
February 2018 | Volume 9 | Article 1701

Review
published: 07 February 2018

doi: 10.3389/fimmu.2018.00170

Frontiers in Immunology | www.frontiersin.org

Edited by: 
Amariliz Rivera,  

New Jersey Medical School,  
United States

Reviewed by: 
Agostinho Carvalho,  

University of Minho, Portugal  
Joshua J. Obar,  

Dartmouth College, United States

*Correspondence:
Tara L. Croston  
xzu9@cdc.gov

Specialty section: 
This article was submitted to 

Microbial Immunology,  
a section of the journal  

Frontiers in Immunology

Received: 30 October 2017
Accepted: 19 January 2018

Published: 07 February 2018

Citation: 
Croston TL, Lemons AR, 

Beezhold DH and Green BJ (2018) 
MicroRNA Regulation of Host 

Immune Responses following Fungal 
Exposure.  

Front. Immunol. 9:170.  
doi: 10.3389/fimmu.2018.00170

MicroRNA Regulation of Host 
immune Responses following Fungal 
exposure
Tara L. Croston1*, Angela R. Lemons1, Donald H. Beezhold2 and Brett J. Green1

1 Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and 
Health, Centers for Disease Control and Prevention, Morgantown, WV, United States, 2 Health Effects Laboratory Division, 
National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, 
United States

Fungal bioaerosols are ubiquitous in the environment and human exposure can result in 
a variety of health effects ranging from systemic, subcutaneous, and cutaneous infec-
tions to respiratory morbidity including allergy, asthma, and hypersensitivity pneumonitis. 
Recent research has focused on the role of microRNAs (miRNAs) following fungal expo-
sure and is overlooked, yet important, group of regulators capable of influencing fungal 
immune responses through a variety of cellular mechanisms. These small non-coding 
ribose nucleic acids function to regulate gene expression at the post-transcriptional 
level and have been shown to participate in multiple disease pathways including cancer, 
heart disease, apoptosis, as well as immune responses to microbial hazards and occu-
pational allergens. Recent animal model studies have characterized miRNAs following 
the exposure to inflammatory stimuli. Studies focused on microbial exposure, including 
bacterial infections, as well as exposure to different allergens have shown miRNAs, such 
as miR-21, miR-146, miR-132, miR-155, and the let-7 family members, to be involved in 
immune and inflammatory responses. Interestingly, the few studies have assessed that 
the miRNA profiles following fungal exposure have identified the same critical miRNAs 
that have been characterized in other inflammatory-mediated and allergy-induced exper-
imental models. Review of available in vitro, animal and human studies of exposures to 
Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans, Paracoccidioides 
brasiliensis, and Stachybotrys chartarum identified several miRNAs that were shared 
between responses to these species including miR-125 a/b (macrophage polarization/
activation), miR-132 [toll-like receptor (TLR)2-mediated signaling], miR-146a (TLR 
mediated signaling, alternative macrophage activation), and miR-29a/b (natural killer cell 
function, C-leptin signaling, inhibition of Th1 immune response). Although these datasets 
provide preliminary insight into the role of miRNAs in fungal exposed models, interpre-
tation of miRNA datasets can be challenging for researchers. To assist in navigating this 
rapidly evolving field, the aim of this review is to describe miRNAs in the framework of 
host recognition mechanisms and provide initial insight into the regulatory pathways in 
response to fungal exposure.
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Abbreviations: Clec7a, C-type lectin domain family 7 member A; IL, interleukin; LPS, lipopolysaccharide; RNA, ribose nucleic 
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iNTRODUCTiON

Fungi are ubiquitous eukaryotic microorganisms that can be 
prevalent in indoor, outdoor, and occupational environments.  
A small portion of 1.5 million fungal species estimated to exist (1) 
are primary or opportunistic pathogens, whereas the vast major-
ity is ubiquitous saprophytes that obtain nutrients from organic 
matter. Fungi are composed of membrane bound organelles that 
are encased by a rigid cell wall but do not contain chlorophyll. 
The cell wall is composed of ergosterol, chitin, glucans, such as 
(1 → 3)-β-d-glucan, and mannose proteins (2). Fungal lifeforms 
broadly vary from unicellular yeasts to multicellular filamentous 
hyphae that include the production of mitotic or meiotically pro-
duced spores. In some cases, fungi are dimorphic and share both 
lifecycles. Upon disturbance, fungal spores can be aerosolized 
and in some occupational environments the airborne concentra-
tions may exceed 1 × 105 spores/m3 (3).

