50 ng/ml rmFlt3L (R&D Systems, Wiesbaden, Germany)] for 
7–8 days at 2 × 106 cells/ml in 25 cm2 cell culture flasks. At day 
4, 2.5 ml of the culture medium was exchanged against fresh 
medium with 25  ng/ml Flt3L. After 7–8  days, 10–20% of the 
cells were B220+CD11bintCD11c+, and pDCs were further puri-
fied by MoFlo sorting gating on B220+CD11bintCD11c+ cells 
(purity >99%).

For ELISA and IFN-α/β bioassay studies, MoFlo™-sorted 
pDC and mDC were cultured in 96-well culture plates (105 cells/
well in 250 µl) using the respective pDC or mDC culture medium 
without growth factors. Cells were stimulated for 48  h with  
CpG-ODN 2216 (1 µM), CpG-ODN 1668 (1 µM), LPS (200 ng/ml),  
or L. major promastigotes (stationary growth phase; multipli-
city of infection 3). SNs were harvested and stored at −20°C.

cytokine Measurements
Interferon-α/β levels were determined with an L929/vesicular 
stomatitis virus-protection assay using triplicates and serial two-
fold dilutions of the culture SNs (21). Purified mouse IFN-α/β 
and a neutralizing sheep-anti-IFN-α/β antiserum (provided by 
I. Gresser, Institute Curie, Paris) were used as a standard or to 
ascertain that all antiviral activity in the SNs was due to IFN-α/β.  
The content of TNF (eBiosciences, sensitivity 40 pg/mL), IL-12p40,  
or IL-12p70 (BD Biosciences, sensitivity 40 pg/mL) was measured 
by ELISA.

statistics
Statistical significance was analyzed using the non-parametric 
Mann–Whitney test. A p value <0.05 was considered significant.

resUlTs

L. major infection leads to Differential 
expression of Type i iFns
In a previous study, we reported the expression of IFN-α/β 
protein in skin lesions of C57BL/6  ×  129/SvEv mice at 24  h 
after infection with L. major. The immunohistological analysis 
was restricted to this early time point and based on the use of 
a polyvalent anti-IFN-α/β antibody, which did not allow for 
differential detection of type I IFN subtypes (21). To obtain a 
more detailed view on type I IFN expression during the course 
of experimental cutaneous leishmaniasis (days 1–56), we 
performed quantitative mRNA expression analyses for several 
type I IFN family members in the skin lesions of C57BL/6 
mice subcutaneously infected with L. major. Within 24–48 h of  
L. major infection the relative IFN-β mRNA expression level 
increased by a factor of 4.7 from 0.52 (±0.10) in uninfected 
mice to 2.45 (±0.34) in infected ones (mean ± SEM of seven 
independent experiments with two to six samples; p < 0.001 
Mann–Whitney test). From week 1 of infection onward, the 
IFN-β mRNA remained on a high expression level until the end 
of the observation period (day 56), when the footpad lesions 
had already started to resolve (Figure  1A). Considerably 
weaker and more transient was the upregulation of IFN-α4 
and IFN-α5 mRNA, which returned to baseline levels within 
3–4  weeks of infection. IFN-α11 and especially IFN-α13 
mRNA were constitutively expressed in the skin of naïve mice. 
Following infection, both IFN-α subtypes initially decreased 
but returned to normal levels after 6–7  weeks of infection 
(Figure 1A).

In the dLN, we also observed a temporary upregulation 
of the IFN-α4 and IFN-β mRNA expression in response to  
L. major. Unlike to our findings in the skin, however, the 
baseline IFN-α13 mRNA levels in the popliteal lymph  
nodes of naïve C57BL/6 mice were much lower and clearly 
increased during the first 4  weeks of infection (Figure  1B). 
In the spleen of L. major-infected C57BL/6 mice, the mRNA 
expression levels of the above-mentioned type I IFN subtypes 
remained largely constant throughout the infection period 
(data not shown). With respect to IFN-α6, IFN-α12, and IFN-
α14, hardly any changes were observed in the three analyzed 
tissues, or mRNA expression was not detectable at all (data 
not shown).

