
January 2018 | Volume 9 | Article 1511

Mini Review
published: 31 January 2018

doi: 10.3389/fimmu.2018.00151

Frontiers in Immunology | www.frontiersin.org

Edited by: 
Suhendan Ekmekcioglu,  

University of Texas MD Anderson 
Cancer Center, United States

Reviewed by: 
Paolo Puccetti,  

University of Perugia, Italy  
Abhishek D. Garg,  

KU Leuven, Belgium  
Maria Laura Belladonna,  

University of Perugia, Italy

*Correspondence:
Lóránt Székvölgyi  

lorantsz@med.unideb.hu

†These authors have contributed 
equally to this work.

Specialty section: 
This article was submitted  

to Cancer Immunity  
and Immunotherapy,  

a section of the journal  
Frontiers in Immunology

Received: 12 December 2017
Accepted: 17 January 2018
Published: 31 January 2018

Citation: 
Hornyák L, Dobos N, Koncz G, 

Karányi Z, Páll D, Szabó Z, Halmos G 
and Székvölgyi L (2018) The Role  
of Indoleamine-2,3-Dioxygenase  

in Cancer Development,  
Diagnostics, and Therapy.  

Front. Immunol. 9:151.  
doi: 10.3389/fimmu.2018.00151

The Role of indoleamine-2,3-
Dioxygenase in Cancer Development, 
Diagnostics, and Therapy
Lilla Hornyák1†, Nikoletta Dobos2†, Gábor Koncz3, Zsolt Karányi1,4, Dénes Páll 4,  
Zoltán Szabó5, Gábor Halmos2 and Lóránt Székvölgyi1*

1 MTA-DE Momentum Genome Architecture and Recombination Research Group, Department of Biochemistry and 
Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, 2 Department of Biopharmacy, Faculty  
of Pharmacology, University of Debrecen, Debrecen, Hungary, 3 Department of Immunology, Faculty of Medicine, University 
of Debrecen, Debrecen, Hungary, 4 Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, 
Hungary, 5 Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary

Tumors are composed of abnormally transformed cell types and tissues that differ from 
normal tissues in their genetic and epigenetic makeup, metabolism, and immunology. 
Molecular compounds that modulate the immune response against neoplasms offer 
promising new strategies to combat cancer. Inhibitors targeting the indoleamine-2,3- 
dioxygenase 1 enzyme (IDO1) represent one of the most potent therapeutic opportu-
nities to inhibit tumor growth. Herein, we assess the biochemical role of IDO1 in tumor 
metabolism and immune surveillance, and review current diagnostic and therapeutic 
approaches that are intended to increase the effectiveness of immunotherapies against 
highly aggressive and difficult-to-treat IDO-expressing cancers.

Keywords: indoleamine-2,3-dioxygenase, gene expression, metabolism, immunotherapy, immune surveillance, 
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inTRODUCTiOn

Biochemistry and Regulation of indoleamine-2,3-Dioxygenase 1 
(iDO1) Activity
Indolamine-2,3-dioxygenase 1 is a cytosolic enzyme with a heme (Fe2+) prosthetic group that cata-
lyzes the first and rate-limiting step of tryptophan (Trp) catabolism (Figure 1A). IDO1 converts the 
essential amino acid Trp to kynurenine (Kyn) by cleaving the 2,3-double bond of the indole ring while 
a molecular oxygen (O2) merges into the unsealed molecule. The product is N-formylkynurenine 
that becomes rapidly and spontaneously transformed into Kyn (1). In the next steps, Kyn is further 
converted to other active metabolites, such as hydroxykynurenine, anthranilic acid, kynurenic acid, 
3-hydroxyanthranilic acid, quinolinic acid, and picolinic acid (Figure 1A). The two end-products of 
the pathway are NAD+ and ATP that both fuel cellular metabolism (2).

In humans, IDO1 has an evolutionary paralog (indolamine-2,3-dioxygenase 2; IDO2) and a 
functional ortholog (tryptophan-2,3-dioxygenase; TDO) that catalyze the same biochemical reaction; 
however, IDO2 and TDO show high tissue specificity and much lower expression level than IDO1 that 
significantly restrict their activity (2, 4). TDO is transcribed only in the liver1 [protein-level expression is 
not established (5)] and its major function is to control the free Trp concentration of the blood (4). IDO2 
mRNA is expressed at low levels in the placenta and liver (protein expression is not known2), while IDO1 
shows a high protein expression in the peripheral lymph organs (lymph nodes, spleen and tonsils3).

1 https://www.proteinatlas.org/ENSG00000151790-TDO2/tissue.
2 https://www.proteinatlas.org/ENSG00000188676-IDO2/tissue.
3 https://www.proteinatlas.org/ENSG00000131203-IDO1/tissue.

http://www.frontiersin.org/Immunology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2018.00151&domain=pdf&date_stamp=2018-01-31
http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
https://doi.org/10.3389/fimmu.2018.00151
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:lorantsz@med.unideb.hu
https://doi.org/10.3389/fimmu.2018.00151
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.00151/full
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.00151/full
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.00151/full
http://loop.frontiersin.org/people/511752
http://loop.frontiersin.org/people/517008
http://loop.frontiersin.org/people/512686
http://loop.frontiersin.org/people/512694
http://loop.frontiersin.org/people/434561
http://10.13039/501100003825
http://10.13039/501100003827
https://www.proteinatlas.org/ENSG00000151790-TDO2/tissue
https://www.proteinatlas.org/ENSG00000188676-IDO2/tissue
https://www.proteinatlas.org/ENSG00000131203-IDO1/tissue


FigURe 1 | Continued

2

Hornyák et al. Chasing IDO1 to Advance Cancer Therapies

Frontiers in Immunology | www.frontiersin.org January 2018 | Volume 9 | Article 151

