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The production of high-affinity and broadly neutralizing antibodies plays a key role in the 
defense against pathogens. These antibody responses require effective germinal center 
(GC) reaction within anatomical niches of GCs, where follicular helper T (Tfh) cells provide 
cognate help to B cells for T cell-dependent antibody responses. Emerging evidences 
indicate that GC reaction in normal state and perhaps establishment of latent Tfh cell 
reservoir in HIV/SIV infection are tightly regulated by epigenetic histone modifications, 
which are responsible for activating or silencing chromatin. A better understanding of 
the mechanisms behind GC responses at cellular and molecular levels thus provides 
necessary knowledge for vaccination and immunotherapy. In this review, we discussed 
the epigenetic regulation of GC responses, especially for GC B and Tfh cell under normal 
state or HIV/SIV infection.
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iNTRODUCTiON

B-cell lineage commitment develops in primary lymphoid tissues such as fetal liver and bone mar-
row, and enters circulation (1). In secondary lymphoid tissues [such as lymph nodes, spleen, and gut-
associated lymphoid tissues (GALT)], antigen-activated B cells experience clonal expansion, somatic 
hypermutation (SHM), and selection, and ultimately differentiate into antigen-specific memory sub-
sets and plasma cells, which require T cell-dependent interactions for full responses (2, 3). Of these, 
germinal center (GC) reaction is the critical checkpoint in the development of T-dependent B-cell 
responses against foreign pathogens. Emerging studies have shown GC responses are strictly regu-
lated by epigenetic modifications, which cooperate with timely expression of transcriptional factors 
for follicular B/T helper cell differentiation, thereby modulating antibody responses to foreign- and 
self-antigens (4). Therefore, understanding the intrinsic mechanisms involved in GC responses, and 
their dysregulation in HIV infection provides potential for the development of improved vaccines 
and immunotherapy.

GC FORMATiON AND ReACTiON iN iNTeRACTiON BeTweeN 
GC B AND FOLLiCULAR HeLPeR T (Tfh) CeLLS

Germinal centers are unique highly organized structures that formed within organized lymphoid 
tissues of both peripheral and mucosal (GALT) lymphoid tissues in response to T cell-dependent 
antigen. In GCs, Ag-activated B-cell clones proliferate and undergo SHM and selection, eventually 
produce antibodies with high-affinity and antigen specificity (5–7). For example, early GCs can 
first be histologically observed in mice at day 4 after immunization, in which B cells expand and 
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differentiate into B  cell blasts within the network of follicular 
dendritic cells (FDC) in the center of the follicle (5, 8). The dark 
zone (DZ) and light zone (LZ) in GCs could be microscopically 
distinguishable in lymphoid tissues. The DZ B cells (called cen-
troblasts) highly proliferate, with opportunity to produce random 
immunoglobulin gene hypermutation and diversify Ig repertoire 
against foreign antigens. These DZ B  cells leave DZ, and then 
migrate to the LZ, form LZ B cells (known as centrocytes), which 
are subject to clonal selection and terminal differentiation into 
memory B cells and plasma cells by signals from Tfh cells and 
FDCs. GCs are major sites for humoral immune responses, 
including B-cell development, differentiation and maturation, 
production of high-affinity antibodies that recognize and/or 
neutralize infectious pathogens.