To exclude that the injection procedure itself accounts for the 
early induction of type I IFNs in the skin and dLN, we compared 
PBS-injected (day 2) and L. major-infected C57BL/6 mice (day 2)  
with naïve C57BL/6 mice (day 0) for their expression of IFN-α5  
and IFN-β mRNA. Injection of PBS alone already caused a 
slight, but significant induction of type I IFNs at both tissue 
sites. However, in the presence of L. major, the expression levels 
were significantly higher than in PBS-treated mice (Figure S1 in 
Supplementary Material).

Taking these data together, we conclude that an infection 
with L. major triggers a specific and primarily local type I 
IFN response with differential regulation of IFN-β and IFN-α 
subtypes.

http://www.frontiersin.org/Immunology/
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FigUre 1 | Expression of type I interferon (IFN) subtypes in Leishmania 
major-infected C57BL/6 mice. C57BL/6 wild-type mice were infected with 
3 × 106 stationary phase L. major promastigotes into the hind footpads or 
treated with PBS. The mRNA expression of type I IFN subtypes was analyzed 
in the footpad tissues (a) and in the draining lymph nodes (B) at different 
time-points after infection using quantitative RT-PCR (day 0 are naïve mice). 
Results are shown as mRNA levels (mean ± SEM) normalized to the 
endogenous control HPRT-1 from four independent experiments (three mice 
per group and time point, respectively). Asterisks represent the respective 
significance values compared with uninfected mice (*p < 0.05; **p < 0.01; 
and ***p < 0.001; Mann–Whitney test).
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were virtually superimposable (Figure 3, solid squares vs. open 
circles).

The previous notion that IFN-β governs the entire type I 
IFN response has recently been challenged (14, 15, 41). To test 
the impact of the entire type I IFN family on an infection with 
L. major, we resorted to C57BL/6 mice that lack a functional 
type I IFN receptor. When C57BL/6 IFNAR1−/− were infected 
with L. major, the clinical course of infection (Figure 2A), the 
parasite burden (Figure  2B), the cytokine mRNA expression 
pattern (IFN-γ, IL-12p35, IL-12p40, IL-4, and IL-13) at the site 
of infection and in the dLN, and the ability to mount a strong and 
persistent iNOS response along with a transient upregulation 
of arginase 1 (Figure  3, solid squares vs. open triangles) were 
indistinguishable in C57BL/6 WT and IFNAR1−/− mice. After 
resolution of the skin swelling, we did not observe any clinical 
relapses in the mutant mice during an observation period of up 
to 241 days. Notably, when we infected IFNAR1−/− mice [gener-
ated on a 129Sv/Ev background (27)] that had been backcrossed 
to C57BL/6 for only 6 instead of 20 generations, the size of 
the cutaneous lesions in the IFNAR1−/− mice was significantly 
smaller than in the respective WT controls (data not shown). 
This observation presumably reflects incomplete backcrossing. 
Unlike to C57BL/6 mice that lack a mature and functional natural 
resistance-associated macrophage protein (NRAMP1S), 129Sv/Ev  
mice carry a fully functional NRAMP1 protein (NRAMP1R) 
and usually develop only minor skin lesions following L. major 
infection (42).

As type I IFNs have been described to rescue activated or 
memory T  cells from apoptosis and to increase the longev-
ity of these cells (43–45), we considered the possibility that 
IFN-β−/− and IFNAR1−/− might only show a phenotype during 
secondary infection with L. major. We therefore challenged 
C57BL/6 WT and IFNAR1−/− mice, which had healed a pri-
mary subcutaneous infection with L. major, by injection of 
the same parasite inoculum into the contralateral footpad. 
As expected based on earlier reports (46, 47), the secondary 
skin lesions of C57BL/6 WT mice were less severe and healed 
more rapidly than during the primary infection. Although 
there was a tendency for a disease aggravation in IFNAR1−/− 
mice, the differences in lesion development (Figure 4A) and 
tissue parasite burden (Figure 4B) between C57BL/6 WT and 
IFNAR1−/− mice were not significant in three independent 
experiments.

From these data, we conclude that both the control of a 
primary and of a secondary infection with L. major can occur 
independently of type I IFN signaling.