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FigURe 1 | The biochemical function and regulation of indolamine-2,3-dioxygenase 1 (IDO1). (A) The kynurenine (Kyn) pathway of tryptophan (Trp) catabolism. 
l-Trp is metabolized in three separate biochemical pathways (indicated by arrows). In the Kyn pathway, IDO1/IDO2 and tryptophan-2,3-dioxygenase (TDO) catalyze 
the first and rate-limiting step of Trp degradation that gives rise to N-formylkynurenine. N-formylkynurenine is then transformed into l-Kyn and formic acid by 
kynurenine formamidase. l-Kyn is converted to anthranilic acid by kynureninase or l-hydroxykynurenine by kynurenine hydroxylase. Non-specific hydroxylation of 
anthranilic acid results in l-hydroxykynurenine. Kynureninase converts l-hydroxykynurenine to 3-hydroxyanthranilic acid that is further metabolized by 
hydroxyanthranilate dioxygenase to aminocarboxymuconic semialdehyde. The semialdehyde spontaneously forms quinolinic acid that is a precursor of NAD+ 
synthesis, or a decarboxylase enzyme converts it to aminomuconic semialdehyde. Aminomuconic semialdehyde is then converted to picolinic acid or glutaryl-CoA 
that is metabolized in the tricarbonic acid cycle and terminal oxidation. Metabolites that are highlighted in red have been directly implicated in immunosuppressive 
mechanisms and cancer development. (B) The structure of the IDO1 gene. IDO1 is located on chromosome 8 [39771328–39786309 forward (+) strand; 14,982 
base pairs] comprising 10 exonic region (red bars). The promoter region (green section upstream the transcription start site) contains several transcription 
factor-binding sites that have been identified by ChIP sequencing. ChIP peaks were collected from the GTRD database of transcription binding sites (3). Only normal 
(non-transformed) cell types were considered. (C) The role of IDO1 in cancer immunoediting. In the first phase of immunoediting (“elimination”), sporadically arising 
transformed cells are destroyed by the innate and adaptive immune systems. Activated B cells produce tumor reactive antibodies to eradicate most transformed 
cells. Natural killer (NK) cells and effector T cells release inflammatory cytokines, such as IFN-γ, which activate dendritic cells (DCs) that secrete low levels of IDO1. 
IDO1 depletes the essential amino acid Trp from the tumor microenvironment that inhibits tumor growth. In the “equilibrium” phase, surviving tumor cells are still 
controlled by the immune system; however, they rapidly accumulate mutations. When the immune system can no longer block the abnormal and autonomous 
growth of “edited” cells, the tumor becomes clinically manifested (“escape”). The escape phase is associated with high IDO1 level that is primarily produced by 
tumor cells and tolerogenic immune cells [e.g., tolerogenic DCs, myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs)]. Trp depletion 
and Kyn accumulation lead to immunosuppression and tolerogenicity by inhibiting effector T cell and NK cell functions and stimulating regulatory T cells. IDO1 also 
promotes the expansion and activation of MDSCs and induces polarization of macrophages to a tolerogenic phenotype. Increased Kyn levels activate the aryl 
hydrocarbon receptor (AhR) that switch the activity of DCs from immunogenic to tolerogenic. Elevated CTLA4 expression of regulatory T cells results in further 
increase of IDO1 secretion by DCs. IDO1-induced expansion and activation of regulatory T cells, tolerogenic DCs, and MDSCs suppress the activity of antitumor 
effector T cells. Other immunosuppressive agents (e.g., PD-L1/PD-1, CTLA4) also inhibit effector T cell functions. Oncological immunotherapy aims to reverse 
immunoediting (backward arrow) by inhibiting and activating local immunosuppressive and tumor eradication mechanisms, respectively.
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The activity of IDO1 is mainly regulated at the transcrip-
tional level (Figure 1B). Bona fide transcription factor binding 
sites have been detected by ChIP-seq for a large catalog of 
human transcription factors (3). The identified gene regulatory 
proteins involve (i) NF- κB, which allows IDO1 mRNA expres-
sion regulation through the interferon pathway (6), (ii) the aryl 
hydrocarbon receptor (AhR) that binds to putative dendritic-
cell responsive elements and promotes the l-Kyn-dependent 
induction of IDO1 (7, 8), and (iii) CTCF that mediates IDO1 
expression via long-range chromatin looping interactions 
between the promoter and distal enhancer regions (9).

Superimposed on the transcriptional control of IDO1, specific 
posttranslational mechanisms also operate that affect the activity 
and half-life of the enzyme. For instance, the diffusible messenger 
nitrogen monoxide (NO) reacts with the heme cofactor of IDO1 
generating ferric (Fe3+) heme and nitrate (NO3), which leads to the 
dose-dependent and reversible inhibition of enzymatic activity (10, 
11). It has been also shown that endoge nous NO production acceler-
ates the proteasomal degradation of IDO1 (12). Other antioxidants 
like the anti-inflammatory agent pyrrolidine dithiocarbamate (13) 
restrict the availability of heme and thereby block holoenzyme 
assembly (14). In inflammatory conditions, NO and superoxide 
anions ( )O2

−  are simultaneously produced in large amounts, which 
rapidly generate the highly reactive peroxynitrite anion. Peroxynitrite 
inhibits IDO1 via the nitration of critical tyrosine residues (Tyr15, 
Tyr345, and Tyr353), without affecting IDO1 protein level (15, 16).

Hypoxia also leads to reduced IDO1 expression and, therefore, 
reduced Kyn production (17). Low IDO1 activity during the 
hypoxic phase promotes the activation of immune cells (18); 
however, hypoxic conditions also augment the secretion of effec-
tor CD4(+) T-cell cytokines, especially IFN-gamma, which in 
turn upregulates IDO1 mRNA expression (19).

At the protein level, IDO1 is mainly regulated by proteasomal 
degradation in response to immunogenic stimuli. Suppressor of 

cytokine signaling 3 (SOCS3), for instance, binds to IDO1 under 
inflammatory conditions and targets the IDO1/SOCS3 complex 
for polyubiquitination and proteasomal digestion. IDO1 degrada-
tion converts tolerogenic dendritic cells (DCs) into immunogenic 
cells and, therefore, a prerequisite for normal dendritic-cell func-
tion (20). Activated AhR is another component of the ubiquitin/
proteasome system that contributes to the regulatory proteolysis 
of IDO1 and other proteins (8) that affect IDO1’s half-life.

Indoleamine-2,3-dioxygenase 1 contains two phosphorylatable 
tyrosine residues (Y115 and Y253) that modulate its enzymatic 
activity (21). Phosphorylation of any of these resi dues results in 
conformational changes in IDO1 and blocks the catalytic activity of 
IDO1 (22). In addition to the regulation of catalytic activity, these 
motifs act as docking sites for various molecular partners that either 
prolong or shorten IDO1’s half-life and maintain its immunoregu-
latory effects or stimulate inflammatory responses, respectively (8). 
For example, IL-6 triggers the phosphorylation of the Y253 residue 
of IDO1 that recruits the ECS (Elongin-Cullin-SOCS) E3 ligase 
complex, targeting IDO/SOCS3 for proteasomal degradation (23). 
On the contrary, phosphorylation of the Y115 residue allows the 
binding of SH2 domain tyrosine phosphatases SHP1 and SHP2, 
while SOCS3 becomes excluded. Hence, the TGF-β/Fyn/SHP axis 
activates the non-canonical NF-κB pathway that upregulates IDO1 
production. Recently, ligand-bound AhR and Arginase 1 have 
been also shown to promote IDO1 phosphorylation through Src 
kinases, activating the signaling function of IDO1 that leads to de 
novo synthesis of the enzyme via TGF-β production (8, 24, 25).

The Physiological and Pathological 
Function of iDO1
The IDO1 pathway was originally described as an innate 
immune mechanism that defended the host organism against 
infections (26). The immunoprotective role of IDO1 was directly 
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supported by the anti-pathogen effect of Trp metabolites (l-Kyn, 
l-hydroxykynurenine, 3-hydroxyanthranilic acid, quinolinic 
acid, picolinic acid) that prevented the proliferation and spread 
of intracellular pathogens (4, 27). Subsequent studies, however, 
identified tissue macrophages producing high levels of IDO1 
upon IFN-γ stimulation that strongly inhibited the proliferation 
of effector T cells (28). It was also shown that accumulating Trp 
metabolites induced the differentiation of regulatory T cells and 
apoptosis of effector T  cells that gave rise to immunosuppres-
sion (4, 26). l-Kyn is particularly toxic to lymphocytes (2) and 
induces the differentiation of regulatory T cells via AhR binding 
(29). l-hydroxykynurenine aids the suppression of CD4+ T cells 
and promotes the action of regulatory T cells (30). 3-hydroxy-
anthranilic acid modulates the immune functions of monocytes 
and lymphocytes, induces the apoptosis of effector T cells, and 
promotes the proliferation of regulatory T cells. Quinolinic acid 
stimulates the cell cycle of cancer cells and contributes to the 
acquisition of multidrug resistance against chemotherapeutic 
agents (29). Picolinic acid inhibits effector T  cell proliferation 
(31). Later, it has become clear that the balance between the 
immunoprotective and immunosuppressive roles of IDO1 and 
Trp metabolites is tightly controlled by the stoichiometry of 
available local factors (e.g., IL-6, IL-12, CD40, IFN-γ, CTLA4, 
Foxo3a, IL-10, and PD-1) (26, 32). The resultant effect of these 
local activities modulates IDO1 expression and helps maintain 
global immune homeostasis and peripheral immune tolerance.