The GC reaction is responsible for T-dependent humoral 
immune responses and is defined as the sequential process of 
B-cell differentiation, activation, maturation, resulting in antibody 
affinity maturation, and terminal differentiation, all that occurring 
within the GCs of lymphoid tissues. GC B cells undergo random 
SHM, Ig gene rearrangement, and clonal selection and eventually 
differentiate into long-lived memory B  cells and high-affinity 
antibody-secreting plasma cells (8–12). By B cell receptor signaling 
via antigen binding, naïve B cells are initially activated and then 
migrate to the interfollicular (IF) region, where they interact with 
antigen-specific T cells and are thoroughly activated (13–15). These 
GC B founders express intermediate levels of BCL6 prior to follicu-
lar entry and GC seeding, and subsequent transit to the BCL6high 
state in B-cell commitment to the GC lineage, lagging behind Tfh 
migration into the follicle interior (16). The transcriptional repres-
sor BCL6 is indispensable for GC B cell differentiation, repressing 
expression of the transcriptional factors IRF4/Blimp1 and forma-
tion of short-term antibody-secreting cell (ASC) (8, 17). However, 
only a proportion of these antigen-activated B cells are able to enter 
the GC zones and participate in the GC reaction (8). A subset of 
activated B cells in the IF zones at the peripheral follicles could 
differentiate into ASCs, which produce low-affinity antibodies to 
pathogens, albeit with a rapid antibody responses (18). Another 
pool of antigen-specific GC B cells with the highest relative affinity 
gains access to the lymphoid follicles, aggregated to form GCs 
(19–22). Within anatomical niches of mature GCs, GC B cells in 
the DZ (densely packed blasts, centroblasts) rapidly proliferate, 
undergo random SHM catalyzed by activation-induced cytidine 
deaminase (AID), and rearrange and diversify their IgV genes, 
resulting in mutant GC B cell clones with a broader repertoire of 
antibody specificity (23–25). Upon transition into the LZ (sparsely 
populated B cells, centrocytes), GC B cells with the highest affinity 
B cell receptors are positively selected by GC Tfh cells. Signaling 
from GC Tfh cells, such as CD40, IL-4, IL-9, IL-21, and ICOS, 
plays a pivotal role in the GC reaction during intermittent cognate 
engagement between GC B and Tfh cells (26–28). Rapid interac-
tions between GC B and Tfh cells in DZ/LZ occur, as indicated 
by fluctuating CXCR4 and/or CXCR5 expression, which facilitate 
several reiterative rounds of B cell mutation and selection, resulting 
in terminal differentiation into highly specific memory B cells and 
plasma cells (5, 7, 11, 29). In the GC reaction, increasing evidence 
indicates that Ig SHM and selection of antigen-experienced B cells 

are needed for development of broadly neutralizing antibodies at 
checkpoints during B cell activation (30).

ePiGeNeTiC HiSTONe ReGULATiON AND 
iTS POTeNTiAL iN B-CeLL 
DiFFeReNTiATiON AND ANTiBODY 
ReSPONSeS