Type i iFns are Dispensable for L. major-
induced Production of il-12 by c57Bl/6 
Myeloid Dcs
The unaltered expression of IL-12p35 and IL-12p40 seen in  
L. major-infected C57BL/6 IFNAR1−/− mice as compared to 
C57BL/6 WT mice (Figure 3) contrasts with a previous in vitro 
study in which type I IFN activity was required for optimal 
IL-12 expression by mouse bone marrow-derived dendritic cells 
(BM-mDCs) after stimulation with toll-like receptor (TLR) 3 

Type i iFns are Dispensable for the 
control of L. major in self-healing  
c57Bl/6 Mice
The infection-dependent regulation of type I IFN expression led 
us to investigate a possible function of IFN for the outcome of 
L. major infections. In the light of the strong induction of IFN-β 
mRNA (Figure 1) and its known amplifying effect on the expres-
sion of other type I IFNs (40), we first investigated the course 
of L. major infection in C57BL/6 IFN-β−/− mice. IFN-β−/− mice 
controlled the clinical infection as efficiently as the respective 
WT mice (Figure 2A). Accordingly, the tissue parasite burdens 
in the skin lesions, dLNs, and spleens from WT and IFN-β−/− 
mice were comparable (Figure  2B). Also, the time course of 
the mRNA expression of cytokines (IFN-γ, IL-12p35, IL-12p40, 
IL-4, and IL-13) and effector pathways (iNOS, arginase 1) that 
determine the quality of the anti-Leishmania immune response 
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FigUre 2 | Interferon (IFN)-β and IFNAR signaling are dispensable for the control of primary infection with Leishmania major in C57BL/6 mice. (a) Development  
of footpad lesions in C57BL/6 wild-type (WT) vs. IFN-β−/− vs. IFNAR1−/− mice after infection with 3 × 106 stationary phase L. major promastigotes into both hind 
footpads. The mean (±SEM) of the relative footpad thickness increase of 4 independent experiments with 9–12 mice per group is shown. (B) Parasite burden in  
the footpads, draining lymph nodes, and the spleens of C57BL/6 WT vs. IFN-β−/− vs. IFNAR1−/− mice. At the indicated time-points, three mice per group were 
analyzed for their parasite load in different organs by limiting dilution assays. The mean results (±SEM) of one representative out of four independent experiments (a) 
are presented. n.d., Not detectable.
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plus TLR7 or TLR4 plus TLR7 agonists (48). We therefore 
tested whether the production of IL-12p40/p70 and IFN-α/β by 
BM-mDC in response to L. major promastigotes, a process that 
is triggered by TLR9 (15, 49), is dependent on endogenous IFNAR 
signaling. The TLR9 agonists CpG-B ODN 1668 and CpG-A 
ODN 2216 were used as control stimuli and mouse BM-pDC as 
control cells. In experimental leishmaniasis, mDCs are the key 
source of IL-12 (50–52) but weak producers of IFN-α/β (15), 
whereas pDCs generate considerably less IL-12, but copious 
amounts of IFN-α/β in response to Leishmania parasites (15). 
Both the IL-12 and the IFN-α/β production by BM-mDCs 
remained unaltered in the absence of IFNAR, irrespective of the 
stimulus used (Figure 5A). By contrast, in pDCs IFNAR signaling 
not only positively regulated the Leishmania- or CpG-induced 
production of IFN-α/β confirming our previous data (15), but 
was also necessary for maximal IL-12 release (Figure 5B).

