
February 2018 | Volume 9 | Article 1211

Review
published: 05 February 2018

doi: 10.3389/fimmu.2018.00121

Frontiers in Immunology | www.frontiersin.org

Edited by: 
Rino Rappuoli,  

GlaxoSmithKline (Italy), Italy

Reviewed by: 
Juraj Ivanyi,  

King’s College London,  
United Kingdom  

Sima Rafati,  
Pasteur Institute of Iran, Iran

*Correspondence:
Stefan H. E. Kaufmann  

kaufmann@mpiib-berlin.mpg.de

Specialty section: 
This article was submitted  
to Vaccines and Molecular 

Therapeutics,  
a section of the journal  

Frontiers in Immunology

Received: 27 October 2017
Accepted: 15 January 2018

Published: 05 February 2018

Citation: 
Nieuwenhuizen NE and 

Kaufmann SHE (2018) Next-
Generation Vaccines Based on 

Bacille Calmette–Guérin.  
Front. Immunol. 9:121.  

doi: 10.3389/fimmu.2018.00121
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on Bacille Calmette–Guérin
Natalie E. Nieuwenhuizen and Stefan H. E. Kaufmann*

Max Planck Institute for Infection Biology, Berlin, Germany

Tuberculosis (TB), caused by the intracellular bacterium Mycobacterium tuberculosis 
(Mtb), remains a major health threat. A live, attenuated mycobacterium known as Bacille 
Calmette–Guérin (BCG), derived from the causative agent of cattle TB, Mycobacterium 
bovis, has been in clinical use as a vaccine for 90 years. The current incidence of TB 
demonstrates that BCG fails to protect sufficiently against pulmonary TB, the major 
disease manifestation and source of dissemination. The protective efficacy of BCG is 
on average 50% but varies substantially with geographical location and is poorer in 
those with previous exposure to mycobacteria. BCG can also cause adverse reactions in 
immunocompromised individuals. However, BCG has contributed to reduced infant TB 
mortality by protecting against extrapulmonary TB. In addition, BCG has been associated 
with reduced general childhood mortality by stimulating immune responses. In order to 
improve the efficacy of BCG, two major strategies have been employed. The first involves 
the development of recombinant live mycobacterial vaccines with improved efficacy 
and safety. The second strategy is to boost BCG with subunit vaccines containing Mtb 
antigens. This article reviews recombinant BCG strains that have been tested against 
TB in animal models. This includes BCG strains that have been engineered to induce 
increased immune responses by the insertion of genes for Mtb antigens, mammalian 
cytokines, or host resistance factors, the insertion of bacterial toxin-derived adjuvants, 
and the manipulation of bacterial genes in order to increase antigen presentation and 
immune activation. Subunit vaccines for boosting BCG are also briefly discussed.

Keywords: tuberculosis, Mycobacterium bovis bacille Calmette–Guérin, vaccine, recombinant Mycobacterium 
bovis bacille Calmette–Guérin, subunit vaccine, mycobacteria

iNTRODUCTiON

The bacterium Mycobacterium tuberculosis (Mtb) remains one of the most difficult pathogens to 
control, and caused 10.4 million recorded cases of tuberculosis (TB) and 1.7 million recorded deaths 
in 2016 (1). Just under a quarter of the world’s population is estimated to be latently infected with 
Mtb, with the highest prevalence in Africa and Asia (2). The risk of developing active disease for 
those with latent TB infection (LTBI) is greatest within the first 2  years and approximately 10% 
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interleukin; LC3, microtubule-associated protein light chain 3; LLO, listeriolysin O; LT, Escherichia coli heat labile toxin; LTBI, 
latent TB infection; MCP-3, monocyte chemotactic protein 3; MDR, multi-drug resistant; Mtb, Mycobacterium tuberculosis; 
NK, natural killer; NOX2, NADPH oxidase; Pfo, perfringolysin O; rBCG, recombinant BCG; RD(1-16), region of difference 
(1-16); ROS, reactive oxygen species; SCID, severe combined immunodeficiency; TB, tuberculosis; TCM, central memory T; TEM, 
effector memory T; Th1, T helper cell type 1; TRM, resident memory T; XDR, extremely drug resistant.
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over a lifetime, or 5–10% per year in HIV infected individuals (3). 
Treatment with drugs requires 6–9 months of antibiotics, and not 
only multi-drug resistant (MDR) strains but also extremely drug-
resistant (XDR) strains continue to emerge, leading to extended 
drug treatment regimens with considerable side effects (4, 5). The 
HIV pandemic and socio-economic factors are the two major 
drivers of TB disease, with factors such as poor living conditions 
and sanitation, crowded housing, poor air quality, malnutrition, 
stress, and co-infections all increasing susceptibility to develop-
ing active TB disease (6). Improvement of socio-economic condi-
tions along with development of a more effective vaccine against 
TB will be critical in controlling this devastating disease.

Almost 100 years ago, in 1921, the first newborn was immu-
nized with a live attenuated strain of the bovine Mycobacterium 
species, Mycobacterium bovis bacille Calmette–Guérin (BCG), 
followed by mass vaccination campaigns (7). BCG is partially 
protective against TB and has immunostimulatory effects that 
reduce general mortality during the first years of life by enhanc-
ing responses to other infectious diseases such as respiratory 
viruses (8–10). However, the efficacy of BCG against TB varies 
geographically and BCG does not provide adequate protection 
against pulmonary disease, the main form of disease manifesta-
tion and the cause of transmission (1). The development of a more 
effective TB vaccine is therefore likely to play a profound role in 
controlling this disease. As a live vaccine, BCG can also cause local 
or systemic infection in immunocompromised individuals (11) 
and is thus contraindicated in individuals who stand to benefit 
most from vaccination, such as HIV-positive individuals who are 
at high risk of developing active TB. Hence, the development of a 
vaccine that is safer for use in immunocompromised individuals 
is also a high priority.

A number of TB vaccine candidates are under clinical 
development, and many more have been pre-clinically tested in 
animal models (12–15). Pre-clinical evaluation of novel vaccine 
candidates has improved our knowledge of protective responses 
against TB and has shown that as a standalone vaccine BCG is at 
least as effective as novel subunit vaccines (16). BCG continues 
to be used in countries where TB is endemic due to its partial 
efficacy and has an established safety record. Hence, two major 
strategies in TB vaccine development have been to generate live 
mycobacterial vaccines with improved efficacy and safety, such 
as recombinant BCG (rBCG) vaccines, or to boost BCG with 
subunit vaccines containing Mtb antigens. This review provides 
an update on the latest knowledge on BCG and summarizes the 
rBCG candidates that have been tested against TB in animal 
models or clinical trials.