There are many pathologic diseases that are associated with 
increased IDO1 activity, including atherosclerosis, obesity, auto-
immunity, major infections (e.g., community-acquired pneumo-
nia, tuberculosis, listeriosis, influenza, HBV, HCV, HIV, sepsis), 
rejection of organ transplants, and cancer (2, 27). Originally, 
IDO1 has been considered as an anti-cancer molecule, proposing 
that increased IDO1 activity of antigen-presenting cells depletes 
the essential amino acid Trp from tumor cells and inhibits their 
growth. However, with the discovery of IDO1-mediated immu-
nosuppressive functions, the pro-cancer activity of the enzyme 
has been recognized (33). IDO1 is overexpressed in more than 
50% of tumors (34) that utilize IDO1-associated immunosup-
pressive mechanisms to promote their spread and survival (35). 
In cervical cancer, for instance, IDO1 shows a significantly 
higher mRNA transcription and protein expression level than 
in normal cervix, and also in comparison to other cancers (36). 
The extent of IDO overexpression also depends on the type 
of tumor and risk factors that reach patients in their life. For 
instance, oral squamous cell carcinoma (OSCC) was compared 
in never-smokers and never-drinkers (NSND) with smoker and 
drinker (SD) patients. In NSND patients suffering from OSCC, 
expression of IDO1 was significantly higher than in SDs (37).

Indoleamine-2,3-dioxygenase1 production is elevated upon 
(i) IFN-γ production of effector T  cells (2), (ii) inflammatory 
cytokine production of innate immune cells (6, 38), (iii) IL-10 
and IL-27 stimulation (39), (iv) CTLA4 expression on Treg cells 
causing increased IDO1 secretion by dendritic cells (DCs) (40), 
and (v) TGF-β, IL-10 and adenosine production of Treg and 
other immunosuppressive cells (40–42), (vi) cyclooxygenase-2 
(COX-2) and prostaglandin E2 (PGE2) stimuli that are mediated 
through the PKC, PI3K, and MAPK pathways (several types of 

tumors carry PI3K or MAPK oncogenic mutations leading to 
constitutive IDO1 expression.) (43).

The mechanism of IDO1-elicited immunosuppression is not 
fully understood; however, increased IDO1 and Kyn levels are 
known to inhibit natural killer (NK) cell function (44, 45), prevent 
the activation of effector T cells, stimulate the activation of Treg 
cells (35, 46) and the differentiation of tolerogenic DCs (47), and 
promote the expansion and activation of myeloid-derived sup-
pressor cells (48). Furthermore, Trp depletion inhibits mechanis-
tic target of rapamycin complex 1 that stimulates T cell apoptosis 
and antigen-presenting cell-mediated inflammation (1, 49).

Paradoxically, the adaptive and innate immune systems that 
primarily protect against cancer development drive the formation 
of the highly aggressive and difficult-to-treat IDO1+ tumors. The 
genetic and biochemical characteristics of the emerging tumor 
is established by the process of “immunoediting” that prevents 
and promotes tumor formation at the same time, involving 
three consecutive stages called “elimination,”, “equilibrium,” and 
“escape” (50) (Figure 1C). In the first phase (“elimination”), most 
transformed cells are efficiently recognized and destroyed by 
the action of effector cells as NK and T cells (50). At this stage, 
IDO1 is produced at low levels within the tumor microenviron-
ment and inhibits tumor proliferation (33). In the “equilibrium” 
phase, surviving tumor cells become “edited” by the continuous 
attack of the immune system and accumulate mutations (51). 
In the “escape” phase, IDO1 is produced in large quantities by 
tumor cells and tolerogenic immune cells that are recruited to 
the tumor microenvironment (52, 53). Increased IDO1 activity 
leads to elevated Kyn production that prevents effector T  cell  
(35, 46) and NK cell functions (44, 45). In parallel, IDO1 induces 
the activation and expansion of Treg cells (26), DCs (47), and 
MDCSs (48) that further suppress the function of antitumor 
T cells. These mechanisms collectively establish an immunosup-
pressive tumor microenvironment that supports tumor growth. 
IDO1 positivity is strongly associated with multidrug resistance 
of tumors and inversely correlates with patient survival (54). 
Therefore, timely diagnosis and therapeutic correction of IDO+ 
tumors are of crucial importance to prevent clinical manifestation.

iDO1 in Cancer Diagnostics and Therapy
Indoleamine-2,3-dioxygenase 1 overexpression increases the 
relative concentration of Kyn compared to Trp, hence Kyn/Trp 
ratio can be used as a prognostic clinico-pathological marker 
to monitor cancer invasiveness and progression. Accordingly, 
increased systemic Kyn/Trp ratio and elevated IDO1 activity have 
been associated with poor prognosis and low survival of patients 
diagnosed with cervical cancer and glioblastoma multiforme (55, 
56). For the sensitive detection of Trp metabolites in IDO1+ tumor 
tissues, a wealth of Trp-based radiotracers has been developed 
for positron emission tomography imaging. Radioactive Trp 
analogs as α-[11C]methyl-l-tryptophan (AMT) and l- and d-1-
[18F]fluoroethyl-tryptophan provide useful information about 
response to immunotherapy, but they are also crucial for the pre-
clinical and clinical validation of novel IDO1 inhibitors (57, 58).

Protein expression of IDO1 was found to be high in a num-
ber of tumor samples (36, 56); therefore, IDO1 may be a rel-
evant therapeutic target to abrogate immune suppression (59).  
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TABle 1 | Clinical trials of indoleamine-2,3-dioxygenase (IDO) inhibitors in cancer therapy.