Personal exposure to fungal species has been associated with a 
broad variety of adverse health effects that range from pulmonary, 
sinus, and subcutaneous infections to respiratory morbidities that 
may include hypersensitivity pneumonitis, allergy, and asthma 
(3). Each of these health effects is dependent on the host’s immune 
responsiveness and fungal species exposed (4). In specific geo-
graphical regions, dimorphic fungi that cause endemic mycoses 
exist as either a filamentous fungus in the environment or as a 
pathogenic yeast in the host. In the environment, the filamentous 
hyphae grow in soil at ambient temperatures and produce infec-
tious spores (5, 6). Soil disturbance can aerosolize spores that can 
be inhaled by a mammalian host. In a process that is thermo-
regulated, the spores can germinate into a pathogenic yeast phase 
that helps these fungi avoid the hosts’ immune responses. For 
example, Blastomyces dermatitidis can proliferate on the respira-
tory mucosa, Histoplasma capsulatum modulates the monocyte 
phagolysosome compartment, and Coccidioides immitis develops 
a large spherule containing endospores that is resistant to 
phagocytosis. These dimorphic fungal species as well as others, 
including Paracoccidioides brasiliensis (paracoccidioidomycosis) 
and Talaromyces (Penicillium) marneffei (talaromycosis), affect 
the lungs, although the latter can also affect the liver and mouth.

By contrast, opportunistic fungal pathogens consist of fungi 
that are environmentally ubiquitous and affect those who are 
immunocompromised, especially patients who have received 
a transplant or undergoing chemotherapy or corticosteroid 
therapy. Examples of fungi that are commonly implicated in 
opportunistic infections include, Candida albicans (candidiasis), 
Pneumocystis jirovecii (Pneumocystis pneumonia), Cryptococcus 
neoformans/gattii (cryptococcosis), and Aspergillus fumigatus 
(aspergillosis). Infections can be acquired through the inhalation 
of conidia or yeast depending on the species and can result in 
systemic mycoses. With the increase in broad-spectrum antibi-
otic usage and other medical and therapeutic strategies, invasive 
opportunistic fungal infections are of particular concern in the 
hospital setting, as nosocomial infections may be life-threatening 
for critically ill individuals (7).

The World Health Organization and the Institute of Medicine 
have published consensus documents that report respiratory 
morbidities are associated with damp indoor environments 

(8, 9). Recent epidemiological evidence has further built on 
these consensus findings and shown exposure to mold in damp 
indoor environments to be associated with adverse respiratory 
health effects (10, 11). Following recent natural disasters and 
flooding events associated with Hurricanes Harvey, Irma, and 
Maria, water-infiltrated occupational, and residential buildings 
are environments where mold can grow and proliferate on water 
damaged building materials. Returning to these environments and 
disturbing contaminated building materials can result in the aero-
solization of fungal spores (12) that can pose a significant health 
risk especially if the person is immunocompromised. Fungi asso-
ciated with colonizing wet building materials include, Aspergillus 
versicolor, Ulocladium chartarum, Chaetomium globosum, and 
Stachybotrys chartarum that are hydrophilic and require a high 
water activity for growth and proliferation. Of these hydrophilic 
fungal contaminants, S. chartarum is the most widely studied and 
many reports have identified exposure to contribute to negative 
health effects (12–15).

Due to increased community concern regarding personal 
exposure to these pathogenic fungi and the potential result of 
life-threatening health outcomes, it is important to characterize 
the mechanisms that contribute to the host innate and adap-
tive immune responses. Previous research has focused on host 
responses in fungal exposure models by analyzing functional, 
histological, and immunological endpoints; however, research 
examining the molecular mechanisms that underlie these 
responses remains unclear for many clinically relevant fungal 
species. Although many studies have been published that have 
explored pulmonary immunological responses to acute and 
chronic fungal spores exposures, the microRNAs (miRNAs) that 
regulate these deficiencies have not been fully characterized. In 
this review, the state-of-knowledge of miRNAs characterized 
in various animal models, including those that have evaluated 
fungal exposures, will be reviewed with emphasis placed on the 
mechanistic insights that these studies have provided in relation 
to the host response following fungal exposure.