BCG AS A vACCiNe AGAiNST TB

Meta-analyses have found that BCG provides on average 50% 
protection against TB and is effective for 10–20 years, but effi-
cacy varies between countries and is much lower in adults than 
in children (17–21). Absence of sensitization to environmental 
mycobacteria or prior Mtb infection is associated with higher 
efficacy of BCG against TB (18). BCG is particularly effective 
against TB meningitis and disseminated TB in infants, with 
protection against pulmonary TB being much lower (22). The 

original BCG developed at the Pasteur Institute in Lille, France, 
was distributed around the world, and continuing passaging led 
to accumulating genetic mutations and the divergence of numer-
ous substrains (23). These substrains appear to vary in efficacy 
in animal models, which has been reviewed previously (23). It 
has been suggested that this could contributes to the variable 
efficacy seen in different studies; however, a meta-analysis sug-
gests that the type of BCG substrain does not significantly affect 
efficacy (18). More strikingly, analyses found higher efficacy in 
colder countries such as UK and Norway and lower efficacy 
in warmer countries such as India and Indonesia (18, 19, 22, 
24, 25). This variation in efficacy seems to be due to increased 
exposure to environmental mycobacteria, which appears to 
reduce reactivity to BCG (18, 26, 27). Prior infection with Mtb 
also reduces the efficacy of the BCG vaccine (18). People living 
in TB endemic countries are more frequently exposed to Mtb, 
which raises the risk of individuals being infected (28). The HIV 
pandemic has contributed to increasing the burden of TB (3). 
Other risk factors for TB disease include diabetes, smoking, 
alcoholism, indoor air pollution, chronic corticosteroid treat-
ment, malignancy, and malnourishment (29, 30). Therefore, 
these factors probably also contribute to the failure of BCG to 
protect against disease in some individuals.

Humans are not the only species at risk of TB, as wildlife 
and farmed animals are also susceptible to infection with various 
mycobacterial strains. Two species of agricultural importance 
include M. bovis and Mycobacterium caprae, closely related spe-
cies of the same clade that cause TB in cattle and goats, and can 
also be transmitted to humans (31). BCG was first tested and 
proven effective against virulent M. bovis infection in cattle by 
Calmette and Guerin in 1911 (32), 10 years before its delivery 
to a human newborn; however, it is not routinely given to cattle 
to avoid interference with diagnostic tests for M. bovis (32). 
Recently, it has been shown feasible to distinguish vaccinated 
from infected animals (33, 34). Trials vaccinating large animals 
with BCG and subunit vaccine boosters have demonstrated that 
BCG is more protective when administered to neonates and 
that subunit vaccines can boost protection after BCG prime 
[reviewed in Ref (32)]. Cows and goats vaccinated with BCG and 
exposed to natural infection were protected compared to those 
without vaccination (32). Efficacy was approximately 55–70%, 
similar to the estimated efficacy of BCG in humans in Norway 
and the UK (19, 35, 36).

Vaccines rely on the generation of memory responses, 
which result from the clonal expansion and differentiation of 
antigen-specific lymphocytes (37). T cells can differentiate into 
effector memory T (TEM) cells that have effector functions such as 
cytokine production and migrate to affected tissues, and central 
memory T (TCM) cells that home to secondary lymphoid organs, 
where they can proliferate and differentiate into new effector 
cells upon re-exposure to antigen. Immunity to Mtb requires 
CD4+ and CD8+ T cells producing type I effector cytokines such 
as IFN-γ and TNF-α and their recruitment to the lung (38–43). 
T  cells that home to the lung tissue and accumulate there, 
known as tissue resident memory (TRM) cells, are particularly 
important for immunity to Mtb (38, 43). Mucosal immunization 
with BCG induces more TRM cells than parental immunization 
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FiGURe 1 | Aspects of tuberculosis (TB) immunology. DC: dendritic cell; Mϕ: macrophage; AMϕ: alveolar macrophage; TEM: effector memory T cell; TCM: central 
memory T cell; TRM: resident memory T cell; MDSC: myeloid-derived suppressor cell; PMN: neutrophil. (1) Exposure to Mycobacterium tuberculosis (Mtb) is by the 
inhalation of infected aerosol droplets generated by coughing. (2) Mtb bacilli primarily live in host macrophages. Alveolar macrophages and other myeloid cells such 
as DCs can take up bacteria from the airways. If macrophages do not control infection, the bacteria can replicate and kill the cell. Bacteria can also infect 
neutrophils, which die and can be taken up by macrophages, which subsequently become infected themselves. (3) Infected DCs have delayed migration to the 
lymph nodes and impaired antigen presentation. In the lymph nodes, they transfer antigens to uninfected bystander DCs, which present the antigens to T cells. (4) 
Effector CD4+ and CD8+ T cells generated from naive T cells or from memory T cells are recruited to the lungs. (5) Effector CD4+ T cells produce cytokines such as 
IFN-γ, interleukin (IL)-17, and TNF-α, while CD8+ T cells can lyse infected macrophages. IFN-γ can activate bacterial killing. (6) Neutrophils, monocytes, or immature 
myeloid cells with suppressive functions, known as MDSCs are recruited to the lungs. Monocytes can differentiate into inflammatory macrophages or inflammatory 
DCs. (7) MDSCs aim to limit excessive inflammation by inhibiting T-cell proliferation and function, but they can act as a reservoir for Mtb. (8) Antibodies may also play 
a role in controlling infection. (9) Eventually, the immune cells form a granuloma around Mtb in an attempt to contain the bacteria. These are the typical lesions 
observed in the Mtb-infected lung, most commonly in the upper lobes.
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(43). In addition, it was recently shown that interleukin (IL)-
21-dependent memory-like natural killer (NK) cells generated 
after BCG vaccination were protective against Mtb challenge 
(44). Furthermore, innate immune responses are undoubtedly 
important in resistance against Mtb (45) and increasing evidence 
suggests a role for antibodies in protection (46–48). There is a 
fine balance between protective immune responses and excess 
immunopathology, and the type of immune responses induced 
is critical, particularly as Mtb can infect recruited myeloid cells 
such as neutrophils and myeloid-derived suppressor cells (49, 
50). The immunology of Mtb infection is illustrated in simplified 
form in Figure 1. The strengths of BCG as a vaccine are that it 
induces immune responses against a broad range of mycobacte-
rial antigens, boosts innate immunity by stimulating monocytes, 
persists for a relatively long time compared to non-live vaccines, 
and requires no adjuvants (51, 52). Its failure to provide sufficient 
protection against TB may be related to insufficient generation of 

CD8+ T-cell responses and CD4+ TCM cell responses, which are 
required for long-term protection against Mtb (41, 53–57). It has 
been proposed that BCG fails to provide long-term protection, as 
the rate of TB increases in early adulthood and some studies have 
shown waning of protection after 10–15 years (25, 58). However, 
recent meta-analyses suggest that BCG can be effective for 
20 years or longer in some populations (19). This is similar to, or 
even better than, the duration of protection of other commonly 
used vaccines, which often require boosters every 10  years. 
However, boosting BCG with repeat doses does not seem to be 
effective (59). In individuals infected with Mtb or constantly 
exposed to environmental mycobacteria, vaccine-induced TCM 
cells are under increased pressure and constant exposure to 
antigens may deplete pools of TCM cells by stimulating them to 
differentiate into effector cells (56, 58).