From these data, we conclude that the L. major-induced pro-
duction of IL-12 by mDCs, but not by pDCs, is fully preserved in 
the absence of type I IFN signaling.

iFn-β or iFnar1 Deficiency Does not alter 
the course of infection in non-healing 
BalB/c Mice
In the light of the multiple suppressive functions of type I 
IFNs on DCs, macrophages, NK cells, and T cells [reviewed in  
Ref. (5–8)] and previous reports on disease-aggravating effects of 

type I IFNs in mouse and human infections with South American 
Leishmania species (24–26), we considered the possibility that 
type I IFNs might contribute to the non-healing pathology of 
cutaneous L. major infection observed in BALB/c mice. Infection 
of BALB/c IFN-β−/− or IFNAR1−/− mice, however, revealed that 
the clinical development of the skin lesions and the tissue para-
site burden were not significantly different from WT BALB/c 
mice (Figures 6A,D), despite the rapid induction of various type 
I IFNs (i.e., IFN-α2, IFN-α4, IFN-α5, IFN-α6, and IFN-α9) at 
the site of infection in BALB/c WT mice (see Figure 7, upper 
panel, PBS/L. major vs. PBS/PBS). Thus, type I IFNs are unlikely 
to account for the lack of parasite control in BALB/c mice.

The cpg-ODn induced Protection of 
BalB/c Mice is Preserved in the absence 
of iFn-β, but lost in iFnar1 Deficiency
Finally, we addressed the question, whether the previously 
described protection of BALB/c mice from progressive cutane-
ous leishmaniasis following a prophylactic treatment with the 
CpG-ODN 1668 (23) is also observed when the type I IFN 
system is functionally impaired or blocked. As expected (23), 
injection of CpG-ODN 1668 before and shortly after infection 
prevented ulcerative skin lesions and restored parasite control 
in otherwise non-healing BALB/c WT mice. This was also the 
case in BALB/c IFN-β−/− mice (Figures 6A,B). Equivalent results 
were obtained with CpG-ODN 2216 (data not shown). In BALB/c 
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FigUre 3 | Comparable mRNA expression of cytokines and effector pathways in C57BL/6 wild-type (WT), IFN-β−/−, and IFNAR1−/− mice during Leishmania major 
infection. Total RNA was isolated from footpad tissue or draining popliteal lymph nodes of WT (solid squares), IFN-β−/− (open circles), and IFNAR1−/− mice (open 
triangles) and reverse transcribed. Gene expression levels were determined by quantitative RT-PCR analysis using assays for the respective genes. Expression levels 
were calculated relative to the expression level of the endogenous control gene (HPRT-1). Results are mean expression levels from three mice per group and time 
point with error bars indicating SDs. The results of one of two experiments are shown.
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IL-12p35−/− mice (Figures 6A,B) and in BALB/c IFNAR1−/− mice 
(Figures 6C,D), however, the protective effect of CpG-ODN 1668 
was lost. From these data, we conclude that IFNAR1 signaling 
(notably by IFN-α) and IL-12 are required for the immunopro-
phylactic activity of CpG-ODNs, whereas IFN-β is dispensable 
for the protective effect of CpG-ODNs.

To further ascertain the cooperation of type I IFNs and IL-12, 
we investigated whether the intracutaneous and intraperitoneal 
application of CpG-ODN 1668 indeed leads to a simultaneous 
upregulation of type I IFNs, IL-12, and possibly other cytokines 
(IFN-γ and TNF) that are known for their macrophage activating 
and protective effects in murine cutaneous leishmaniasis (53–56). 
In the footpads of L. major-infected WT BALB/c mice from three 
independent experiments, CpG-ODN 1668 led to a significant 
increase of IFN-γ, IL-12p35, TNF, and iNOS mRNA expression 
at 36 h after infection (i.e., 26 h after the last CpG-ODN 1668 
injection) (Figure 7, upper panel). As seen in a previous study 
(49), IL-12 p40 mRNA was undetectable in whole organ RNA 
preparations from skin lesions, because at this early time point of 
infection the expression of IL-12 is restricted to a small number 
of DCs. With the notable exception of IFN-α13, CpG-ODN 1668 
also enhanced the expression of type I IFNs in L. major-infected 
BALB/c WT mice, although the level of significance was only 
reached for IFN-β (Figure 7, upper panel). In L. major-infected 

BALB/c IFN-β-deficient mice, the stimulatory effect of CpG-
ODN-1668 on the expression of IFN-α subtypes (α2, α4, α5, and 
α9), cytokines (IFN-γ, IL-12p35, and TNF), and iNOS expression 
was mostly maintained, whereas in IFNAR1-deficient BALB/c 
mice the upregulation of IFN-α subtypes, IFN-β, IFN-γ, IL-12p35, 
and iNOS was absent (Figure 7, middle and lower panel).