MiCRORNAs

MicroRNAs are an important group of regulators capable of influ-
encing gene expression through different mechanisms (16–20). 
Consisting of short, single stranded noncoding ribose nucleic 
acids (RNAs), miRNAs bind to target messenger RNA (mRNA) 
to downregulate gene expression post-transcriptionally through 
RNA silencing or RNA degradation (21, 22). Depending on the 
complementarity of base pairing, gene expression is repressed, 
as observed in humans and animals, or mRNA is cleaved, as 
observed in plants (23–25). More recently, studies have shown that 
miRNA can also activate the translation of certain target mRNA 
(17, 18, 26). Providing insight into how altered miRNA profiles 
affect upstream processes can be methodologically challenging. 
For example, a single miRNA can regulate from one to multiple 
genes, whereas studies have also shown that multiple miRNAs 
can regulate the same gene (27–30). Several miRNAs, as well as 
miRNA families, have been extensively studied and have been 
characterized in models of cancer, heart disease, aging, apoptosis, 
and immune responses to inflammatory stimuli (19, 20, 31–34).
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influence of miRNAs on iL-13-Mediated 
Allergic Responses
The let-7 family is the most abundant pulmonary miRNAs and has 
been identified in cancer, diabetes, and aging studies (35–39). The 
let-7 family members have been shown to target interleukin (IL)-
13 in in vivo and in vitro models, although the regulatory in vivo 
mechanisms of let-7 are complex (20, 40). miR-21 is another 
widely studied miRNA and has been shown to participate in the 
inflammatory response elicited by different stimuli, including 
doxycycline-induced allergic airway inflammation (41), as well as 
viral, bacterial and protozoan infections (42–44). One of the most 
upregulated miRNAs in human patients with allergic eosinophilic 
esophagitis is miR-21 (45, 46), which correlates with studies that 
reported miR-21 and miR-223 as regulators of eosinophilic devel-
opment in an ex vivo model of bone-derived eosinophils (47, 48). 
miR-375 has also been reported to be downregulated in epithelial 
cells derived from patients with eosinophilic esophagitis, as well 
as in IL-13 stimulated epithelial cells indicating the role of miR-
375 as a regulator of IL-13-mediated responses (21).

miRNA involvement in Allergy-induced 
Asthma
In rodent models exposed to house dust mite allergen, increased 
miR-126, miR-106a, and miR-145 expression have been shown 
to contribute to allergic inflammation (49–51). Studies involving 
airborne pollutants, such as cigarette smoke, reported a down-
regulation in let-7c, let-7f, miR-34b, miR-34c, and miR-222, 
all of which contributed to pulmonary inflammation in rodent 
models (52–54). Research examining aberrant miRNA profiles in 
asthmatic hosts has also revealed novel miRNAs that contribute 
to allergic airway disease. Examination of CD4+ T cells isolated 
from the bronchoalveolar lavage fluid from asthmatic human 
patients revealed that miR-19a had the highest expression (55), 
which promoted a Th2-mediated cell response, a known response 
contributing to allergic asthma. In another study, miR-221 and 
miR-485-3p were upregulated in peripheral blood from pediatric 
asthmatic human patients compared with controls, suggesting 
that these miRNAs contribute to the development of asthma 
(56). In a chemical allergen model examining the murine miRNA 
profile following dermal exposure to toluene 2,4-diisocyanate, 
miR-21, miR-22, miR-27b, miR-31, miR-126, miR-155, miR-210, 
and miR-301a expression were increased (57). While this study 
identified miRNAs that are known to participate in the immune 
response associated with asthma (miR-21, miR-31, miR-126, and 
miR-155), new miRNAs were proposed as potential biomarkers 
for allergic sensitization to toluene 2,4-diisocyanate (miR-22, 
miR-27b, miR-301a, and miR-210).

miRNA Regulation on Adaptive immunity
MicroRNAs critically influence the development and responses 
of the immune system, but the contributing biological mecha-
nisms are poorly characterized (22, 58–60). Overexpression 
of the miR-17-92 cluster and miR-181 enhanced B-cell prolif-
eration, while miR-150 regulated B-cell differentiation (61–64). 
When overexpressed, miR-181 has been shown to decrease 
T-cell numbers (61), but enhance T-cell receptor signaling (65). 

When T  cells are activated, the miRNA expression profiles are 
altered (66–68). T-cell activation has additionally been found to 
induce the miR-17~92 family members (69), as well as the gene 
that encodes miR-155 (70). miR-155 has also been reported to 
regulate antigen presentation (71) and to negatively regulate 
toll-like receptor (TLR) and cytokine signaling (72). The miR-
17-92 cluster promotes Th1 type immune responses along with 
inhibiting regulatory T-cell differentiation (69). Rodriquez et al. 
showed that miR-155 is required for normal functioning of B and 
T lymphocytes as well as dendritic cells (73).