Epigenetic alteration at posttranslational modification (PTM) is 
able to regulate gene expression or repression, and control cellular 
function without genomic sequences changes (4). Epigenetic 
histone modification, either by adding or removing histone meth-
ylation, acetylation, phosphorylation, or ubiquitination at histone 
posttranslational levels, alters chromatin structure and represses 
(such as chromosomal condensation) or promotes target gene 
transcriptional pathways affecting cell development, differentia-
tion, and cell fates, and thereby modulates cell functions in both 
programmed development, or in response to disease states (31). 
Under the control of epigenetic regulation, cell commitment to a 
specific differentiated lineage involves the activation of specific 
genes while maintaining the other gene silence at the genomic 
loci (32). Among various chromatin-modifying epigenetic fac-
tors, polycomb G (PcG) proteins act in multimeric complexes 
known as polycomb repressive complexes (PRCs, including 
PRC1, PRC2, and PhoRC), which are specifically involved in 
histone PTMs. PRC2, composed of three subunits [enhancer of 
zeste homolog 2 (EZH2)/EZH1, SUZ12, and EED], binds to spe-
cific targets of chromatin, and then the enzymatic subunit EZH2 
catalyzes the di- and tri-methylation of Lys 27 residues on histone 
H3 to generate H3K27me2/3 (33), which mediates changes in 
chromatin structure, transcriptional repression, somatic pro-
cesses during embryonic development, lineage commitment, 
and even tumorigenesis (34–41). H3K27me3 could recruit PRC1 
(BMI1 subunit) (42, 43), and thus stabilize polycomb G-mediated 
repression (39, 44, 45). EZH2 is a central core component of the 
PcG family, as it serves as histone-lysine N-methyltransferase to 
catalyze H3-K27 methylation (13). Conversely, aberrant EZH2 
overexpression and subsequent SHMs are associated with cancer 
occurrence (13, 46, 47). Although EZH2 is directly responsible 
for the trimethylation of H3-K27, EZH2 overexpression does 
not directly increase H3K27me3, but instead results in PRC4-
mediated H1K26 trimethylation, upregulation of demethylase 
(JMJD3/UTX), and phosphorylation of Ezh2 (P-Ezh2-Ser21) 
(48–51). Loss of H3K27me3 despite high EZH2 and demethylase 
levels is thus believed to be due to transcriptional suppression 
of H3K27me3-target genes by increased demethylase or other 
unknown mechanisms. The degree of lysine methylation within 
histones (mono-, di-, and tri-) is one modification with distinc-
tive nuclear features and transcriptional states of target genes, and 
a major determinant for genome organization. Both lysine meth-
yltransferases (KMTs) and lysine demethylases (KDMs) have 
specificity for specific lysine residues and degrees of methylation 
within the histone tails. Lysine (K) motifs within the histone 
tails are primary sites to recruit chromatin-modifying enzymes 
such as methyltransferase, leading to specific gene repression or 
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FiGURe 1 | Repressive and active gene regulation in germinal center (GC) reaction by epigenetic histone modification at posttranslation level in GCs. Epigenetic 
regulation, histone methylation/demethylation, or/and acetylation/deacetylation, is involved in B cell development, GC formation, somatic hypermutation, and Ab 
affinity maturation. Note that methyltransferase EZH2 is highly expressed in GC B cells (see our preliminary study), but its unique target mark-H3K27me3 is 
undetectable in developing neonates, suggesting that EZH2 may regulate the GC reaction via alternative mechanisms or balanced by histone demethylation/
acetylation. PRC, polycomb repressive complex; EZH2, enhancer of zeste homolog 2; UTX, X chromosome-encoded histone demethylase; HATs, histone 
acetyltransferases; HDACs, histone deacetylases; BET, bromodomain and extra-terminal motif protein.
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activation (52). For examples, H4K20 and H3K27 monomethya-
tion (H4K20/27me1) is associated with active promoters, while 
H4K20 and H3K27 trimethylation (H4K20m/27me3) is affiliated 
with gene repression and compacted genomic regions. However, 
H3K4me3 is generally responsible for active chromatin (53, 54). 
H3K27me2 shows a similar distribution and role to H3K27me3 
(55, 56). In addition, histone demethylation/acetylation, respec-
tively, catalyzed by demethylase UTX/JMJD3 (H3K27me2/3 
substrate), LSD1 (H3K4me2 substrate), JMJD2 (H3K9me3 sub-
strate), JARID (H3K4me3 substrate), or acetyltransferase, is also 
associated with active transcription, antagonizing the repression 
of gene expression induced by H3K27me2/3 (57, 58).

In the context of antibody responses, B-cell development and 
the GC reaction is precisely fine-tuned by histone modifiers (59). 
Specifically, epigenetic modification controls B-cell differentiation 
and maturation, thereby regulating Ab responses (4, 13, 60–64). 
Upon activation by antigens, GC B  cells upregulate and highly 
express EZH2, which segregates primarily in either the LZ or/and 
DZ (60, 65), and plays a pivotal role in B cell differentiation, GC 
formation, normal immunoglobulin VDJ recombination, inhibi-
tion of terminal B-cell differentiation, and lymphomagenesis via 
histone trimethylation (H3K27me3) (13, 61, 63, 66). High expres-
sion of EZH2, cooperating with Bcl6, is required to maintain the 
GC B cell phenotype but its relevance diminishes concomitant with 
GC B cells exiting GCs and terminal differentiation (upregulated 
IRF4 and BLIMP1), suggesting an important role for this protein in 
maintaining B cell division (8, 61, 67). EZH2 depletion or mutation 
perturbs B-cell differentiation and GC reaction with reduction in 