Agent Tumor type nCT number Study phase Recruitment  
status

(estimated) primary 
completion date

IDO peptide vaccine •	Non-small cell lung cancer (NSCLC) NCT01219348 Phase 1 Completed August 2012

•	Metastatic malignant melanoma NCT02077114 Phase 1 Completed September 2014

NCT01543464 Phase 2 Terminated September 2016

NCT03047928 Phase 1 Not yet recruiting 1 April, 2019
Phase 2

Indoximod (1-methyl-d-tryptophan; 
D-1MT; NSC-721782)

•	Unspecified adult solid tumors NCT00567931 Phase 1 Completed July 2012

•	Breast cancer
•	 Lung cancer
•	Melanoma
•	 Pancreatic cancer
•	 Solid tumors

NCT00739609 Phase 1 Terminated October 2012

•	Metastatic breast cancer NCT01302821 Withdrawn December 2014

NCT01792050 Phase 2 Active, not recruiting December 2016

•	Metastatic melanoma NCT02073123 Phase 1 Recruiting December 2016
Phase 2

•	Glioblastoma multiforme
•	Glioma
•	Gliosarcoma
•	Malignant brain tumor

NCT02052648 Phase 1 Recruiting December 2016
Phase 2

NCT02502708 Phase 1 Recruiting July 2017

•	Non-small cell lung cancer (NSCLC) NCT02460367 Phase 1 Recruiting June 2017
Phase 2

•	Metastatic pancreatic adenocar cinoma
•	Metastatic pancreatic cancer

NCT02077881 Phase 1 Recruiting July 2017
Phase 2

•	 Acute myeloid leukemia NCT02835729 Phase 1 Recruiting July 2018
Phase 2

Epacadostat (INCB024360, 
4-amino-1,2,5-oxadizaole-3-
carboximidamide)

•	 Advanced malignancies NCT01195311 Phase 1 Completed May 2013

•	Myelodysplastic syndromes (MDS) NCT01822691 Phase 2 Completed January 2015

•	 Epithelial ovarian cancer
•	 Fallopian tube cancer
•	 Primary peritoneal cancer

NCT01685255 Phase 2 Terminated 23 October, 2014

NCT02118285 Phase 1 Completed 12 November, 2015

NCT02042430 Active, not recruiting 31 March, 2016

NCT01982487 Phase 1 Withdrawn September 2017 
Phase 2

NCT02166905 Phase 1 Recruiting 12 February, 2018
Phase 2

NCT02785250 Phase 1 Recruiting May 2018

NCT02575807 Phase 1 Recruiting December 2018
Phase 2

•	Mucosal melanoma
•	 Skin melanoma
•	Uveal melanoma

NCT01961115 Phase 2 Active, not recruiting 31 October, 2016

NCT01604889 Phase 1 Terminated 27 December, 2016
Phase 2

•	Gastrointestinal stromal tumors NCT03291054 Phase 2 Not yet recruiting September 2019

•	Recurrent/metastatic endometrial carcinoma NCT03310567 Phase 2 Not yet recruiting 30 January, 2020

•	 Squamous cell carcinoma of the head and neck NCT03325465 Phase 2 Not yet recruiting June 2020

•	 Advanced solid tumors NCT02559492 Phase 1 Active, not recruiting December 2017

NCT03085914 Phase 1 Recruiting April 2021
Phase 2

NCT02959437 Phase 1 Recruiting September 2021
Phase 2

•	Metastatic pancreatic adenocarcinoma NCT03006302 Phase 2 Not yet recruiting February 2021

•	Metastatic non-small cell lung cancer (NSCLC) NCT03322540 Phase 3 Not yet recruiting 17 June, 2022

NCT03322566 Phase 3 Not yet recruiting 26 October, 2022

•	Renal cell carcinoma NCT03260894 Phase 3 Not yet recruiting May 2023

(Continued )
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Agent Tumor type nCT number Study phase Recruitment  
status

(estimated) primary 
completion date

GDC-0919 •	 Advanced solid tumors NCT02048709 Phase 1 Completed February 2016

HTI-1090 (SHR9146) •	 Advanced solid tumors NCT03208959 Phase 1 Not yet recruiting 1 April, 2018

PF-06840003 •	Oligodendroglioma
•	 Astrocytoma
•	Malignant glioma

NCT02764151 Phase 1 Recruiting 30 April, 2018

NLG802 •	 Advanced solid tumors NCT03164603 Phase 1 Recruiting May 2018

BMS-986205 •	 Advanced cancer NCT03335540 Phase 1 Not yet recruiting 14 March, 2021

Clinical trials were identified on the website: https://clinicaltrials.gov/ct2/results?cond=&term=IDO&cntry1=&state1=&recrs= as of 9 November, 2017.

TABle 1 | Continued
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Currently, several IDO inhibitors undergo clinical evalua-
tion (60) and many of them are now in Phase II clinical trials 
(Table  1). Most inhibitors were designed to block the Kyn 
pathway (e.g., epacadostat, indoximod, GDC-0919, and an 
IDO1 peptide-based vaccine; Figure 1A) that suspends immu-
nosuppression (1). Some of the tested compounds are used 
alone, or in combination with immunotherapy (CTLA4, PD-1 
blockade), chemotherapy, adoptive transfer, COX-2 inhibitors 
(e.g., celecoxib), membrane-associated PGE2 synthase inhibi-
tors (e.g., MF63), PGE2 receptor (EP4) competitive antagonists 
(e.g., GW627368X), and PI3K inhibitors (43, 59). The latter 
combinative therapies are intended to improve the inhibition of 
local immunosuppression around tumor tissues and to enhance 
tumor eradication (61).

Epacadostat (INCB024360) and indoximod (NLG8189 or 
1-methyl-d-tryptophan) are the most common IDO inhibitors 
that are well tolerated and show obvious beneficial effects in 
cancer therapies; however, both have some major side effects. 
Epacadostat showed grade 3 and 4 adverse effects in patients 
with advanced malignancies, most frequently abdominal pain, 
hypokalemia, fatigue, and some minor effects involving nausea, 
decreased appetite, vomiting, constipation, diarrhea, dyspnea, 
back pain, and cough (62). Indoximod treatment also showed 
some major toxicities in a dose-escalation study, involving grade 
1 fatigue and grade 2 hypophysitis (63). In combination with the 
microtubular poison docetaxel, the most common adverse effects 
of indoximod were fatigue, anemia, hyperglycemia, infection, 
and nausea (62, 63).

Combination of IFN-γ treatment with IDO1 inhibitors is a 
promising new cancer immunotherapeutic strategy that effec-
tively enhances antitumor immunity and eliminates TRCs 
(i.e., stem cell-like cancer cells that are self-renewing, highly 
tumorigenic, and can repopulate tumors). In clinical practice, 
administration of IFN-γ with IDO1 inhibitors is the only onco-
lytic therapy that significantly disrupts TRCs. IFN-γ induces 
the entry of TRCs into dormancy, while IDO1 inhibitor-elicited 
immunosuppression allows effector T cells and NK cells to attack 
dormant TRCs (64). Monotherapies with IDO inhibitors or other 
combinative treatments usually terminate with failure because of 
immune evasion of TRCs, which leads to metastasis formation, 
tumor recurrence and multidrug resistance (64).

Mutational load/neoantigen-burden, basal level of tumor infil-
trating T cells (TILs), differential expression of immune-checkpoint 

genes within the tumor tissue are important biomarkers that help 
predict the tumor’s predisposition toward immune-checkpoint 
inhibitors (ICIs) targeting IDO1, CTLA4, or PD-1 and increase 
the clinical success of immunotherapies. Most ICI-responsive 
cancers (e.g., lung and bladder cancers, melanoma) were associ-
ated with intrinsically high TIL numbers and high mutational 
load/neoantigen-burden, while other cancers (e.g., glioblastoma) 
were predicted to be ICI-resistant based on their biomarker 
profiles (37, 65).