Macrophage Development and TLR 
Signaling
In human macrophages, miR-155 targets and subsequently 
decreases IL-13Rα1, modulating the IL-13 pathway and the switch-
ing between classic and alternatively activated macrophages (74). 
Macrophage polarization is transcriptionally controlled by either 
miR-146b or miR-34a, directing an M1 macrophage polarization, 
whereas miR-18a/miR-34a, miR-130b, or miR-125-5p dictates an 
M2 macrophage phenotype (75). miR-21 has also been reported 
to direct macrophage polarization from an M1 phenotype toward 
an M2 phenotype (75). Alveolar macrophages isolated from a 
fibrotic mouse model showed significantly increased miR-let-7c 
levels compared with control and that overexpression of this 
miRNA regulated macrophage polarization (76). Expression of 
miR-124 and miR-223 in macrophages has also been reported to 
contribute to macrophage polarization (77, 78).

Located on the surface of sentinel cells, such as macrophages, 
TLRs play a critical role in the innate immune system by rec-
ognizing pathogen-associated molecular patterns expressed on 
pathogens and signaling for the production of cytokine to elicit 
an immune response. These TLRs participate in macrophage 
activation and have been shown to induce miR-155, miR-146, 
miR-147, miR-9, and miR-21 (79, 80). An upregulation of miR-
21 has been observed in both primary human airway epithelial 
cells (41) and in an IL-13 transgenic mouse model with the latter 
study identifying that the observed miR-21 upregulation was 
through an IL-13Rα1-dependent mechanism (81). This increase 
in miR-21 was also associated with inhibited Th1 cytokine signal-
ing (41). Using an ovalbumin-induced miR-21 deficient mouse 
model, Th1 cytokines were found to be increased (82), support-
ing the contribution of miR-21 in Th2 type immune responses. 
One study confirmed that miR-21 expression inhibited murine 
pulmonary inflammation by suppressing TLR2 signaling (81). 
When secreted from tumor cells, miR-21 and miR-29a have also 
been reported to interact with TLRs, specifically TLR7 and TLR8, 
respectively (83). Upon lipopolysaccharide (LPS) stimulation, 
miR-146a/b was shown to be induced and predicted to negatively 
regulate TLR and cytokine signaling (72).

influence of miRNA on T-Helper Cell 
Responses
Macrophage surface activation is induced in the presence of over-
expressed miR-125b (84) and in an eosinophilic rhinosinusitis 
animal model, miR-125b is increased resulting in increased inter-
feron gamma and a Th1 type immune response (85). miR-19a has 
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also been shown to be critical in regulating Th1 type responses 
through the production of interferon gamma following antigen 
stimulation in a mouse model (69). Upregulation of miR-19a also 
caused increased inflammation and promoted a Th2 type response 
(55). miR-19a is a member of the miR-17–92 cluster, which has 
been reported to be upregulated during T-cell activation (69, 86). 
Th17 cell differentiation has also been shown to be regulated by 
the miR-106-363 cluster (87) and in an experimental autoimmune 
encephalomyelitis model, Th17 cell-mediated inflammation was 
shown to be induced by both miR-326 and miR-21 (88, 89).

In summary, multiple studies have characterized the role 
of miRNAs on immune processes in a variety of diverse ani-
mal models of inflammation, but few studies have evaluated 
the miRNA profiles following fungal exposures (Figure  1). 
Investigation of these miRNA profiles could provide insight into 
the immune mechanisms and regulatory pathways involved in 
the host response to fungal exposure.

FUNgAL eXPOSURe: ROLe OF miRNAs

Several research studies have focused on the miRNA profiles 
following acute or chronic fungal exposures (Figure 1). Table 1 
shows 10 studies that have preliminarily characterized differ-
entially expressed miRNAs following exposure to five clinically 
relevant fungal species including A. fumigatus (22, 90, 91),  
C. albicans (22, 92–94), C. neoformans (95), P. brasiliensis (96, 
97), and S. chartarum (98). The paucity of research investigating 
the regulation of miRNAs on pulmonary and systemic responses 
to fungal exposure highlights the need for research examining 
the role miRNAs play in the immunological mechanisms associ-
ated with endemic, opportunistic, and environmental fungal 
exposures.