In both mice and humans, the T-cell responses to BCG vac-
cination are dominated by effector or TEM cells rather than TCM 
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cells (57, 58). BCG resides in the phagosome of host cells, and its 
antigens are therefore primarily processed by major histocom-
patibility complex (MHC) class II pathways, stimulating CD4+ 
T-cell responses (60). BCG is also a poor inducer of apoptosis, 
a process of controlled cell death, which promotes the induction 
of both CD4+ and CD8+ T cells (53, 55, 61). In mice, the loss 
of BCG-mediated protection in the chronic phase coincides 
with a loss of CD4+ TCM cells and an increase in terminally dif-
ferentiated, dysfunctional T cells (41, 54). Mtb is a slow growing 
bacterium, and the chronic nature of the disease may lead to 
T-cell exhaustion—a progressive loss of T-cell function. Thus, 
an effective vaccine should induce large pools of memory cells 
that can replenish TEM cells. In humans, increasing mycobacte-
rial load coincides with progressive impairment of Mtb-specific 
CD4+ T-cell responses (62) (41, 54, 63, 64). As exhausted T cells 
can be restored by inhibiting programmed cell death protein 
(PD)-1 or stimulating toll-like receptor 2, it is possible that 
host-directed therapy to improve T-cell function could be used 
therapeutically in TB patients, but studies are still ongoing (65). 
Recently, it was shown that memory CD4+ T cells recruited to 
the lung attenuated Mtb growth in the early stages of disease, but 
their interaction with Mtb-infected macrophages did not pro-
mote their continued proliferation, resulting in only transient 
protection followed by waning immunity (66). Furthermore, 
Mtb-infected dendritic cells (DCs) cannot efficiently present 
antigens and instead transfer antigens to bystander DCs in the 
lymph nodes, which present the antigens to T  cells (67–69). 
This causes a delay in activation of memory T cells and their 
recruitment to the lung. Overcoming such obstacles to steriliz-
ing immunity against Mtb would improve the efficacy of TB 
vaccines markedly (68).

Novel vaccines aim to increase the number and qual-
ity of TRM and TCM cells generated (13, 70–72). While it was 
first thought that only live vaccines could generate good TCM 
responses, novel adjuvants administered with Mtb antigens 
have also shown success in this regard (41, 70). In clinical trials 
of novel vaccine candidates, it will be important to monitor 
long-term protective efficacy in populations with different 
levels of exposure to Mtb (58).

rBCGs AGAiNST TB

A number of rBCGs have been generated and tested for immuno-
genicity and/or efficacy in animal models. To narrow it down, we 
will discuss primarily those that have been tested for protective 
efficacy against Mtb (see Table 1). This includes BCG strains that 
have been engineered to induce increased immune responses by 
insertion of genes for Mtb antigens, mammalian cytokines or host 
resistance factors, insertion of bacterial toxin derived adjuvants, 
and manipulation of bacterial genes in order to increase antigen 
presentation and immune activation.

rBCGs expressing Mtb Antigens
Analysis of the genetic differences between BCG and Mtb has 
determined that 16 genomic regions of difference (designated 
RD1–RD16) have been deleted from BCG substrains, although 
some substrains do contain RD2, RD8, RD14, and RD16  

(104–106). RD1 to RD3 were the first to be identified and are pre-
sent in virulent M. bovis as well as Mtb (104). RD1 is a 9.5-kb seg-
ment deleted from all BCG substrains but conserved in all virulent 
isolates of M. bovis and Mtb, and it regulates multiple genetic loci. 
The RD1 segment contains the genes for the immunodominant 
antigens early secretory antigenic target (ESAT)-6 and culture 
filtrate protein-10 (CFP-10), as well as components of the type 
VII ESAT-6 secretion system (ESX)-1 required to secrete them 
(73, 104, 107, 108). RD1 deletion and the loss of the ESX-1 secre-
tion system was a major factor in the original attenuation of BCG 
(73, 104, 107). At least five additional T-cell antigens are encoded 
by RD1 (PE35, PPE68, Rv3871, Rv3878, and Rv3879c), suggesting 
that RD1 constitutes an immunogenicity island (108). RD2 is a 
10.7-kb segment deleted only from substrains derived from the 
original BCG Pasteur strain after 1925, and it is conserved in M. 
bovis and Mtb. RD2 contains novel repetitive elements and the 
mpt64 gene, encoding the protein MPT64 which elicits T-cell 
responses and delayed hypersensitivity reactions in Mtb-infected 
patients (109). Finally, RD3 is a 9.3-kb segment absent from BCG, 
present in virulent laboratory strains of M. bovis and Mtb, but 
absent from 84% of virulent clinical isolates. The loss of RD1 to 
RD16 means that BCG lacks a number of the antigens of Mtb, 
and attempts have been made to improve the efficacy of BCG 
against TB by generating rBCGs expressing antigens particular to 
Mtb, such as ESAT-6 (74, 75, 80, 81, 110). ESAT-6 not only acts 
as an antigen but also can induce IL-18-dependent IFN-gamma 
secretion by Mtb antigen-independent memory CD8+ T cells and 
NK cells (111). Furthermore, rBCGs over-expressing antigens that 
are found in both BCG and Mtb, such as antigen 85B (Ag85B), 
have been generated in an attempt to boost immune responses 
against shared mycobacterial antigens. In support of the fact 
that including Mtb antigens improves the protective efficacy of 
mycobacterial strains, removing CFP-10 and ESAT-6 from the 
attenuated Mtb-derived MTBVAC strain reduced its protection 
against Mtb in mice to that of BCG levels (112). MTBVAC is an 
Mtb strain attenuated by independent deletions of the phoP and 
fadD26 virulence genes.

An rBCG over-expressing ESAT-6 induced stronger IFN-γ 
responses than parental BCG but did not improve protection 
against aerosol Mtb challenge in guinea pigs (75). In contrast, 
rBCG30, over-expressing the shared immunodominant Ag85B, 
improved protection against Mtb in a guinea pig model relative 
to BCG (76). Ag85B is one of the three similar secreted mycolyl-
transferases that are important for bacterial wall synthesis (113). 
A Phase I clinical trial was completed where 35 adults were 
randomized to receive rBCG30 or parental BCG in a double-
blind fashion (77). The vaccine was well tolerated, and expansion 
and IFN-gamma production of Ag85B-specific CD4+ and CD8+ 
T  cells were increased in the rBCG30 immunized individuals 
compared to those immunized with parental BCG (77). To 
improve the safety of rBCG30 for use in immunocompromised 
individuals, a new construct, rBCG(mbtB30) was developed, 
which has disrupted synthesis of the siderophore mycobactin, 
preventing normal iron acquisition (78). This strain is mycobac-
tin-dependent but can undergo limited replication if sufficient 
ferric mycobactin is provided. It was shown to be safer than BCG 
in immunocompromised severe combined immunodeficiency 
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TABle 1 | Recombinant bacille Calmette-Guérin (rBCG) vaccine candidates and their protective efficacy against Mycobacterium tuberculosis (Mtb) challenge.