Beyond the application of biomarkers and chemical inhibi-
tors, IDO1 can be genetically targeted by genome editing tools 
that offer new therapeutic opportunities for cancer patients. In 
animal studies, genetic inhibition of IDO1 expression reactivated 
the antitumor immune response against IDO+ cancer cells and 
inhibited tumor growth (63). The shIDO-ST treatment, for 
instance, is based on a Salmonella typhimurium (ST) vector 
that codes for a small hairpin RNA targeting IDO1 (shIDO) 
(66). Intravenously injected shIDO-ST accumulated in the 
tumor tissues of mice, causing IDO1 silencing and concomitant 
infiltration and activation of polymorphonuclear neutrophil 
granulocytes (PMNs). PMNs produced reactive oxygen species 
that established a highly toxic microenvironment for tumor cell 
growth (67). A recent genomic sequencing study that combined 
large-scale tumor exome analysis with MHC I class prediction 
revealed a strong positive correlation between IDO1 expression, 
mutational burden, and neoantigen load in cervical cancers (36). 
The above studies collectively identify IDO1 as an attractive 
target to increase the effectiveness of cancer immunotherapies.

Conclusion and Outlook
The mechanism of “cancer immunoediting” is the direct con-
sequence of a T  cell-dependent immunoselection process that 
drives the formation of IDO1+ tumors. The action of a competent 
immune system is, therefore, determinative for the acquisition 
of cancer immunogenicity. Important posttranslational control 
mechanisms affect the activity and half-life of IDO1 (e.g., NO, 
hypoxia, proteasomal degradation, phosphorylation) that should 
be considered in terms of cancer therapy. For instance, IDO1 
inhibitors could be administered as co-therapeutic agents in the 
presence of redox regulators, IFN-γ, or anti-IL-6. Combining 
IDO1 drugs with the inhibition of specific transcription fac-
tors regulating IDO1 activity (e.g., AhR) may also improve the 
effectiveness and specificity of chemotherapies. Current genome 

https://clinicaltrials.gov/ct2/results?cond=&term=IDO&cntry1=&state1=&recrs=
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


7

Hornyák et al. Chasing IDO1 to Advance Cancer Therapies

Frontiers in Immunology | www.frontiersin.org January 2018 | Volume 9 | Article 151

ReFeRenCeS

1. Zhai L, Spranger S, Binder DC, Gritsina G, Lauing KL, Giles FJ, et al. Molecular 
pathways: targeting IDO1 and Other tryptophan dioxygenases for cancer 
immunotherapy. Clin Cancer Res (2015) 21:5427–33. doi:10.1158/1078-0432.
CCR-15-0420 

2. Bilir C, Sarisozen C. Indoleamine 2,3-dioxygenase (IDO): only an enzyme 
or a checkpoint controller? J Oncol Sci (2017) 3:52–6. doi:10.1016/j.
jons.2017.04.001 

3. Yevshin I, Sharipov R, Valeev T, Kel A, Kolpakov FGTRD. A database of 
transcription factor binding sites identified by ChIP-seq experiments. Nucleic 
Acids Res (2017) 45:D61–7. doi:10.1093/nar/gkw951 

4. van Baren N, Van den Eynde BJ. Tryptophan-degrading enzymes in 
tumoral immune resistance. Front Immunol (2015) 6:34. doi:10.3389/
fimmu.2015.00034 

5. Thul PJ, Akesson L, Wiking M, Mahdessian D, Geladaki A, Ait Blal H, et al. 
A subcellular map of the human proteome. Science (2017) 356:eaal3321. 
doi:10.1126/science.aal3321 

6. Zulfiqar B, Mahroo A, Nasir K, Farooq RK, Jalal N, Rashid MU, et  al. 
Nanomedicine and cancer immunotherapy: focus on indoleamine 2,3-diox-
ygenase inhibitors. Onco Targets Ther (2017) 10:463–76. doi:10.2147/OTT.
S119362 

7. Vogel CFA, Wu D, Goth SR, Baek J, Lollies A, Domhardt R, et  al. Aryl 
hydrocarbon receptor signaling regulates NF-κB RelB activation during den-
dritic-cell differentiation. Immunol Cell Biol (2013) 91:568–75. doi:10.1038/
icb.2013.43 

8. Pallotta MT, Fallarino F, Matino D, Macchiarulo A, Orabona C. AhR-
mediated, non-genomic modulation of IDO1 function. Front Immunol (2014) 
5:497. doi:10.3389/fimmu.2014.00497 

9. Dixon JR, Jung I, Selvaraj S, Shen Y, Antosiewicz-Bourget JE, Lee AY,  
et al. Chromatin architecture reorganization during stem cell differentiation. 
Nature (2015) 518:331–6. doi:10.1038/nature14222 

10. Thomas SR, Mohr D, Stocker R. Nitric oxide inhibits indoleamine 2,  
3-dioxygenase activity in interferon-gamma primed mononuclear phago-
cytes. J Biol Chem (1994) 269:14457–64. 

11. Thomas SR, Terentis AC, Cai H, Takikawa O, Levina A, Lay PA, et  al.  
Post-translational regulation of human indoleamine 2,3-dioxygenase 
activity by nitric oxide. J Biol Chem (2007) 282:23778–87. doi:10.1074/jbc.
M700669200 

12. Hucke C, MacKenzie CR, Adjogble KDZ, Takikawa O, Däubener W.  
Nitric oxide-mediated regulation of gamma interferon-induced bacterio-
stasis: inhibition and degradation of human indoleamine 2,3-dioxygenase. 
Infect Immun (2004) 72:2723–30. doi:10.1128/IAI.72.5.2723-2730.2004 

13. Genes P, Liu SF, Ye X, Malik AB. Inhibition of NF-kB activation by pyrro-
lidine dithiocarbamate prevents in  vivo expression of. Circulation (1999) 
100:1330–7. doi:10.1161/01.CIR.100.12.1330 

14. Thomas SR, Salahifar H, Mashima R, Hunt NH, Richardson DR, 
Stocker R. Antioxidants inhibit indoleamine 2,3-dioxygenase in IFN-
gamma-activated human macrophages: posttranslational regulation by 
pyrrolidine dithiocarbamate. J Immunol (2001) 166:6332–40. doi:10.4049/
jimmunol.166.10.6332 

15. Fujigaki H, Saito K, Lin F, Fujigaki S, Takahashi K, Martin BM, et al. Nitra-
tion and inactivation of IDO by peroxynitrite. J Immunol (2006) 176:372–9. 
doi:10.4049/jimmunol.176.1.372 

16. Grohmann U, Fallarino F, Bianchi R, Orabona C, Vacca C, Fioretti MC,  
et al. A defect in tryptophan catabolism impairs tolerance in nonobese dia-
betic mice. J Exp Med (2003) 198:153–60. doi:10.1084/jem.20030633 

17. Schmidt SK, Ebel S, Keil E, Woite C, Ernst JF, Benzin AE, et al. Regulation 
of IDO activity by oxygen supply: inhibitory effects on antimicrobial and 
immunoregulatory functions. PLoS One (2013) 8:e63301. doi:10.1371/
journal.pone.0063301 