miRNA Profiles following P. brasiliensis 
infection
Paracoccidioidomycosis, caused by the dimorphic fungus P. 
brasiliensis, is a public health burden in Latin America (117). 
This fungus can be isolated in the form of yeast from infected 
individuals and armadillos, and has also been sporadically iso-
lated from soil, dog food, and bat feces (118, 119). The disease 
begins with the inhalation of spores into the lungs that germinate 
into yeast and cause a primary lung infection or disseminate 
systemically resulting in oral and cutaneous lesions. To date, two 
studies have evaluated differentially expressed miRNAs following 
P. brasiliensis exposure in a murine model and in a human model. 
Turini Gonzales Marioto et al. (97) evaluated the miRNA profiles 
in mice intravenously administered P. brasiliensis and showed 
that the most upregulated miRNAs at 28  days included miR-
126a-5p, miR-340-5p, miR-30b-5p, miR-19b-3p, miR-221-3p, 
miR-20a-5p, miR-130a-3p, and miR-301a-3p, whereas after 
56 days, miRNAs from the let-7 family, as well as miR-26b-5p, 
and miR-369-3p were the greatest upregulated miRNAs (97). 
The only miRNA that was upregulated at both time points was 
miR-466k (Table 1). This study identified differentially expressed 
miRNAs that are known to contribute to the immune response 
through T cell function and proliferation, as well as monocyte 
and erythrocyte differentiation. The contribution of miR-466k 
on the immune response is unknown; however, this miRNA 
has been identified in prostate cancer and graft rejection studies 
(120, 121). Another study examined the miRNA profile in the 
serum of human patients infected with P. brasiliensis and found 
that of the 752 miRNAs analyzed, 8 were differentially expressed 
(96). The upregulated miRNAs included miR-132-3p, miR-604, 
miR-186-5p, miR-29b-3p, miR-125b-5p, miR-376c-3p, and miR-
30b-5p, where the only downregulated miRNA was miR-423-3p 
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miRNA Regulation Fungal species exposure 
model

Function in immune responsea Reference

let-7 family ↑ Paracoccidioides brasiliensis Inv Regulator of TLR mediated signaling; Involved in IL-13 production (97, 99)
miR-125a ↑ Candida albicans Cc Regulator of macrophage polarization; Enhances classical activation of 

macrophages
(92, 100)

miR-125b ↑ P. brasiliensis Hu (96, 101)
miR-126a ↑ P. brasiliensis Inv Promoter of Th2 immune response (49, 97)
miR-129 ↑ C. albicans with Aspergillus 

fumigatus
Cc Regulation of cell cycle (22, 102)

miR-130a ↑ P. brasiliensis Inv Involved in CD8+T cell activation (97, 103)
miR-132 ↑ P. brasiliensis Hu Regulator of TLR2 mediated signaling; induces alternative activation of 

macrophages
(96, 104)

↑ A. fumigatus Cc (90, 101)
↑ C. albicans with A. fumigatus Cc (22)

miR-146a ↑ C. albicans Cc Negative regulator of TLR mediated signaling; Induces alternative activation 
of macrophages

(92, 94)

↑ Cryptococcus neoformans Cc (95, 101, 105)
miR-155 ↑ C. albicans Cc Regulator of TLR mediated signaling; Enhances classical activation of 

macrophages; Promoter of Th2 immune response
(92, 93, 100, 

101, 105)
miR-186 ↑ P. brasiliensis Hu Involved in TLR2 mediated signaling (96, 106)
miR-19b ↑ P. brasiliensis Inv Promoter of Th17 immune response; T cell proliferation (97, 107)
miR-20a ↑ P. brasiliensis Inv Negatively regulates monocyte differentiation (97, 108)
miR-210 ↑ C. albicans Cc Involved in Th1 and Th17 cell differentiation (94, 109)
miR-21a ↑ Stachybotrys chartarum Inh Regulator of TLR mediated signaling; Involved in monocyte, dendritic, 

macrophage, and Th2 cell differentiation; Involved in macrophage activation
(98, 109, 110)

miR-212 ↑ C. albicans with A. fumigatus Cc Involved in B-cell development and Th17 cell differentiation (22, 111)
miR-23 ↓ A. fumigatus Inh Involved in cell differentiation of B cells; Mediate macrophage polarization (91, 109)
miR-26b ↑ P. brasiliensis Inv Increases regulatory T cells (97, 107)
miR-29a ↓ A. fumigatus Inh Regulator of natural killer cell function; Involved in C-leptin signaling; 