Name Description Results of testing Reference

BCG:RD1-2F9/BCG:RD1/
BCG:ESX-1

Bacille Calmette-Guérin (BCG) with the RD1 gene cluster 
inserted (Rv3861–Rv3885). Expresses early secretory antigenic 
target-6 (ESAT-6) and culture filtrate protein-10 (CFP10)

Mice: comparable efficacy in the lungs, moderate decrease in spleen bacterial burdens. Increased 
virulence
Guinea pigs: strong decrease in spleen bacterial loads, reduced pathology

(73, 74)

rBCG E6 rBCG over-expressing antigen ESAT-6 Guinea pigs: comparable protection to BCG (75)

rBCG30 rBCG over-expressing antigen 85B (Ag85B) Guinea pigs: increased survival
Safe and immunogenic in Phase I clinical trials

(76, 77)

rBCG(mbtB30) rBCG over-expressing Ag85B, with disrupted synthesis of the 
siderophore mycobactin, preventing normal iron acquisition

Guinea pigs: slight decrease in bacterial burdens
Mice: safer in severe combined immunodeficiency (SCID) mice

(78)

rBCG-1173:A rBCG expressing Ag85A Mice: slight decrease in bacterial burdens (79)

rBCG:XB rBCG expressing Ag85B and latency antigen HspX Mice: strong decrease in bacterial burdens (80)

(H)PE-ΔMPT64-BCG rBCG expressing MPT64 fused to the PE domain of the PE_
PGRS33 protein of Mtb that localizes to the cell wall

Mice: slight decrease in bacterial burdens (81)

BCG:ESAT-L28A/L29S rBCG:ESX-1 variant with mutations in the ESAT-6 gene Mice: moderate decrease in spleen bacterial burdens, no difference in lung bacterial burdens. 
Attenuated
Guinea pigs: strong decrease in spleen bacterial burdens

(82)

BCG:ESX-1Mmar rBCG with the insertion of the esx1 locus of Mycobacterium 
marinum

Mice: moderate reduction in bacterial loads in lungs and spleens after virulent Mtb challenge. As safe 
as BCG

(83)

BCG-IL-4, BCG-IL-6, BCG-GM-
CSF, BCG-IFN-γ, BCG-IL-2

rBCG expressing murine interleukin (IL)-4, IL-6, GM-CSF, IFN-γ, 
and IL-2

No efficacy data (84)

BCG secreting IL-2 BCG secreting IL-2 No efficacy data (85)

rBCG-mIL-18 BCG secreting mouse IL-18 Mice: attenuated. Efficacy against Mtb not tested (86)

BCG-IL-18 BCG secreting mouse IL-18 Mice: no difference in virulence compared to BCG. Efficacy against Mtb not tested (87)

rBCG/IL-18 rBCG expressing IL-18 Mice: decreased protective efficacy against virulent Mycobacterium bovis challenge compared to BCG (88)

rBCG/IL-2 rBCG expressing IL-2 Mice: did not increase protective efficacy against the virulent M. bovis challenge compared to BCG (88)

BCG-IFN-gamma rBCG secreting murine IFN-γ Mice: did not increase protective efficacy against Mtb compared to BCG (89)

rBCG-Ag85B-IL-15 rBCG expressing a fusion protein of Ag85B and IL-15 Mice: decreased bacterial burdens after intratracheal Mtb challenge, compared to BCG-Ag85B. No 
comparison performed with BCG

(90)

rBCG-Ag85B-ESAT-6-TNF-α rBCG expressing the fusion protein Ag85B-ESAT-6-TNF-α Efficacy against Mtb not tested (91)

rBCG Ag85B-ESAT-6-IFN-γ rBCG strain expressing the fusion protein Ag85B-ESAT-6-IFN-γ Mice: slightly reduced bacterial burdens compared to BCG (92)

BCGi The Ipr1 (intracellular pathogen resistance 1) gene was inserted 
into BCG

Mice: decreased bacterial loads in the lungs and spleens after Mtb challenge (93)

rBCG(MCP-3) Insertion of the gene for the chemokine monocyte chemotactic 
protein 3 (MCP-3) into BCG

Mice: increased safety in immunodeficient mice. Efficacy comparable to BCG (94)

VPM1002 (BCG ΔureC:hly) BCG expressing the Listeria monocytogenes protein listeriolysin 
O (LLO) instead of urease C

Mice: increased safety in both immunocompetent and immunodeficient mice. Moderate to strongly 
decreased bacterial loads and pathology compared to BCG
Safe in guinea pigs, rabbits, and non-human primates
Successfully passed Phase II clinical trials

(42, 95–97)

BCG ΔureC:hly ΔnuoG/
VPM1002 ΔnuoG

BCG ΔureC:hly with deletion of nuoG, an anti-apoptotic gene Mice: strong decrease in bacterial burdens compared to BCG, slight decrease in bacterial burdens 
compared to VPM1002
Safety equivalent to VPM1002

(96)
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(SCID) mice and was slightly more protective against Mtb than 
parental BCG in guinea pigs (78).

Other rBCGs expressing Mtb antigens that provided increased 
protection against Mtb in mice include rBCG expressing Ag85A 
(79), rBCG expressing Ag85B and latency antigen HspX 
(rBCG:XB)(80), and rBCG expressing MPT64 fused to the PE 
domain of the PE_PGRS33 protein of Mtb that localizes to the 
cell wall ((H)PE-ΔMPT64-BCG) (81). In another approach, 
co-administration of an rMTb72F fusion protein (composed 
of Mtb32 and Mtb39 antigens) in an AS02A adjuvant together 
with BCG increased survival and decreased lung pathology in 
guinea pigs (110). A small number of antigens feature frequently 
in the makeup of vaccine candidates generated for pre-clinical 
and clinical evaluation, with six of the eight subunit vaccines in 
clinical trials containing an Ag85 protein (14). Current research 
therefore aims to identify novel antigens and broaden antigen 
selection for vaccine design.

rBCGs Complemented with eSX-1 variants
As mentioned in the previous section, BCG lacks the RD1 
and thus a functional ESX-1 secretion system and the antigens 
ESAT-6 and CFP-10, which form a heterodimeric complex and 
act as virulence factors (73, 104, 107, 108). ESX-1 is involved in 
host–pathogen interactions, as access of bacterial antigens to the 
cytosol influences both bacterial virulence and host immune 
recognition (73, 83, 114). An rBCG complemented with the 
complete RD1 locus (BCG:RD1, also known as BCG:ESX-1) 
provided better protection against Mtb challenge in both mice 
and guinea pigs than parental BCG, with reduced lung pathology 
and dissemination of bacteria (74). However, insertion of the Mtb 
esx-1 locus into BCG leads to increased virulence in immuno-
deficient mice and prolonged persistence in immunocompetent 
mice (74). This issue was approached by introducing mutations 
into the esxA gene (encoding ESAT-6) of BCG:ESX-1 (82) or 
by inserting the esx-1 locus of Mycobacterium marinum, which 
has reduced virulence, into BCG (83). A BCG:ESAT-L28A/L29S 
strain carrying modifications at residues Leu(28)-Leu(29) of the 
ESAT protein was strongly attenuated in mice and demonstrated 
protective efficacy against Mtb challenge in mice and guinea pigs, 
with similar lung bacterial burdens but a strong reduction in 
spleen bacterial burdens (82). BCG:ESX-1Mmar increased protec-
tive efficacy compared to BCG in mice, demonstrating similar 
immunogenicity and efficacy to BCG:ESXMtb but was as safe as 
parental BCG (83). Compared to BCG Danish, BCG:ESX-1Mmar 
reduced bacterial loads in lungs and spleens by an additional 
log after a challenge with Mtb HN878 (Beijing family) and Mtb 
strain M2 (Harlem family). Expression of ESX-1Mmar induced the 
cGas/STING/TBK1/IRF-3/type I interferon axis and enhanced 
AIM2 and NLRP3 inflammasome activity, leading to increased 
proportions of mycobacteria-specific cytokine-producing CD4+ 
Th1 cells and CD8+ T cells.