18. Herbert A, Ng H, Jessup W, Kockx M, Cartland S, Thomas SR, et  al. 
Hypoxia regulates the production and activity of glucose transporter-1 and 
indoleamine 2,3-dioxygenase in monocyte-derived endothelial-like cells: 
possible relevance to infantile haemangioma pathogenesis. Br J Dermatol 
(2011) 164:308–15. doi:10.1111/j.1365-2133.2010.10086.x 

19. Roman J, Rangasamy T, Guo J, Sugunan S, Meednu N, Packirisamy G,  
et al. T-cell activation under hypoxic conditions enhances IFN-γ secre-
tion. Am J Respir Cell Mol Biol (2010) 42:123–8. doi:10.1165/rcmb.2008- 
0139OC 

20. Orabona C, Pallotta MT, Volpi C, Fallarino F, Vacca C, Bianchi R, et al. SOCS3 
drives proteasomal degradation of indoleamine 2, 3-dioxygenase (IDO) and 
antagonizes IDO-dependent tolerogenesis. Proc Natl Acad Sci U S A (2008) 
105:20828–33. doi:10.1073/pnas.0810278105 

21. Maria P, CIriana O, Claudia V, Ursula G, Paolo P, Francesca F. Proteasomal 
degradation of indoleamine 2,3-dioxygenase in CD8+ dendritic cells is 
mediated by suppressor of cytokine signaling 3 (SOCS3). Int J Tryptophan Res 
(2010) 3:91–7. doi:10.4137/IJTR.S3971

22. Albini E, Rosini V, Gargaro M, Mondanelli G, Belladonna ML, Pallotta MT, 
et  al. Distinct roles of immunoreceptor tyrosine-based motifs in immuno-
suppressive indoleamine 2,3-dioxygenase 1. J Cell Mol Med (2017) 21:165–76. 
doi:10.1111/jcmm.12954 

23. Orabona C, Pallotta M, Grohmann U. Different partners, opposite outcomes: 
a new perspective of the immunobiology of indoleamine 2,3-dioxygenase. 
Mol Med (2012) 18:834–42. doi:10.2119/molmed.2012.00029 

24. Mondanelli G, Bianchi R, Pallotta MT, Orabona C, Albini E, Iacono A, et al.  
A relay pathway between arginine and tryptophan metabolism confers immu-
nosuppressive properties on dendritic cells. Immunity (2017) 46:233–44. 
doi:10.1016/j.immuni.2017.01.005 

25. Bessede A, Gargaro M, Pallotta MT, Matino D, Brunacci C, Bicciato S, et al. 
Aryl hydrocarbon receptor control of a disease tolerance defense pathway. 
Nature (2015) 511:184–90. doi:10.1038/nature13323.Aryl 

26. Munn DH, Mellor AL. Indoleamine 2,3 dioxygenase and metabolic control 
of immune responses. Trends Immunol (2013) 34:137–43. doi:10.1016/j.
it.2012.10.001 

27. Schmidt SV, Schultze JL. New insights into IDO biology in bacterial and viral 
infections. Front Immunol (2014) 5:384. doi:10.3389/fimmu.2014.00384 

28. Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, et al. 
Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 
(1998) 281:1191–3. doi:10.1126/science.281.5380.1191 

29. Heng B, Lim CK, Lovejoy DB, Bessede A, Gluch L, Guillemin GJ. Understanding 
the role of the kynurenine pathway in human breast cancer immunobio logy. 
Oncotarget (2016) 7:6506–20. doi:10.18632/oncotarget.6467 

30. Zaher SS, Germain C, Fu H, Larkin DFP, George AJT. 3-hydroxykynurenine 
suppresses CD4+ T-cell proliferation, induces T-regulatory-cell development, 
and prolongs corneal allograft survival. Invest Ophthalmol Vis Sci (2011) 
52:2640–8. doi:10.1167/iovs.10-5793 

31. Prodinger J, Loacker LJ, Schmidt RLJ, Ratzinger F, Greiner G, Witzeneder N, 
et al. The tryptophan metabolite picolinic acid suppresses proliferation and 
metabolic activity of CD4+ T cells and inhibits c-Myc activation. J Leukoc Biol 
(2016) 99:583–94. doi:10.1189/jlb.3A0315-135R 

32. Grohmann U, Orabona C, Fallarino F, Vacca C, Calcinaro F, Falorni A, et al. 
CTLA-4-Ig regulates tryptophan catabolism in  vivo. Nat Immunol (2002) 
3:1097–101. doi:10.1038/ni846 

editing and exome sequencing technologies offer promising new 
strategies to identify novel tumor-specific mutational antigens and 
thus expand the repertoire of tumor-specific immunotherapies.

AUTHOR COnTRiBUTiOnS

All authors participated in the writing of this manuscript and 
agreed to be accountable for the content of the work.

FUnDing

LS received grants from the Hungarian Academy of Sciences 
(Lendület programme, LP2015-9/2015), NKFIH-ERC-HU- 
117670, and GINOP-2.3.2-15-2016-00024. GH was supported by 
the GINOP-2.3.2-15-2016-00043 project. GK was supported by 
NKFIH-K-125224. DP and ZS were supported by GINOP-2.3. 
2-15-2016-00062.

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.1158/1078-0432.CCR-15-0420
https://doi.org/10.1158/1078-0432.CCR-15-0420
https://doi.org/10.1016/j.jons.2017.04.001
https://doi.org/10.1016/j.jons.2017.04.001
https://doi.org/10.1093/nar/gkw951
https://doi.org/10.3389/fimmu.2015.00034
https://doi.org/10.3389/fimmu.2015.00034
https://doi.org/10.1126/science.aal3321
https://doi.org/10.2147/OTT.S119362
https://doi.org/10.2147/OTT.S119362
https://doi.org/10.1038/icb.2013.43
https://doi.org/10.1038/icb.2013.43
https://doi.org/10.3389/fimmu.2014.00497
https://doi.org/10.1038/nature14222
https://doi.org/10.1074/jbc.M700669200
https://doi.org/10.1074/jbc.M700669200
https://doi.org/10.1128/IAI.72.5.2723-2730.2004
https://doi.org/10.1161/01.CIR.100.12.1330
https://doi.org/10.4049/jimmunol.166.10.6332
https://doi.org/10.4049/jimmunol.166.10.6332
https://doi.org/10.4049/jimmunol.176.1.372
https://doi.org/10.1084/jem.20030633
https://doi.org/10.1371/journal.pone.0063301
https://doi.org/10.1371/journal.pone.0063301
https://doi.org/10.1111/j.1365-2133.2010.10086.x
https://doi.org/10.1165/rcmb.
2008-0139OC
https://doi.org/10.1165/rcmb.
2008-0139OC
https://doi.org/10.1073/pnas.0810278105
https://doi.org/10.4137/IJTR.S3971
https://doi.org/10.1111/jcmm.12954
https://doi.org/10.2119/molmed.2012.00029
https://doi.org/10.1016/j.immuni.2017.01.005
https://doi.org/10.1038/nature13323.Aryl
https://doi.org/10.1016/j.it.2012.10.001
https://doi.org/10.1016/j.it.2012.10.001
https://doi.org/10.3389/fimmu.2014.00384
https://doi.org/10.1126/science.281.5380.1191
https://doi.org/10.18632/oncotarget.6467
https://doi.org/10.1167/iovs.10-5793
https://doi.org/10.1189/jlb.3A0315-135R
https://doi.org/10.1038/ni846