Inhibition of Th1 immune response
(91, 112)

miR-29b ↑ P. brasiliensis Hu (96, 100)
miR-30 ↑ C. albicans Cc Involved in natural killer cell function and B cell activation; Involved in cell 

function of cytotoxic T cells
(94, 109)

miR-30b ↑ P. brasiliensis Inv, Hu (96, 97)
miR-301a ↑ P. brasiliensis Inv Promoter of Th17 immune response; Regulator of TLR mediated signaling (97, 100, 113)
miR-340 ↑ P. brasiliensis Inv Unknown (97)
miR-369 ↑ P. brasiliensis Inv Activation of protein translation (26, 97)
miR-376c ↑ P. brasiliensis Hu Unknown (96)
miR-423 ↓ P. brasiliensis Hu Regulator of chemokine expression (96, 114)
miR-455 ↑ C. albicans Cc Involved in nuclear factor-kappaB signaling (92, 115)
miR-466k ↑ P. brasiliensis Inv Unknown (97)
miR-604 ↑ P. brasiliensis Hu Unknown (96)
miR-706 ↑ S. chartarum Inh Promotes granulocyte production (98, 116)

aImmune responses are compiled from different studies utilizing a variety of diseased models and not necessarily from fungal exposure studies. Exposure model abbreviations are 
Inv, Intravenous administration or through; Inh, Inhalation using a mouse model; Cc, cell culture; Hu, Human patients.
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(Table  1). These miRNAs are known to mediate macrophage 
polarization or are involved in TLR2 signaling, indicative of a 
Th1 immune response. Interestingly, both studies reported an 
upregulation in miR-30b-5p, suggesting a possible biomarker for 
P. brasiliensis infection.

miR-132 is induced by A. fumigatus 
exposure
Aspergillus fumigatus is a commonly encountered pathogenic 
fungal species and is often found in the soil, occupational 
environments [i.e., biowaste containment facilities (122, 123)] 
or indoor environments [i.e., hospitals (124, 125)]. Inhalation of 
A. fumigatus unicellular spores can result in varying degrees of 
infection, known as aspergillosis, depending on the preexisting 
conditions of the host. miR-132 has been shown to be induced in 
human monocytes and dendritic cells following stimulation with 

A. fumigatus compared with control, LPS (90). These datasets sug-
gest a Th2-mediated response, which is further supported by other 
recent animal models of inhalation exposure to A. fumigatus (91).

Upregulation of miR-146 in Candida  
and C. neoformans
Candidiasis, an infection caused by several endogenous Candida 
species, results in varying symptoms depending on the site of 
infection (126, 127). Candidiasis is among the most common 
opportunistic fungal infections localized in the gastrointestinal 
tract (thrush), occluded regions of the hands, feet, and groin, 
or can develop into invasive candidiasis and disseminate 
systemically in the blood (candidemia), heart, brain, eyes, and 
bones. Invasive candidiasis is the most common type of fungal 
infection in critically ill patients, with approximately 46,000 
healthcare-associated cases occurring each year in the United 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


6

Croston et al. miRNAs and Fungal Exposure

Frontiers in Immunology | www.frontiersin.org February 2018 | Volume 9 | Article 170

States (126–128). Although Candida infections are typically 
resolved by antifungal therapy, some Candida species are resist-
ant or are becoming resistant, such as C. auris (129). In murine 
macrophages stimulated by 106 cells/mL heat killed C. albicans, 
miR-146a and miR-155, as well as miR-455 and miR-125a were 
upregulated (92), indicative of the involvement of these miRNAs 
in macrophage polarization.

Similar to the findings of Monk et  al. (92), miR-146a was 
also shown to be upregulated in human monocytic THP-1 cells 
exposed to C. neoformans, inhibiting nuclear factor-κB activation 
and the release of inflammatory cytokines (95). C. neoformans 
is one of two pathogenic Cryptococcus species, and along with  
C. gatti, typically live in the soil surrounding trees and are 
capable of causing infection following inhalation. Exposure to 
Cryptococcus species usually causes adverse respiratory health 
effects; however, it can affect other parts of the body such as the 
brain, known as cryptococcal meningitis (130, 131).