Finally, we tested whether L. major-infected BALB/c WT 
mice and IFNAR1−/− mice treated with PBS or CpG-ODN 
1668 differed in their expression of IL-4 and IFN-γ mRNA at 
day 23 or day 24 of infection, when the lesions of CpG-ODN 
1668-treated WT mice were strikingly smaller than of CpG-
ODN 1668-treated IFNAR1−/− mice (Figure  6C). As shown 
in Figure  8, treatment with CpG-ODN 1668 insignificantly 
upregulated the expression of IFN-γ mRNA in BALB/c WT 
mice. By contrast, in BALB/c IFNAR1−/− mice, IFN-γ mRNA 
was strongly reduced as compared with WT mice and was 
not rescued by CpG-ODN 1668 treatment. In both strains of 
mice, CpG-ODN 1668 caused a strong suppression of IL-4 
mRNA (Figure 8). Consequently, the IFN-γ/IL-4 mRNA ratio 
was approximately fourfold lower in CpG-ODN 1668-treated 
BALB/c IFNAR1−/− mice as compared with CpG-ODN 
1668-treated BALB/c WT mice.

Taken together, we conclude that CpG-ODN 1668 prevented 
progressive disease in BALB/c WT mice by (a) boosting the early 
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FigUre 5 | IFNAR signaling affects the Leishmania major-induced production of interferon (IFN)-α/β and interleukin (IL)-12 in BM-plasmacytoid dendritic cells 
(pDCs), but not bone marrow-derived dendritic cells (BM-mDCs). CD11b+CD11c+CD86− sorted BM-mDCs and B220+CD11bintCD11c+ sorted BM-pDCs were 
cultured for 48 h with L. major promastigotes (multiplicity of infection = 3), 200 ng/ml LPS, 1 µM CpG-oligodesoxynucleotides (ODN) 2216 or CpG-ODN 1668. 
Culture supernatants were analyzed for IFN-α/β (vesicular stomatitis virus bioassay with L929 fibroblasts) and IL-12p40/p70 content (ELISA). Triangles depict values 
below the detection limit of the assays. (a) BM-mDCs, (B) BM-pDCs. Mean results (±SEM) of three to four independent experiments are shown. Asterisks depict 
significant differences between wild-type (WT) and IFNAR1−/− cells (*p < 0.05; Mann–Whitney test).

FigUre 4 | Comparable control of secondary Leishmania major infection in C57BL/6 wild-type (WT) and IFNAR1−/− mice. For primary infection, mice were injected 
subcutaneously with 3 × 106 stationary phase L. major promastigotes into the right hind footpad. At day 136 (indicated by ↓), i.e., after healing of the primary skin 
lesion, mice were reinfected with an identical parasite inoculum into the left hind footpad. (a) Clinical course of infection in C57BL/6 WT vs. IFNAR1−/− mice. The 
mean (±SD) of the relative footpad thickness increase during primary (right footpad) and secondary infection (left footpad) is shown. One of three independent 
experiments with 12–18 mice per group is presented. In panel (B), the tissue parasite burden in the right and left footpad and draining lymph node at various time 
points after primary (left) and secondary infection (right) is depicted (please note the different time scale of the abscissas). At the indicated time points, three mice  
per group were analyzed by limiting dilution assays. The mean results (±SEM) of one representative out of three independent experiments are shown.
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FigUre 6 | Course of Leishmania major infection in untreated or CpG-oligodesoxynucleotides (ODN) 1668-treated BALB/c wild-type (WT), interferon (IFN)-β−/−, 
IFNAR1−/−, and interleukin (IL)-12p35−/− mice. Mice were infected with 3 × 106 stationary phase L. major promastigotes into both hind footpads. 2 h before infection, 
5 nmol CpG-ODN 1668 was administered subcutaneously at the site of infection, and 10 h postinfection additional 5 nmol CpG-ODN 1668 was injected 
intraperitoneally. (a,c) Development of footpad lesions in untreated vs. CpG-ODN 1668-treated BALB/c WT vs. IFN-β−/− vs. IL-12p35−/− or BALB/c WT vs. 
IFNAR1−/− mice. The relative footpad thickness increase (mean ± SEM) of two to three independent experiments with three to five mice per group is shown.  
(B,D) Parasite burden in the footpads and draining lymph nodes of untreated vs. CpG-ODN 1668-treated BALB/c WT vs. IFN-β−/− vs. IL-12p35−/− or BALB/c WT vs. 
IFNAR1−/− mice at day 27 (B) or day 24 (D) after infection. Mean results (±SEM) of two to three independent experiments with three to five mice per group are 
shown. Significant differences by Mann–Whitney test between PBS- and CpG-treated BALB/c WT mice (*p < 0.05; **p < 0.01; and ***p < 0.001) or PBS- and 
CpG-treated IFN-β−/− mice (#p < 0.05; ##p < 0.01; and ###p < 0.001) are indicated.
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expression of iNOS and several protective cytokines (IFN-α 
subtypes, IFN-γ, IL-12p35, and TNF) and (b) by downregulating 
IL-4, which—except for the effects on TNF and IL-4—required 
an intact IFNAR signaling. Therefore, CpG-ODN 1668 failed to 
convey protection in BALB/c IFNAR1−/− mice.