8

Hornyák et al. Chasing IDO1 to Advance Cancer Therapies

Frontiers in Immunology | www.frontiersin.org January 2018 | Volume 9 | Article 151

33. Katz JB, Muller AJ, Prendergast GC. Indoleamine 2,3-dioxygenase in T-cell 
tolerance and tumoral immune escape. Immunol Rev (2008) 222:206–21. 
doi:10.1111/j.1600-065X.2008.00610.x 

34. Löb S, Königsrainer A, Zieker D, Brücher BLDM, Rammensee HG, Opelz G,  
et  al. IDO1 and IDO2 are expressed in human tumors: levo- but not dex-
tro-1-methyl tryptophan inhibits tryptophan catabolism. Cancer Immunol 
Immunother (2009) 58:153–7. doi:10.1007/s00262-008-0513-6 

35. Godin-Ethier J, Hanafi L-A, Piccirillo CA, Lapointe R. Indoleamine 
2,3-dioxygenase expression in human cancers: clinical and immunologic per-
spectives. Clin Cancer Res (2011) 17:6985–91. doi:10.1158/1078-0432.CCR- 
11-1331 

36. Qin Y, Ekmekcioglu S, Forget M-A, Szekvolgyi L, Hwu P, Grimm EA, et al. 
Cervical cancer neoantigen landscape and immune activity is associated 
with human papillomavirus master regulators. Front Immunol (2017) 8:689. 
doi:10.3389/fimmu.2017.00689 

37. Foy JP, Bertolus C, Michallet MC, Deneuve S, Incitti R, Bendriss-Vermare N,  
et  al. The immune microenvironment of HPV-negative oral squamous 
cell carcinoma from never-smokers and never-drinkers patients suggests 
higher clinical benefit of IDO1 and PD1/PD-L1 blockade. Ann Oncol (2017) 
28:1934–41. doi:10.1093/annonc/mdx210 

38. Rovira Gonzalez YI, Lynch PJ, Thompson EE, Stultz BG, Hursh DA. In vitro 
cytokine licensing induces persistent permissive chromatin at the Indoleamine 
2,3-dioxygenase promoter. Cytotherapy (2016) 18:1114–28. doi:10.1016/ 
j.jcyt.2016.05.017

39. Carbotti G, Barisione G, Airoldi I, Mezzanzanica D, Bagnoli M, Ferrero S, 
et al. IL-27 induces the expression of IDO and PD-L1 in human cancer cells. 
Oncotarget (2015) 6:43267–80. doi:10.18632/oncotarget.6530 

40. Belladonna ML, Orabona C, Grohmann U, Puccetti P. TGF-β and 
kynurenines as the key to infectious tolerance. Trends Mol Med (2009) 
15:41–9. doi:10.1016/j.molmed.2008.11.006 

41. Yanagawa Y, Iwabuchi K, Onoé K. Co-operative action of interleukin-10 
and interferon-γ to regulate dendritic cell functions. Immunology (2009) 
127:345–53. doi:10.1111/j.1365-2567.2008.02986.x 

42. Novitskiy SV, Ryzhov S, Zaynagetdinov R, Goldstein AE, Huang Y, Tikhomirov 
OY, et al. Adenosine receptors in regulation of dendritic cell differentiation 
and function. Blood (2008) 112:1822–31. doi:10.1182/blood-2008-02-136325 

43. Hennequart M, Pilotte L, Cane S, Hoffmann D, Stroobant V, De Plaen E,  
et  al. Constitutive IDO1 expression in human tumors is driven by cycloo-
xygenase-2 and mediates intrinsic immune resistance. Cancer Immunol Res 
(2017) 5:695–709. doi:10.1158/2326-6066.CIR-16-0400 

44. Pietra G, Vitale M, Moretta L, Mingari MC. How melanoma cells inactivate 
NK cells. Oncoimmunology (2012) 1:974–5. doi:10.4161/onci.20405 

45. Wang D, Saga Y, Mizukami H, Sato N, Nonaka H, Fujiwara H, et  al. 
Indoleamine-2,3-dioxygenase, an immunosuppressive enzyme that inhibits 
natural killer cell function, as a useful target for ovarian cancer therapy. Int 
J Oncol (2012) 40:929–34. doi:10.3892/ijo.2011.1295 

46. Mellor AL, Keskin DB, Johnson T, Chandler P, Munn DH. Cells expressing 
indoleamine 2,3-dioxygenase inhibit T  cell responses. J Immunol (2002) 
168:3771–6. doi:10.4049/jimmunol.168.8.3771 

47. Li Q, Harden JL, Anderson CD, Egilmez NK. Tolerogenic phenotype of 
IFN-γ-induced IDO+ dendritic cells is maintained via an autocrine IDO–
kynurenine/AhR–IDO loop. J Immunol (2016) 197:962–70. doi:10.4049/
jimmunol.1502615 

48. Holmgaard RB, Zamarin D, Li Y, Gasmi B, Munn DH, Allison JP, et  al.  
Tumor-expressed IDO recruits and activates MDSCs in a treg-dependent 
manner. Cell Rep (2015) 13:412–24. doi:10.1016/j.celrep.2015.08.077 

49. Powell JJD, Pollizzi KNK, Heikamp EB, Horton MR. Regulation of immune 
responses by mTOR. Annu Rev immunol (2012) 30:39–68. doi:10.1146/
annurev-immunol-020711-075024.Regulation 

50. Kim R, Emi M, Tanabe K. Cancer immunoediting: from immune surveillance 
to immune escape. Immunology (2007) 121:1–17. doi:10.1111/j.1365-2567. 
2007.02587.x 

51. Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. 
Annu Rev Immunol (2004) 22:329–60. doi:10.1146/annurev.immunol.22. 
012703.104803 

52. Shou D, Liang W, Song Z, Yin J, Sun Q, Gong W. Suppressive role of 
myeloid-derived suppressor cells (MDSCs) in the microenvironment of 
breast cancer and targeted immunotherapies. Oncotarget (2016) 7:64505–11. 
doi:10.18632/oncotarget.11352 

53. Zhao Q, Kuang D-M, Wu Y, Xiao X, Li X-F, Li T-J, et al. Activated CD69+ 
T  cells foster immune privilege by regulating IDO expression in tumor- 
associated macrophages. J Immunol (2012) 188:1117–24. doi:10.4049/
jimmunol.1100164 

54. Okamoto A, Nikaido T, Ochiai K, Takakura S, Saito M, Aoki Y, et  al. 
Indoleamine 2,3-dioxygenase serves as a marker of poor prognosis in gene 
expression profiles of serous ovarian cancer cells. Clin Cancer Res (2005) 
11:6030–9. doi:10.1158/1078-0432.CCR-04-2671 

55. Hascitha J, Priya R, Jayavelu S, Dhandapani H, Selvaluxmy G, Sunder Singh S,  
et al. Analysis of kynurenine/tryptophan ratio and expression of IDO1 and 
2 mRNA in tumour tissue of cervical cancer patients. Clin Biochem (2016) 
49:919–24. doi:10.1016/j.clinbiochem.2016.04.008 