miRNA Profiles following a Mixed Fungal 
exposure
In a model of mixed fungal exposure, Dix et  al. co-cultured 
human monocyte-derived dendritic cells with A. fumigatus, C. 
albicans, and LPS and showed that differentially expressed miR-
NAs were increased after 6 and 12 h, with a stronger regulation 
observed after 12 h (22). Twenty six miRNAs were identified to 
be differently expressed in response to the exposure. The authors 
also showed that strongly modified miRNAs after exposure to 
fungi clustered separately from the strongly modified miRNAs 
exposed to LPS. This clustering pattern suggests that examination 
of miRNA profiles could distinguish between fungal and bacterial 
exposure. For example, miR-132 and miR-212-5p were specific 
to fungal exposure at 6 h time point, whereas miR-132, miR-212, 
and miR-129-5p were specific to fungal exposure at 12  h time 
point.

C-Leptin Receptors and  
Associated miRNAs
Critical to antifungal innate immunity, Dectin-1 is a surface 
receptor that recognizes (1,3)-β-D-glucan found on the cell wall 
of germinating conidia (91, 132). To date, several studies have 
attempted to explore the regulatory mechanisms involving miR-
NAs that underlie Dectin-1 associated immune responses. In a 
murine model of subchronic A. fumigatus inhalation exposure, 
Croston et  al. showed that significantly downregulated miR-
29a-3p was predicted to regulate C-type lectin domain family 7 
member A, the gene that codes for Dectin-1 (91). A recent study 
found that following exposure to C. albicans, Dectin-1 is required 
for the upregulation of miR-155 in murine macrophages (93). 
Along with an increase in miR-30-5p and miR-210-3p in THP-1 
cells treated with β-glucan isolated from C. albicans, Du et  al. 
found that miR-146a was increased upon Dectin-1 stimulation 
and negatively regulated the resultant inflammatory response 
(94). Results from the Croston et al. study using a murine model 
of subchronic A. fumigatus inhalation exposure also determined 
that significantly downregulated miR-23b-3p and miR-145a-5p 
was predicted to regulate the mannose receptor gene, Mrc1 (data 
not reported).

miRNA Profiles following exposure to 
Occupationally Relevant Fungal Species
In order to elucidate the influence of germination on the ensu-
ing immune response, Croston et  al. utilized an acoustical 
generator system to deliver dry fungal spores to mice housed 
in a multi-animal nose-only inhalation chamber (91). This 
murine inhalation model reproduces exposures that could be 
encountered in contaminated indoor or occupational environ-
ments (133). Furthermore, this study included a heat inactivated 
conidia group that was used as a biological control to examine 
the influence of germination on the miRNA profiles. Along with 
a downregulation of miR-29a-3p, miR-23b-3p, a miRNA pre-
dicted to target SMAD2, as well as genes involved in IL-13 and 
IL-33 responses, was also downregulated following subchronic 
exposure to a dry aerosol containing viable A. fumigatus conidia 
(91). Furthermore, out of 415 miRNAs detected, approximately 
50% were altered in mice exposed to viable versus heat inac-
tivated conidia 48  h post fungal exposure. Taken together, 
these results demonstrate that A. fumigatus germination is an 
important variable that can lead to the induction of allergic 
inflammation in the lungs, potentially through an IL-13/IL-33-
driven mechanism.

Stachybotrys chartarum is a hydrophilic fungal species preva-
lent in water infiltrated occupational and residential environ-
ments. Exposure to S. chartarum is currently of heightened public 
health interest following recent natural disasters, such as floods 
and hurricanes, that can lead to the contamination of indoor 
building materials. Following the consensus reports published 
by the IOM and WHO, the immunological mechanisms that 
contribute to the host response to fungal contaminant exposure 
require further elucidation. Recent studies have attempted to 
characterize critical interactions that influence these pulmonary 
immunological responses. Croston et al. found that miR-21a was 
the only miRNA upregulated in murine whole lung homogen-
ate 48  h following subchronic exposure to S. chartarum (98) 
(Figure 2). Although miR-21a is known to promote a Th2 phe-
notype, a more dominant Th1 phenotype was evident. Since then, 
miR-706 was also discovered to be upregulated at the same time 
point. Interestingly, out of 468 miRNA evaluated, only 2 were 
upregulated with no downregulated miRNAs. These preliminary 
results suggest that miRNA regulation mechanisms induced by  
S. chartarum vary from A. fumigatus in these studies using 
the same exposure system and the pulmonary immunological 
responses to this species require further evaluation.