DiscUssiOn

During infections of mice with bacteria, protozoa, or fungi, 
endogenously produced type I IFNs either supported or 
impeded the control of the pathogens and the survival of the 
animals (57–78). In this study, we found that the self-healing 
course of infection seen in L. major-infected C57BL/6 WT 
animals was fully preserved in C57BL/6 mice lacking the IFN-β-
gene or a functional type I IFN receptor (IFNAR1−/−). In geneti-
cally susceptible BALB/c mice, which develop progressive skin 
lesions after cutaneous infection with L. major and ultimately 
succumb to visceral disease, a deficiency of IFN-β or IFNAR 
also did not alter the clinical outcome of the infection. However, 

the protective effect of a treatment of otherwise non-healing 
BALB/c mice with CpG-containing ODNs was completely 
abolished in the absence of type I IFN signaling. These results 
raise important questions on the regulation and function of 
type I IFN expression during different infections and in  vivo 
conditions.

Type i iFn expression during non-Viral 
infections
Very few studies have addressed the expression of type I IFNs in 
response to pathogens other than viruses in vivo. Several groups 
measured IFN-α/β bioactivity or IFN-β protein in the serum 
of mice infected with bacteria or protozoa, but quantitative 
type I IFN subtype analyses in vivo during the course of infec-
tion are lacking [reviewed in Ref. (6, 10, 11)]. In the C57BL/6  
L. major infection model studied here, we found a rapid and 
striking induction of IFN-β mRNA in the infected skin, to a lesser 
degree also of IFN-α4 and IFN-α5 (Figure 1). Based on results 
obtained with viral infections of cell lines, IFN-β and IFN-α4 
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FigUre 7 | Effect of CpG-oligodesoxynucleotides (ODN) 1668 treatment on 
the cytokine mRNA expression in the footpad of Leishmania major-infected 
mice. BALB/c wild-type (WT), interferon (IFN)-β−/− and IFNAR1−/− mice were 
infected with 3 × 106 stationary phase L. major promastigotes into both hind 
footpads or injected with PBS as control. 2 h before infection, 5 nmol 
CpG-ODN 1668 was administered subcutaneously at the site of infection, 
and 10 h postinfection additional 5 nmol CpG-ODN 1668 was injected 
intraperitoneally. Control mice received PBS. Total RNA was isolated from 
footpad tissue 36 h p.i. and reverse transcribed. Gene expression levels were 
determined as described in legend of Figure 3. Results are mean expression 
levels (±SEM) from three independent experiments with two to three mice per 
group. Significant differences by Mann–Whitney test between PBS- and 
CpG-treated infected BALB/c WT, IFN-β−/−, or IFNAR1−/− mice (*p < 0.05; 
**p < 0.01; and **p < 0.001) are indicated. n.d., Not detectable.
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(and presumably also IFN-α5) act as immediate-early IFNs that 
are elicited by activation of the transcription factor interferon-
regulatory factor (IRF)-3 and IRF-7 and account for the subse-
quent amplification of the type I IFN response via crosslinking of 
IFNAR (41). IFN-α13 has been originally described as an IFN-α 
subtype that is expressed in mouse fibroblast cell lines even in 
the absence of a viral stimulus or an IFN-α/β priming signal 
(79). In this study, we found that the constitutive expression of 
IFN-α13 (and of IFN-α11) in naïve mice is subject to negative 
regulation following L. major infection. Looking at the entire 
course of infection, IFN-α13 and IFN-β are reciprocally regu-
lated and expressed, which suggests that both subtypes fulfill 
different functions. In the human type I IFN system, there is evi-
dence for a functional diversity of IFN-α/β subtypes [reviewed 
in Ref. (80)]. The underlying structure–function relationships 