rBCGs expressing Host 
immunomodulatory Molecules
In an effort to increase host responses to mycobacterial antigens 
following BCG vaccination, a number of rBCGs have been gener-
ated expressing functional mammalian cytokines or other host TA
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molecules (84, 85, 87, 93). Cytokine-producing rBCG strains have 
also been generated with the aim of testing them in intravesical 
BCG immunotherapy for bladder cancer, which seems to require 
the activation of Th1 responses for efficacy (86, 115, 116). Most 
murine cytokines tested could be produced and secreted by BCG 
and were functional (84). Splenocytes stimulated with IL-2 secret-
ing BCG produced increased IFN-γ compared to those stimulated 
with BCG (85). A study tested rBCGs expressing murine IL-4, 
IL-6, GM-CSF, IFN-γ, and IL-2 and found that BCGs secret-
ing IL-2, IFN-γ, or GM-CSF were more potent stimulators of 
responses to PPD than BCG, with splenocytes from mice immu-
nized with these strains producing large amounts of IFN-γ (84). 
In addition, two independent studies demonstrated that rBCG 
strains expressing IL-18, a cytokine that acts in synergy with IL-12 
to induce IFN-γ (88), promoted IFN-γ production by splenocytes 
in response to PPD (86, 87). In one of these studies, mice infected 
with rBCG-mIL-18 had decreased bacterial loads compared to 
mice infected with parental BCG (86), whereas in the other, they 
did not (87). None of the aforementioned strains were tested 
for protective efficacy against Mtb challenge; however, rBCGs 
expressing IL-2 or IL-18 were tested against infection with virulent 
M. bovis (88). In this study, rBCG/IL-18 induced less IFN-γ than 
BCG and had lower protective efficacy against M. bovis challenge 
compared to BCG. Despite inducing increased Th1 responses and 
protecting against intranasal challenge with BCG, immunization 
with rBCG/IL-2 did not increase protective efficacy against the 
virulent M. bovis challenge. Similarly, when IFN-γ-deficient mice 
were infected via aerosol with rBCG secreting murine IFN-γ, they 
had reduced bacterial loads and more differentiated granulomas 
compared to mice infected with the control rBCG containing 
vector only, demonstrating the potential to influence disease out-
comes (89). However, subsequent challenge of IFN-γ−/− mice with 
Mtb demonstrated that rBCG secreting IFN-γ did not provide 
additional protection against Mtb compared to BCG-vector. In 
this study, IFN-γ was only produced locally and local produc-
tion was insufficient for improving systemic immune responses. 
Overall, conferring upon BCG, the ability to secrete cytokines 
does not seem to enhance its protective efficacy, probably because 
of the amount of cytokine secreted and its locality.

In another strategy, rBCGs expressing combinations of 
cytokines and antigens, sometimes in the form of fusion proteins 
(90–92), have also been generated. The rBCG strain expressing 
the fusion protein Ag85B-ESAT-6-IFN-γ only slightly reduced 
bacterial burdens after Mtb challenge compared to BCG (92). 
rBCG-Ag85B-ESAT-6-TNF-α increased IFN-γ secreting cells, 
but protection was not measured (91). More promising was an 
rBCG expressing a fusion protein of Ag85B and IL-15, a cytokine 
important for the proliferation and survival of memory CD8+ 
T cells (rBCG-Ag85B-IL-15), which was found to increase num-
bers of IFN-γ-producing CD44+CD4+ and CD44+CD8+ T cells 
and decrease bacterial burdens after intratracheal Mtb challenge, 
compared to BCG-Ag85B, although comparison to BCG was not 
performed (90).

Genes for other host-derived immunoregulatory molecules 
have also been inserted into BCG. In one study, the Ipr1 (intra-
cellular pathogen resistance 1) gene was inserted into BCG to 
produce rBCGi (93). Irp1 is an IFN-regulated gene that enhances 

macrophage resistance to intracellular pathogens such as Mtb and 
Listeria monocytogenes and is not expressed in susceptible C3HeB/
FeJ mice (117). Vaccination of C3HeB/FeJ mice with rBCGi was 
more protective against Mtb infection than BCG, with decreased 
bacterial loads in the lungs and spleens of BCGi-vaccinated 
mice. Gene expression analysis of 113 immune-related genes 
demonstrated 20 differentially expressed genes with greater than 
twofold change between rBCGi and BCG-vaccinated groups. In 
another study, insertion of the gene for the chemokine monocyte 
chemotactic protein 3 (MCP-3) into BCG did not improve its 
efficacy, but increased its safety, since immunodeficient mice 
infected with rBCG(MCP-3) survived longer than mice infected 
with the parental BCG (94).

vPM1002 and Second-Generation 
Derivatives
In previous reviews, we have discussed the development of 
VPM1002 (BCG ΔureC:hly) from the laboratory through to 
clinical trials in detail (118, 119). Essentially, VPM1002 is an 
rBCG that has been engineered to express the L. monocytogenes 
protein listeriolysin O (LLO) instead of urease C. Urease C 
inhibits acidification of the phagosome by converting urea to 
ammonia, preventing phagosome maturation (120–122). This 
activity inhibits trafficking of MHCII to the cell surface result-
ing in a reduced MHCII expression and antigen presentation 
(120). LLO is a cholesterol-binding, pore-forming protein that 
allows escape of L. monocytogenes from the phagosome (123). 
It requires acidic pH for optimal activity, which can be achieved 
by deletion of urease C (95). Expression of LLO in the rBCG 
causes perturbation to the phagosome (Figure 2) and leakage of 
bacterial DNA into the cytosol, triggering activation of the AIM2 
inflammasome, and increased autophagy and apoptosis (124). 
Access of bacterial antigens to the cytosol increases its availability 
to the MHC class I antigen presentation pathway and promotes 
cross-presentation (69, 125). In mice, VPM1002 induces better 
protection, providing a strong increase in efficacy compared 
to BCG (42, 96). It also provides protection as a post-exposure 
vaccine (97). Furthermore, it is attenuated, with increased safety 
in both immunocompetent and immunodeficient mice (95, 96). 
Phase I and Phase II clinical trials have demonstrated its safety 
and immunogenicity in humans, including neonates, and a Phase 
II/III efficacy trial as a vaccine against recurrent TB has com-
menced (119).