Figure  2 depicts a disease pathway generated by Ingenuity 
Pathway Analysis (IPA) that includes predicted miRNAs involved 
in the inflammation of organs. Once miRNA data are uploaded 
into IPA, the integrated knowledge base predicts associations 
between miRNAs from the dataset and different disease pathways 
or biological functions. These predictions are primarily based on 
previously publish datasets derived from a broad diversity of 
animal models. The miRNA dataset included in Figure  2 was 
obtained from murine whole lung homogenate 48  h following 
subchronic exposure to S. chartarum (98). When analyzing the 
top diseases and biological functions of the miRNAs included 
in the dataset, a handful were predicted to be involved in an 
inflammatory response, specifically in organ inflammation, 
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FigURe 2 | Disease network map generated by Ingenuity Pathway Analysis depicting miRNAs involved in the inflammation of organs. miRNAs are color-coded (red 
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exposure. Gray dotted lines represent predicted regulated relationship.
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illustrated in Figure 2. The miRNAs are color-coded depending 
on the respective expression level (red or green for up- and down-
regulation, respectively). The absence of confirmed associations 
between miRNAs, evidenced by gray dotted lines, supports the 
lack of miRNA profile studies following fungal exposure.

To date, only a handful of studies have examined the altered 
miRNA profiles following fungal exposure; therefore, more 
researches are required to fully understand the mechanistic influ-
ence miRNAs have on the immune response. With the increased 
interest in studying miRNAs, methodological approaches are 
becoming more advanced by using next-generation sequencing 
methods that examine miRNA profiles in more depth and at a 
higher precision compared with miRNA arrays. Once the more 
influential miRNAs are identified, strategies can be developed in 
order to manipulate the host response. With the use of transgenic 
or knockout animal models, the functionality of miRNAs or genes 
can be elucidated; however, the manipulation of the genome may 
in fact alter normal miRNA production or function, contribut-
ing to the phenotype of the disease (134). Targeting miRNAs 
that are upregulated or replacing the expression of miRNAs 
that are downregulated are potential strategies that could be 
tested in animal models as a new therapeutic strategy to treat 

fungal infections and diseases. This targeting strategy could be 
completed through the use of an anti-miR or a miRNA mimic 
(135), and may allow for the manipulation of a group of genes 
or proteins that participate in the progression of the infection 
or disease. Ultimately, these targeting strategies will help bridge 
the knowledge gap between the identification of miRNAs and 
the host responses to fungal exposure, potentially leading to 
advanced therapeutics to combat adverse effects resulting from 
exposure to pathogenic fungi.

CONCLUSiON

In this review, the identification and influence of miRNAs on 
the host immune responses following fungal exposure were 
examined. Compared with existing datasets examining miRNA 
profiles in allergic and inflammatory models, some common dif-
ferentially expressed miRNAs were identified in fungal exposed 
models. Influential miRNAs altered in different disease models, 
such as miR-132, functions to maintain a normal hematopoietic 
output during an immune response and regulates genes at the 
beginning of an immune response to regain homeostasis of 
the immune system. Other common miRNAs identified in 
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multiple inflammatory disease models, including miR-155 and 
miR-146a, regulates critical genes involved in the host defense 
system through opposing mechanisms. For example, miR-146a 
is known to decrease cytokine production and inhibits Th1 cells 
following an inflammatory stimulus, as well as induces alternative 
activation of macrophages, whereas miR-155 stimulates both Th1 
and Th17 immune responses and induces classical activation of 
macrophages. Taken together, these miRNAs act in concert to 
defend the host from infection. In addition to common miRNAs 
identified in multiple diseased models, the miRNAs that were 
observed to be differentially expressed specifically in fungal 
exposed models could potentially serve as biomarkers for fungal 
exposures.

Recent discoveries in miRNA biology have heightened the 
research community’s interest in examining the altered genetic 
profiles in different disease models; however, only a few studies 
have examined miRNA profiles following fungal exposure. As 
such, the description of the immune responses to the corre-
sponding miRNAs listed in Table 1 was not all compiled from 
fungal exposure studies due to the lack of research examining 
the influence of miRNAs on the immune responses following 
fungal exposure. Although advancements made in this field 

have helped elucidate mechanisms underlying host responses 
to a variety of infections and diseases, further examination 
of miRNA profiles, specifically in fungal exposed models, is 
required in order to provide greater mechanistic insight into 
the immunological response to clinically and environmentally 
relevant fungal species.
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