are only beginning to emerge (81, 82). In the mouse system, we 
are still largely lacking important tools (recombinant proteins, 
subtype-specific antibodies, and knockout mice) to investigate 
the function of the different IFN-α/β subtypes.

Function of endogenous Type i iFn  
during non-Viral infections
IFNAR1−/− mice infected with group B streptococci, Strep­
tococcus pneumoniae, Escherichia coli (65), Trypanosoma cruzi 
(61, 62), Plasmodium yoelii (74), Plasmodium berghei (83), 
Pneumocystis carinii (84), or Cryptococcus neoformans (64) all 
showed a significantly enhanced pathogen load and/or reduced 
survival compared with the respective WT control mice. The 
protective effect of type I IFN seen in these models is contrasted 
by studies on other infectious pathogens, in which type I IFN 
signaling was either clearly associated with reduced pathogen 
control, striking tissue damage and increased mouse mortality 
[e.g., Listeria monocytogenes (28, 58, 59, 69), Mycobacterium 
tuberculosis (60, 63, 71, 85), Staphylococcus aureus (67), and 
Candida albicans (72)] or without strong impact on the course 
of infection at all [e.g., Legionella pneumophila (86)]. These 
findings strongly suggest that the diverse immunomodulatory 
activities of type I IFNs are either beneficial or detrimental 
for the host, depending on the eliciting infectious agent. Even 
within one pathogen species (i.e., T. cruzi, M. tuberculosis, and 
P. berghei) opposing functional roles of type I IFNs (mediating 
resistance vs. susceptibility) have been described depending 
on the pathogen strain and infection dose (62, 70), the genetic 
mouse model used (71, 77), or the time points of infection 
analyzed (73, 83).