While VPM1002 has progressed through the development 
pipeline, next-generation derivatives of this promising candidate 
have been developed and tested in pre-clinical studies, with the 
aim of further enhancing immunogenicity and/or safety (126). 
The most successful of these so far is VPM1002 ΔnuoG, which 
increased protection compared to its parental strain rBCG 
ΔureC:hly in mice while maintaining safety (96). The nuoG 
gene codes for a subunit of the non-essential respiratory enzyme 
complex NADH dehydrogenase type I and was identified as an 
anti-apoptotic virulence gene after gain-of-function screening 
using an M. smegmatis mutant library following by genera-
tion of Mtb H37Rv mutants (61). Deletion of nuoG from Mtb 
decreased its virulence and lead to increased apoptosis at day 
14 post-infection. The mechanism was TNF-α dependent and 
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relied on NADPH oxidase (NOX2)-dependent reactive oxygen 
species (ROS) (127). Subsequently, it was found that deletion of 
the nuoG gene from both BCG and VPM1002 enhanced protec-
tive efficacy against Mtb in mice, with VPM1002 ΔnuoG having 
strongly increased efficacy compared to BCG-vaccinated mice 
(96). Intriguingly, as well as increasing apoptosis, deletion of 
nuoG also increased the recruitment of the autophagy protein 
microtubule-associated protein 1A/1B-light chain 3 (LC3) to 
the live vaccine strains, suggesting that type I NADH dehydro-
genase has an additional role in inhibition of autophagic path-
ways. LC3-associated phagocytosis, which involves conjugation 
of LC3 to phagosomes and subsequent phagolysosomal fusion, 
requires NOX2 activity and the production of ROS. Therefore, 
as type I NADH dehydrogenase inhibits ROS, it is possible that 
it also inhibits LC3-associated phagocytosis. However, similar 
persistence of VPM1002 and VPM1002 ΔnuoG strains in mice 
suggested that inflammasome or apoptosis-mediated mecha-
nisms induced by both strains were primarily responsible for the 
strain attenuation. The increased efficacy of VPM1002 ΔnuoG 
compared to VPM1002 was associated with increased CD4+ 
TEM, follicular T helper cells and germinal center B cells (96).

Another approach to improve the efficacy of VPM1002 was 
to express the latency antigens Rv2659c, Rv3407, and Rv1733c 
in this strain (98). Rv2659c, encoded by Mtb and not BCG, is 
expressed during nutrient deprivation, while Rv1733 and Rv3407, 
present in both BCG and Mtb, are expressed during hypoxia 
and reactivating disease in a mouse model of TB, respectively. 
Expression of the three latency antigens in the rBCGΔureC∷hly 
(pMPIIB01) strain improved long-term efficacy against challenge 
with a clinical Mtb strain, with reduced bacterial burdens com-
pared to the parental strain in both lung and spleen at day 200 
post-infection after intra-dermal vaccination of mice, as well as 
decreased lung pathology. The strain was not compared to BCG 
but showed a strong reduction in bacterial loads compared to 
unvaccinated mice.

Another second-generation construct, BCG ΔureC:hly Δpdx1, 
or VPM1002 Δpdx1, was generated in an attempt to further 
improve the safety of the vaccine so that it might be suitable 
for immunization of immunocompromised individuals such as 

HIV+ infants and adults and HIV-exposed neonates, who are at 
higher risk of developing TB (99). VPM1002 Δpdx1 is deficient 
in pyridoxine synthase, an enzyme required for synthesis of the 
essential vitamin B6, and therefore is auxotrophic for vitamin 
B6 in a concentration dependent manner. VPM1002 Δpdx1 was 
profoundly attenuated, being safer in immunocompromised 
SCID mice compared to its parental strain. In addition, it dem-
onstrated reduced dissemination in wild-type mice, which was 
partially reversed by dietary supplementation with vitamin B6. 
Immune responses to the strain were also dependent on vitamin 
B6 supplementation. Protective efficacy against Mtb was similar 
to BCG at day 30 but was lost by day 180; however, a homolo-
gous prime–boost regimen afforded similar protection to BCG. 
Protection depended on a dietary source of vitamin B6 at early 
time points following Mtb challenge, but protection at 180 days 
post-challenge with Mtb H37Rv and 160  days post challenge 
with Mtb Beijing/W remained independent from vitamin B6 
supplementation, suggesting that it relied on immune responses 
generated at early time points.

As discussed earlier, there are several examples of rBCGs 
expressing mammalian cytokines, which promote increased 
immune responses (116). Therefore, Rao et  al. attempted to 
further increase the immunogenicity of BCG ΔureC:hly by 
generating BCG ΔureC:hly derivatives expressing the cytokines 
IL-7 and IL-18 (100). IL-7 and IL-18 play a role in immunity to 
Mtb infection (128–130). IL-7 is required for T-cell development 
(131), and rIL-7 influences recall T-cell responses to Mtb infec-
tion (132). IL-18 induces Th1 responses (including IFN-gamma 
and TNF-α secretion), together with IL-12 (133). IL-18-deficient 
mice are susceptible to TB (128, 134) and BCG infection (134). 
Previously, splenocytes of mice vaccinated with rBCG expressing 
IL-18 produced higher amounts of Th1 cytokines after stimula-
tion with mycobacterial antigens than splenocytes of mice vac-
cinated with parental BCG (87). Furthermore, increased IL-18 
mRNA was detected after vaccination with BCG ΔureC:hly and 
BCG ΔureC:hly ΔnuoG, which have increased efficacy compared 
to BCG (96, 124).

Growth assays demonstrated that expression of IL-7 or IL-18 
did not compromise intracellular fitness of BCG ΔureC:hly_hIL7 
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and BCG ΔureC:hly_hIL18 (100). Secretion of pro-inflammatory 
cytokines including IL-6, TNF-α, and G-CSF was increased in DCs 
infected with BCG ΔureC:hly_hIL18 compared to BCG, although 
in co-cultures T-cell activation was not influenced. Similarly, BCG 
ΔureC:hly_hIL18 immunized mice showed up-regulation of pro-
inflammatory cytokines IL-6, KC, CCL5, IL-2, and G-CSF com-
pared to those vaccinated with BCG. At day 60, all strains on the 
BCG ΔureC:hly background induced similar numbers of CD40L-
expressing CD4+ T cells in the lungs, but BCG ΔureC:hly_hIL18 
and BCG ΔureC:hly_hIL7 induced increased CD40L+TNF-α+ and 
CD40L+TNF-α+IFN-γ+ CD4+ T cells compared to BCG ΔureC:hly 
between 30 and 60 days post-vaccination. Efficacy, measured by 
bacterial loads, was comparable to the parental strain. Therefore, 
expression of hIL-7 or hIL-18 by VPM1002 did not further improve 
protection. Suggested reasons were poor secretion of hIL-7 and 
hIL-18 and overload of the mycobacterial export machinery due 
to the use of the same export system (PgroEL2-Ag85BSS) for both 
LLO and the cytokines.

VMP1002, VPM1002 ΔnuoG, and VPM1002 Δpdx1 are 
currently being tested for safety and protective efficacy against 
M. caprae infection in goats by the Friedrich Loeffler Institute 
in Germany (Menge et al., unpublished data). Results should be 
available in 2018.