high-affinity antibodies, while overexpression of EZH2 promotes 
lymphomagenesis (63, 66). These findings suggest that EZH2 is 
essential for normal B-cell differentiation, activation, as well as 
maturation. Additionally, expression of EZH2 is also precisely 
regulated in various physiological and pathogenic processes (13, 
68). Factors, including c-Rel, E2F1/2, Elk-1, and HIF-1α directly 
bind to the EZH2 promoter, leading to EZH2 expression (69–72). 
For example, c-Rel supports GC B cell proliferation and maintains 
the GC through upregulation of EZH2. Another factor, Myc 
could also indirectly induce EZH2 expression through miRNA or 
retinoblastoma protein-E2F (pRB-E2F) (73). Myc also enables GC 
B cell division and transformation, as Myc+ GC B cells are highly 
proliferative cell subsets (12, 74, 75), compared with p53-mediated 
suppression of EZH2 expression (76). Combined, multiple B cell-
intrinsic epigenetic alterations may be involved in instructing B cells 
to undergo B  cell development, GC formation, SHM, and Ab 
affinity maturation in the GC reaction, including differentiation to 
memory B cells or long-lived plasma cells (8, 12, 63, 66) (Figure 1).

ePiGeNeTiC ReGULATiON iN Tfh CeLL 
ReSeRvOiRS iN Hiv/Siv iNFeCTiON

CD4 T  cells preferentially develop into Tfh cells following 
repetitive T  cell receptor interactions and activation, and the 
proinflammatory cytokines produced during persistent viral 
infections (77–79). Notably, epigenetic regulation is also involved 
in T cell differentiation and memory formation (80–82). These 
epigenetic alterations include PTMs. For example, EZH2 restricts 
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the differentiation of Th1 and Th2 cells via H3K27me3-mediated 
gene repression (83). Conversely, upregulation of UTX, an H3K27 
demethylase supports Tfh cell differentiation and eliminates 
persistent viral infections (84). As indicated in Figure 2, epige-
netic histone modification in virus-infected cells is implicated 
in the immune evasion and latency in HIV infection and AIDS 
(85–90). The reactivation of HIV latency could be regulated by 
epigenetic modification through effects on the chromatin state of 
the viral promoter in the LTR sequence (90–93). The BET (bro-
modomain and extraterminal domain) family, including BRD2, 
BRD3, BRD4, and BRDT, are important epigenetic regulators 
facilitating the gene transcription in chromatin (94). BRD4, a 
chromatin adaptor protein, forms a tight complex with chromatin 
through two tandem bromodomains (BD1 and BD2), acetylate 
lysine residues in histone 3 and 4 at both enhancer and general 
promoter regions of chromatin, recruiting positive transcription 
elongation factor-b (P-TEFb) (95). The latter facilitates cellular 
transcription by phosphorylating RNA polymerase II at the serine 
residue in the C-terminal domain (96). However, recent studies 
indicate that BET bromodomain inhibitor (e.g., JQ1) dissociates 
BRD4 from BRD4/P-TEFb complex, resulting in P-TEFb/HIV 
Tat recruitment to the LTR promoter and reactivation of HIV-
infected cells (97, 98). Antiretroviral drugs, in combination with 
epigenetic regulatory agents, are promising to effectively reac-
tivate HIV latency via histone deacetylase inhibitors (HDACi), 
histone methyltransferase inhibitors, or DNA methyltransferase 
inhibitors.

As described above, GC Tfh cells provide help for optimal 
B-cell differentiation, and antibody affinity maturation (10, 99).  
Interactions of GC B cells with GC Tfh cells are critical for antibody 
production. However, persistent SIV infection leads to aberrant GC 
Tfh cell expansion, ultimate depletion, abnormal B-cell responses, 
and viral reservoir establishment as a major source of the HIV 
reservoir within sanctuary sites in lymphoid tissues (79, 100, 101), 
consistent with the facts that organized lymphoid tissues represent 
the major tissue reservoir for HIV replication and latency (102–104),  
even during prolonged ART (78, 105–109). Although studies in 
adults indicate that HIV infection leads to abnormal B-cell and Tfh 
cell responses (110–115), yet, studies on the regulation of B-cell 
responses, especially at the cellular and molecular levels within 
GCs, needed to be further investigated in HIV/SIV infection.
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