A similar complexity of the activity of type I IFNs is also 
seen in experimental cutaneous leishmaniasis, where the infec-
tion site, the parasite inoculum, and the parasite species and 
strain are known to affect the immune response and course of 
infection [reviewed in Ref. (17, 18)]. As shown in the present 
analysis of L. major-infected C57BL/6 mice, parasite and dis-
ease control was unaffected in the absence of IFNAR signaling.  
At first sight, this result was unexpected considering the strik-
ing impact of type I IFNs during the NK cell phase of L. major 
infection (days 1 and 2) (21) and the sustained expression of 
certain type I IFNs during the course of infection documented 
here for the first time (Figure 1). However, the non-essential 
role of type I IFNs in this model is most likely due to the fact 
that the swiftly starting production of IFN-γ by NK cells and 
recruited CD4+ T cells [reviewed in Ref. (87)] makes type I IFNs 
rapidly dispensable as inducers of iNOS, also because IFN-γ 
is considerably more potent than type I IFNs in triggering 
this antileishmanial effector mechanism (88). In addition, at 
least in vitro the production of high amounts of type I IFNs in 
response to L. major parasites appeared to be restricted to pDCs 
(15), which represent a minor cell population in vivo, whereas 
the more abundant mDCs and macrophages released consid-
erably smaller or very low amounts of IFN-α/β, respectively  
(21, 89) (Figure 5A vs. Figure 5B). Furthermore, the produc-
tion of IL-12 by mouse mDCs, which is crucial for eliciting a 
Th1 response, was completely independent of IFNAR1 signal-
ing (Figure  5A, lower panel), in contrast to recent findings 
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FigUre 8 | Interferon (IFN)-γ and interleukin (IL)-4 mRNA expression in the footpads and draining lymph nodes (dLN) of Leishmania major-infected BALB/c 
wild-type (WT) and IFNAR1−/− mice treated with CpG-oligodesoxynucleotides (ODN) 1668. BALB/c WT and IFNAR1−/− mice were infected with 3 × 106 stationary 
phase L. major promastigotes into both hind footpads. 2 h before infection, 5 nmol CpG-ODN 1668 was administered subcutaneously at the site of infection, and 
10 h postinfection additional 5 nmol CpG-ODN 1668 was injected intraperitoneally. Control mice received PBS (same volume). Total RNA was isolated from footpad 
and dLN tissue at day 23 or day 24 of infection and reverse transcribed. Gene expression levels of IFN-γ and IL-4 were determined as described in legend of 
Figure 3. Results are mean expression levels (±SEM) from two independent experiments with three mice per group. Significant differences by Mann–Whitney test 
(*p < 0.05 and **p < 0.01) are indicated.
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with human DCs (90). Finally, L. major parasites impeded 
the expression of various type I IFN subtypes in macrophages 
(89) and were reported to produce a mammalian casein kinase 
1-ortholog, which modestly decreased the expression of 
IFNAR1 on the surface of mouse BM macrophages and human 
DCs (91). All these factors might limit the expression and/or 
function of type I IFNs in L. major-infected C57BL/6 mice.

In L. amazonensis-infected 129Sv mice, which develop 
non-healing, progressive skin lesions, deletion of IFNAR1 was 
associated with a markedly attenuated clinical course of infec-
tion and parasite load. Absence of IFNAR1 led to an increased 
recruitment and death of neutrophils, which upon interaction 
with macrophages facilitated the killing of parasites (25). By 
contrast, in L. mexicana-infected mice, another model for non-
healing cutaneous leishmaniasis, the lesion development and 
parasite burden were comparable in WT and IFNAR−/− mice on 
a mixed 129Sv/C57BL/6 background, with only a transient defect 
of the production of IFN-γ and IL-10 upon in vitro restimula-
tion of lymph node T cells (92). Strains of Leishmania (Viannia) 
guyanensis, which carried high amounts of Leishmania RNA 
virus-1 (LRV1) and elicited metastatic skin lesions, activated 
macrophages for the release of much higher levels of IFN-β 
compared with non-metastatic parasite strains that lacked the 
virus (93). IFNAR1−/− mice infected with LRV1-positive strains 
of L. V. guyanensis developed markedly attenuated skin lesions 

compared with WT control mice, demonstrating that in chronic 
non-healing cutaneous leishmaniasis exuberant amounts of type 
I IFNs (triggered by the activity of the Leishmania RNA virus) 
are counterprotective (26). In line with these observations, 
exogenous IFN-β impeded the killing of Leishmania (Viannia) 
braziliensis or L. amazonensis by human macrophages via induc-
tion of superoxide dismutase 1 and subsequent degradation of 
O2

− (24, 94). By contrast, the quantities of type I IFNs generated 
in BALB/c mice infected with L. major were not sufficient to 
impair the immune response as revealed by the unaltered course 
of infection in BALB/c IFNAR1−/− mice.

Finally, in mouse visceral leishmaniasis caused by Leishmania 
donovani, the parasite burden in liver and spleen was reported 
to be unaffected in the absence of IFNAR signaling, but original 
data were not presented in this publication (95). The reduced 
parasite control observed in L. donovani-infected mice deficient 
for either the interferon-regulatory factor-5 (IRF-5) or IRF-7, 
both of which control type I IFN expression, was attributed to 
an impaired generation of Th1 cells and IFN-γ and a defective 
induction of iNOS (96, 97).

Mechanism of cpg-induced Protection
The finding that CpG-ODN 1668 conferred protection equally 
well in L. major-infected BALB/c WT and IFN-β−/− mice, 
but was ineffective in both BALB/c IFNAR1−/− and BALB/c 
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