AeReAS-401 AND AeRAS-422

AERAS-401 is an rBCG expressing the cholesterol-binding 
cytoslysin perfringolysin O (Pfo), a pore-forming protein 
normally secreted by Clostrididium perfringens (101, 135). Pfo 
interacts with membranes at both low and neutral pH, although 
low pH enhances Pfo membrane binding, oligomerization, and 
pore formation (136). Generation of this BCG strain (BCG1331 
ΔureC:ΩpfoAG137Q) was accomplished by replacing the ureC 
gene with the PfoAG137Q gene under the control of the Ag85B 
promoter (101). AERAS-401 secreted biologically active Pfo, 
associated with lysis of the endosome compartment, and had 
a good safety profile in immunocompromised SCID mice. A 
second-generation derivative of AEREAS-401, AREAS-422 
(research strain AFRO-1), was then generated by incorporating 
genes coding for Ag85A, Ag85B, and TB10.4, into AERAS-401 in 
order to combine increased access of antigens to the cytosol with 
over-expression of Mtb antigens (101). AERAS-422 enhanced 
immune responses in both mice and guinea pigs compared to 
BCG. A short-term challenge experiment with a laboratory strain 
of Mtb in mice revealed no differences in bacterial loads in lungs 
and spleen after immunization with AERAS-422 compared with 
BCG, but challenge of vaccinated mice with the hypovirulent Mtb 
strain HN878 demonstrated increased survival after immuniza-
tion with AERAS-442 compared to BCG (101). AERAS-422 was 
subsequently tested in Phase I clinical trials (137). It induced 
more potent immune responses than BCG, but immunization 
with AERAS-422 at the highest inoculum was associated with the 
development of shingles (varicella-zoster virus reactivation) in 
two of the eight healthy volunteers, and the study was discontin-
ued. Whole blood stimulation with BCG demonstrated that both 
of the volunteers who developed shingles displayed five- to tenfold 
higher IFN-γ responses compared to the other recipients, and it 

was suggested that the effects of IFN-γ on type I IFN responses 
(required for antiviral immunity) should be investigated. In the 
trial, earlier and more robust NK and cytotoxic T-cell responses 
correlated with increased mycobacterial growth inhibition, sug-
gesting that NK cells and cytotoxic T cells may serve as a target for 
improved vaccines against TB. In contrast, increased expression 
of myeloid and pro-inflammatory genes was negatively associated 
with mycobacterial growth inhibition.

rBCGs expressing Bacterial Toxins
Bacterial toxins and toxin derivatives possess immunostimulatory 
properties and activate immune responses to bystander antigens 
when present simultaneously, but their toxicity renders them 
unsuitable for use as adjuvants in humans (138). An example is 
cholera toxin (CT), which is a potent mucosal adjuvant but is not 
suitable for use in humans as its inflammatory nature induces 
adverse events (68). Mice immunized with rBCG expressing CT 
B developed increased levels of anti-BCG IgA and IgG responses 
compared to those immunized with parental BCG, associated 
with increased TGF-β production (139). In another study, CT 
enhanced IL-17 when administered together with BCG, and this 
was associated with increased protection against Mtb challenge 
(68). While CT cannot be used in humans, the study highlighted 
the potential role of mucosal adjuvants in protection against TB.

Escherichia coli heat labile toxin (LT) is another mucosal adju-
vant, shown to promote antigen presentation, T-cell proliferation, 
cytokine production, and mucosal IgA and IgG responses (140). 
Detoxification of the A subunit by genetic modification results in 
a potent, non-toxic mucosal adjuvant with no toxicity in mice, 
guinea pigs, and macaques (138, 141–144). Detoxified LT has a 
good clinical safety record after oral and percutaneous adminis-
tration, but nasal administration is not recommended because it 
is associated with an increased risk of transient peripheral facial 
nerve palsy (145, 146). Additional safety studies for other routes 
of administration would be prudent, considering the adverse 
effects after intranasal immunization were not detected in initial 
trials (144).

Recently, an rBCG (rBCG-LTAK63lo) was generated to 
express low levels of a non-toxic derivative of LT (LTAK63) 
(102). Vaccination with rBCG-LTAK63lo induced increased 
Th1 cytokines and IL-17 in the lung compared to BCG. After 
intratracheal challenge with a laboratory strain of Mtb, mice had 
greatly reduced bacterial burdens compared to BCG at day 30 
post-challenge, and at a high challenge dose, mice immunized 
with rBCG-LTAK63lo had reduced bacterial loads and increased 
survival. rBCG-LTAK63lo also increased protection against chal-
lenge with a virulent Mtb Beijing isolate.

BCG Δzmp1
Interleukin-1β is a major pro-inflammatory cytokine that is acti-
vated by cleavage of a pro-IL-1β precursor by caspases activated 
by assembly of the inflammasome, an inflammatory caspase-acti-
vating multi-protein complex (147). Mtb inhibits inflammasome 
activation and IL-1β processing by a mechanism involving the 
product of the virulence gene zmp1, a putative Zn(2+) metal-
loprotease (147). Accordingly, infection with Mtb deficient in 
zmp1 triggers activation of the inflammasome, increased IL-1β 
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TABle 2 | Boosters to bacille Calmette-Guérin (BCG).

Prime Boost Protective efficacy versus BCG alone Reference

BCG Nanoemulsion mucosal adjuvant with early secretory antigenic  
target-6 (ESAT-6) and antigen 85B (Ag85B)

Mice: bacterial loads similar, reduced lung pathology (154)

BCG H56 fusion protein (Ag85B-ESAT-6-Rv2660c) with CAF01 adjuvant Mice: moderate decrease in bacterial burdens (155)

BCG H1 fusion protein (Ag85B-ESAT-6) with CAF01 adjuvant Mice: moderate to strong decrease in bacterial burdens (41, 155)

BCG H4 fusion protein (Ag85B-TB10.4) with IC31 adjuvant Guinea pigs: moderate decrease in bacterial burdens, 
increased survival
Mice: decreased bacterial burdens (slight in lungs, 
moderate in spleens)

(156, 157) 

BCG H56 fusion protein (Ag85B-ESAT-6-Rv2660c) with IC31 adjuvant Macaques: reduced lung pathology, clinical disease 
and extrapulmonary dissemination, increased survival, 
prevention of reactivation of latent infection

(158) 

BCG Ag85B-ESAT-6 with LTK63 adjuvant Mice: slight decrease in bacterial burdens (141) 

BCG Mtb72F fusion protein DNA (Mtb32 and Mtb39 antigens) Guinea pigs: decreased lung pathology (110)

BCG ID93 fusion protein (Rv1813, Rv2608, Rv3619, and Rv3620) with 
glucopyranosyl lipid adjuvant (GLA) stable emulsion (SE)

Guinea pigs: reduced pathology, increased survival (159) 

BCG Mycobacterium tuberculosis (Mtb) antigens Rv0447, Rv2957, and 
Rv2958 (no adjuvant)

Mice: slight decrease in lung bacterial burdens (16)

BCG CMFO fusion protein (Rv2875-Rv3044-Rv2073c-Rv0577) with DMT 
adjuvant

Mice: strong decrease in bacterial burdens, protection 
after reactivation by glucocorticosteroids

(160) 

BCG SRL172/DAR-901 [inactivated whole cell booster from NTM 
(Mycobacterium obuense)]

Mice: no difference in bacterial loads (161)

BCG Rv2299c-ESAT-6 fusion protein Mice: slight decrease in lung bacterial burdens, reduced 
pathology (HN878 challenge)

(151) 

BCG Human adenovirus 5 with Ag85A (Ad5Ag85A), i.m and i.n. Mice: i.m. boosting did not increase protection, but 
intranasal boosting reduced lung and spleen bacterial 
burdens moderately and strongly, respectively