56. Zhai L, Ladomersky E, Lauing KL, Wu M, Genet M, Gritsina G, et  al. 
Infiltrating T  cells increase IDO1 expression in glioblastoma and con-
tribute to decreased patient survival. Clin Cancer Res (2017) 23:6650–60. 
doi:10.1158/1078-0432.CCR-17-0120 

57. Xin Y, Cai H. Improved radiosynthesis and biological evaluations of L- and 
D-1-[18F]fluoroethyl-tryptophan for PET imaging of IDO-mediated 
kynurenine pathway of tryptophan metabolism. Mol Imaging Biol (2017) 
19:589–98. doi:10.1007/s11307-016-1024-z 

58. Henrottin J, Lemaire C, Egrise D, Zervosen A, van Den Eynde B, Plenevaux A,  
et  al. Fully automated radiosynthesis of N1-[18F]fluoroethyl-tryptophan and 
study of its biological activity as a new potential substrate for indoleamine 
2,3-dioxygenase PET imaging. Nucl Med Biol (2016) 43:379–89. doi:10.1016/j.
nucmedbio.2016.03.001 

59. Munn DH, Mellor AL. IDO in the tumor microenvironment: inflammation, 
counter-regulation, and tolerance. Trends Immunol (2016) 37:193–207. 
doi:10.1016/j.it.2016.01.002 

60. Routy JP, Routy B, Graziani GM, Mehraj V. The kynurenine pathway is a 
double-edged sword in immune-privileged sites and in cancer: implications 
for immunotherapy. Int J Tryptophan Res (2016) 9:67–77. doi:10.4137/IJTR.
S38355 

61. Kozłowska A, Mackiewicz J, Mackiewicz A. Therapeutic gene modified cell 
based cancer vaccines. Gene (2013) 525:200–7. doi:10.1016/j.gene.2013.03.056 

62. Brochez L, Chevolet I, Kruse V. The rationale of indoleamine 2,3-dioxygenase 
inhibition for cancer therapy. Eur J Cancer (2017) 76:167–82. doi:10.1016/j.
ejca.2017.01.011 

63. Vacchelli E, Aranda F, Eggermont A, Sautès-Fridman C, Tartour E, Kennedy 
EP, et  al. Trial watch: IDO inhibitors in cancer therapy. Oncoimmunology 
(2014) 3:e957994. doi:10.4161/21624011.2014.957994 

64. Liu Y, Liang X, Yin X, Lv J, Tang K, Ma J, et al. Blockade of IDO-kynurenine-
AhR metabolic circuitry abrogates IFN-γ-induced immunologic dormancy 
of tumor-repopulating cells. Nat Commun (2017) 8:15207. doi:10.1038/
ncomms15207 

65. Garg AD, Vandenberk L, Van Woensel M, Belmans J, Schaaf M, Boon L,  
et  al. Preclinical efficacy of immune-checkpoint monotherapy does not 
recapitulate corresponding biomarkers-based clinical predictions in 
glioblastoma. Oncoimmunology (2017) 6:e1295903. doi:10.1080/2162402X. 
2017.1295903 

66. Blache CA, Manuel ER, Kaltcheva TI, Wong AN, Ellenhorn JDI, Blazar BR,  
et  al. Systemic delivery of Salmonella typhimurium transformed with IDO 
shRNA enhances intratumoral vector colonization and suppresses tumor 
growth. Cancer Res (2012) 72:6447–56. doi:10.1158/0008-5472.CAN-12-0193 

67. Manuel ER, Diamond DJ. A road less traveled paved by IDO silencing: 
harnessing the antitumor activity of neutrophils. Oncoimmunology (2013) 
2:e23322. doi:10.4161/onci.23322 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2018 Hornyák, Dobos, Koncz, Karányi, Páll, Szabó, Halmos and 
Székvölgyi. This is an open-access article distributed under the terms of the Creative 
Commons Attribution License (CC BY). The use, distribution or reproduction in 
other forums is permitted, provided the original author(s) and the copyright owner 
are credited and that the original publication in this journal is cited, in accordance 
with accepted academic practice. No use, distribution or reproduction is permitted 
which does not comply with these terms.

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.1111/j.1600-065X.2008.00610.x
https://doi.org/10.1007/s00262-008-0513-6
https://doi.org/10.1158/1078-0432.CCR-11-1331
https://doi.org/10.1158/1078-0432.CCR-11-1331
https://doi.org/10.3389/fimmu.2017.00689
https://doi.org/10.1093/annonc/mdx210
https://doi.org/10.1016/j.jcyt.2016.05.017
https://doi.org/10.1016/j.jcyt.2016.05.017
https://doi.org/10.18632/oncotarget.6530
https://doi.org/10.1016/j.molmed.2008.11.006
https://doi.org/10.1111/j.1365-2567.2008.02986.x
https://doi.org/10.1182/blood-
2008-02-136325
https://doi.org/10.1158/2326-6066.CIR-16-0400
https://doi.org/10.4161/onci.20405
https://doi.org/10.3892/ijo.2011.1295
https://doi.org/10.4049/jimmunol.168.8.3771
https://doi.org/10.4049/jimmunol.1502615
https://doi.org/10.4049/jimmunol.1502615
https://doi.org/10.1016/j.celrep.2015.08.077
https://doi.org/10.1146/annurev-immunol-020711-075024.Regulation
https://doi.org/10.1146/annurev-immunol-020711-075024.Regulation
https://doi.org/10.1111/j.1365-2567.2007.02587.x
https://doi.org/10.1111/j.1365-2567.2007.02587.x
https://doi.org/10.1146/annurev.immunol.22.
012703.104803
https://doi.org/10.1146/annurev.immunol.22.
012703.104803
https://doi.org/10.18632/oncotarget.11352
https://doi.org/10.4049/jimmunol.1100164
https://doi.org/10.4049/jimmunol.1100164
https://doi.org/10.1158/1078-0432.CCR-04-2671
https://doi.org/10.1016/j.clinbiochem.2016.04.008
https://doi.org/10.1158/1078-0432.CCR-17-0120
https://doi.org/10.1007/s11307-016-1024-z
https://doi.org/10.1016/j.nucmedbio.2016.03.001
https://doi.org/10.1016/j.nucmedbio.2016.03.001
https://doi.org/10.1016/j.it.2016.01.002
https://doi.org/10.4137/IJTR.S38355
https://doi.org/10.4137/IJTR.S38355
https://doi.org/10.1016/j.gene.2013.03.056
https://doi.org/10.1016/j.ejca.2017.01.011
https://doi.org/10.1016/j.ejca.2017.01.011
https://doi.org/10.4161/21624011.2014.957994
https://doi.org/10.1038/ncomms15207
https://doi.org/10.1038/ncomms15207
https://doi.org/10.1080/2162402X.2017.1295903
https://doi.org/10.1080/2162402X.2017.1295903
https://doi.org/10.1158/0008-5472.CAN-
12-0193
https://doi.org/10.4161/onci.23322
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	The Role of Indoleamine-2,3-Dioxygenase in Cancer Development, Diagnostics, and Therapy
	Introduction
	Biochemistry and Regulation of Indoleamine-2,3-Dioxygenase 1 (IDO1) Activity
	The Physiological and Pathological Function of IDO1
	IDO1 in Cancer Diagnostics and Therapy
	Conclusion and Outlook

	Author Contributions
	Funding
	References