(162) 

BCG attenuated Listeria monocytogenes vector expressing Ag85B (rLm30) Guinea pigs: no difference
Mice: slightly reduced lung bacterial burdens 

(163) 

BCG recombinant adenovirus vaccine expressing Ag85B (rAdv30) Guinea pigs: no difference
Mice: slightly reduced lung bacterial loads at early time 
point (6 weeks post-challenge) only

(163) 

BCG Six fusion proteins [ESAT-6-Ag85B-MPT64190-198-Mtb8.4 (EAMM), 
Ag85B-MPT64190-198-Mtb8.4 (AMM), Mtb10.4-HspX (MH), 
ESAT-6-Mtb8.4 (EM), Mtb10.4-Ag85B, ESAT-6-Ag85B (MAE), and 
ESAT-6-RpfE (ER)] in adjuvant composed of N,N′-dimethyl-N,N′-
dioctadecylammonium bromide (DDA), polyribocytidylic acid (poly I:C), 
and gelatin

Mice: decreased lung pathology in EAMM boosted mice. 
Slightly decreased lung bacterial burdens in EAMM or 
AMM boosted mice

(164) 

BCG DNA encoding β-defensin 2 and antigens ESAT-6 and Ag8B (pDE and 
pDA)

Mice: increased survival, decreased lung pathology (165) 

BCG Sendai virus with Ag85A and Ag85B Mice: slightly reduced bacterial loads, reduced lung 
pathology

(166) 

BCG Mycobacterium indicus pranii (MIP), s.c. or aerosol Guinea pigs: decreased lung pathology
Mice: MIP boosters moderately reduced lung bacterial 
burdens 

(167) 

BCG MVA85A (vaccinia based vector expressing Ag85A) Mice: no difference
Guinea pigs: no difference 

(152, 168)

BCG i.n. MVA85A i.n. or BCG i.n. Mice: strong decrease in bacterial burdens (169) 

BCG Chimpanzee adenovirus with Ag85A (ChAdOx185A), with and without 
MVA85A boost

Mice: lung bacterial burdens were slightly improved after 
intranasal boosting with both ChAdOx185A and MVA85A 

(153) 

rBCG expressing 
PPE protein Rv3425

Rv3425 Mice: slightly reduced lung bacterial burden, decreased 
lung pathology

(170) 
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Prime Boost Protective efficacy versus BCG alone Reference

rBCG secreting 
Ag85B-ESAT-6

LTK63-adjuvanted Ag85B-ESAT-6 Guinea pigs: no increase in protection (142) 

VPM1002 MVA85A Mice: no difference (168) 

rBCG expressing 
ESAT-6

DNAE6 (ESAT-6 DNA) Mice: reduced protection compared to prime alone (75)

The table illustrates some of the BCG boosters that have been tested against tuberculosis (TB) in animal models. Decreases in bacterial burdens were estimated from graphs if not 
specified and listed as follows for comparative purposes: up to 0.5 log decrease: slight; 0.5 to 1.0 log decrease: moderate; over 1.0 log decrease: strong. i.m., intramuscular; i.n., 
intranasal; s.c., subcutaneous.
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secretion, enhanced maturation of phagosomes, and improved 
mycobacterial clearance by macrophages. Furthermore, zmp1-
deficient Mtb was attenuated compared to the zmp1+ parental 
strain, showing reduced bacterial burdens in the lungs after 
aerosol challenge. A BCG mutant strain deficient in zmp1 also 
showed increased phagosome maturation and phagolysosome 
fusion (147, 148). This was demonstrated to facilitate antigen 
presentation and to increase mycobacteria-specific CD4+ and 
CD8+ T-cell responses, emphasizing that phagolysosome fusion 
is important for generating immune responses to BCG antigens 
(148). Two zmp1-deficient strains, BCG Pasteur Δzmp1::aph 
and BCG Danish Δzmp1, induced increased IFN-γ+CD4+ T-cell 
responses in cattle compared to BCG (149). Efficacy testing in 
guinea pigs demonstrated that zmp1-deficient BCG strains were 
more protective than BCG, with BCG Pasteur SmR zmp1::aph 
and BCG Denmark Δzmp1, further reducing lung bacterial loads 
compared to their parental BCG strains (103). Furthermore, the 
Δzmp1 mutants showed increased safety in immunocompro-
mised SCID mice compared to BCG.

BOOSTiNG BCG wiTH SUBUNiT 
vACCiNeS

Originally, it was thought that subunit protein vaccines had 
the potential to replace BCG, but evaluation of an extensive 
number of subunit vaccine candidates in animal models has 
demonstrated that at best, these match the protection afforded by 
BCG (150–152). In general, a survey of the literature shows that 
protection afforded by subunit vaccines is not as effective as that 
induced by live attenuated mycobacterial strains. However, subu-
nit vaccines can increase protective efficacy when administered 
as boosters to a BCG prime and, thus, have an important role to 
play in TB vaccination strategies. Furthermore, testing does not 
necessitate withholding the BCG vaccine, which has been shown 
to be partially effective. Most people are vaccinated against BCG 
in infancy, and protection wanes after approximately 20  years 
(19). Table 2 summarizes the results of preclinical efficacy testing 
of some of the subunit vaccines that have been tested as BCG 
boosters. In some cases, subunit vaccine boosters have been used 
with an rBCG prime. This is by no means an exhaustive list but 
serves to illustrate the type of subunit vaccines being tested. The 
majority of the subunit vaccine boosters that reduce bacterial 
burdens compared to BCG in mice or guinea pigs only reduce 
them slightly, but some have also shown beneficial effects on 
survival and lung pathology. The ability to induce high levels of 

cytokine-producing CD4+ and CD8+ T cells does not necessarily 
correlate with protection, as in some cases vaccine candidates 
were very immunogenic but did not reduce bacterial loads or 
pathology (75, 153).

CONClUSiON

Bacille Calmette-Guérin can contribute to the control of TB, 
being most effective in children and those not previously infected 
with Mtb or sensitized to environmental mycobacteria (17–19, 
22). However, BCG fails to adequately protect those in high-risk 
environments, where the prevalence of Mtb is high and socio-
economic conditions are poor. A wide variety of rBCG strains 
and subunit vaccines have been tested in pre-clinical trials. Only 
one rBCG is now in clinical trials (VPM1002), while other vac-
cine candidates in clinical trials include inactivated whole cell 
vaccines, attenuated mycobacterial strains and subunit vaccine 
boosters focusing mostly on a narrow range of antigens (Ag85 
family, ESAT-6) (14, 15). Head-to-head testing of vaccine can-
didates in pre-clinical models may be useful for identifying the 
most promising candidates worth moving forward to clinical 
trials (152). A number of studies have revealed that the immuno-
genicity parameters measured often do not translate to increased 
efficacy, and hence pre-clinical trials should always include Mtb 
challenge (75, 153). Statistical analysis should be performed 
comparing novel candidates against BCG, the current clinical 
vaccine with proven partial efficacy in humans. In summary, it 
seems likely that an improved vaccination regimen against TB 
can be achieved, but overcoming the current limits in protective 
efficacy will require novel approaches.
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