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The spirochete Borrelia burgdorferi is the causative agent of Lyme disease, the most 
common tick-borne disease in the US and Europe. No potent human vaccine is cur-
rently available. The innate immune complement system is vital to host defense against 
pathogens, as complement activation on the surface of spirochetes results in bacterial 
killing. Complement system is inhibited by the complement regulator factor H (FH). To 
escape killing, B. burgdorferi produces an outer surface protein CspZ that binds FH to 
inhibit complement activation on the cell surface. Immunization with CspZ alone does 
not protect mice from infection, which we speculate is because FH-binding cloaks 
potentially protective epitopes. We modified CspZ by conjugating to virus-like particles 
(VLP-CspZ) and eliminating FH binding (modified VLP-CspZ) to increase immunogenic-
ity. We observed greater bactericidal antibody titers in mice vaccinated with modified 
VLP-CspZ: A serum dilution of 1:395 (modified VLP-CspZ) vs 1:143 (VLP-CspZ) yielded 
50% borreliacidal activity. Immunizing mice with modified VLP-CspZ cleared spirochete 
infection, as did passive transfer of elicited antibodies. This work developed a novel 
Lyme disease vaccine candidate by conjugating CspZ to VLP and eliminating FH-binding 
ability. Such a strategy of conjugating an antigen to a VLP and eliminating binding to 
the target ligand can serve as a general model for developing vaccines against other 
bacterial infectious agents.

Keywords: lyme disease, cspZ, Borrelia, vaccine, virus-like particles, factor h

Abbreviations: VLP, virus-like particle; VLP-CspZ, VLP-conjugated CspZ; VLP-CspZ-Y207A/Y211A, VLP-conjugated CspZ-
Y207A/Y211A; B. burgdorferi, Borrelia burgdorferi sensu stricto; FH, Factor H; FHL-1, Factor H-like protein 1; CRASP-2, 
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inTrODUcTiOn

Lyme disease is the most common vector-borne illness in North 
America and Europe (1). However, no vaccine is currently avail-
able for humans. In North America, Lyme disease is caused by the 
spirochete Borrelia burgdorferi sensu stricto, which is transmit-
ted via Ixodes ticks (1). Upon tick feeding, spirochetes migrate 
from the ticks to the vertebrate hosts and infect the skin at the 
biting site, often resulting in an inflammatory skin lesion, called 
erythema migrans (2). If untreated, spirochetes disseminate via 
bloodstream to organs, causing disease manifestations includ-
ing arthritis, carditis, and neuroborreliosis (1). To disseminate 
to distal tissues, B. burgdorferi needs to evade the complement 
system, an important host innate immune defense mechanism in 
the blood of vertebrate animals (3). Activation of the complement 
system results in the formation of C3 convertases, leading to the 
release of pro-inflammatory peptides, and pathogen opsonization 
and lysis (3). To avoid self-damage in the absence of pathogens, 
vertebrate animals produce complement inhibitors, such as 
Factor H (FH) and FH-like protein 1 (FHL-1, the spliced form of 
FH). FH and FHL-1 bind to C3b, a component of C3 convertases, 
which recruits complement protein factor I to degrade C3b and 
inhibit the formation of these convertases and inactivates the 
complement system (3).

Borrelia burgdorferi produces at least five distinct Complement 
Regulator Acquiring Surface Proteins including CspZ (CRASP-
2). CspZ binds to human and mouse FH/FHL-1 to confer serum 
resistance in a gain-of-function B. burgdorferi by inhibiting 
complement activation on the spirochete surface (4–6). Whereas 
a cspZ deletion mutant of B. burgdorferi colonizes tissues at similar 
levels as its parental wild-type strain (7), mutant strains with 
transposon insertions in cspZ, when co-infected with a library of 
other transposon-inserted mutants, display reduced colonization 
of mouse tissues (8). These findings suggest that CspZ contributes 
a fitness advantage for spirochetes during infection. cspZ expres-
sion is detectable when spirochetes are in mammalian hosts and 
in vitro cultivation (7, 9), and inoculating mice with CspZ triggers 
antibody response against this protein (7, 10, 11). Although not all 
isolates from Lyme disease Borrelia species encode cspZ, the iso-
lates from B. burgdorferi (North American species of Lyme disease 
spirochetes) all carry this gene (11). The cspZ alleles among these 
B. burgdorferi isolates were grouped into three types and share 
more than 90% of sequence identity (11). These observations 
suggest that CspZ may have vaccinogenic potential by inducing 
antibody-mediated bactericidal activity against B. burgdorferi. 
However, immunization with CspZ does not protect mice from 
infection (7, 11), raising a possibility that CspZ as a vaccine does 
not induce antibody titers robust enough to kill B. burgdorferi.

One strategy to enhance antibody titers and the ability of 
antibodies in eliminating pathogens is conjugating antigens to 
virus-like particles (VLPs) (12–14). Though no commercially 
available vaccines have yet been generated by VLP conjugation, 
this strategy has been tested in different animal models and shown 
to trigger greater levels of immune responses [e.g., Ref. (15–18)]. 
Another strategy is to mutate the immunogens to make them 
incapable of binding to their binding partners so the epitopes on 
the binding sites can be exposed (19). We thus modified CspZ 

by conjugating it to bacteriophage Qβ-derived VLP, combined 
with eliminating its FH-binding activity to test whether this 
modified CspZ could be an effective vaccine of Lyme disease. In 
this study, we demonstrated that vaccination with this modified 
CspZ induces antibodies that more efficiently eradicate spiro-
chetes in vitro and prevents Lyme-associated arthritis and tissue 
colonization in vivo. This proof-of-concept study illustrates novel 
strategies to generate a potent CspZ-based Lyme disease vaccine. 
This technique of combining VLP conjugation and eliminating 
binding to the target ligand can be applied to generate effective 
vaccines against other infectious agents.

MaTerials anD MeThODs

ethics statement
All mouse experiments were performed in strict accordance 
with all provisions of the Animal Welfare Act, the Guide for 
the Care and Use of Laboratory Animals, and the PHS Policy 
on Humane Care and Use of Laboratory Animals. The protocol 
(Docket Number 16-451) was approved by the Institutional 
Animal Care and Use Agency of Wadsworth Center, New York 
State Department of Health. All efforts were made to minimize 
animal suffering.

Mouse and Bacterial strains
Three-week-old male C3H/HeN and Swiss Webster mice were 
purchased from Charles River (Wilmington, MA, USA) and 
Taconic (Hudson, NY, USA), respectively. The C3H/HeN 
mouse strain was utilized as this strain develops manifestations  
(e.g., arthritis) during B. burgdorferi infection and are thus com-
monly used to test the efficacy of Lyme disease vaccines (20, 21). The  
B. burgdorferi strain B31-A3 used in this study is a clonal isolate 
of B31 (22) and was grown at 33°C in BSK II complete medium 
(23). Cultures were tested with PCR to ensure a full plasmid 
profile prior to use, as previously described (24). Escherichia coli 
strains DH5α, BL21(DE3), and derivatives were grown at 37°C 
in Luria-Bertani (BD Bioscience, Franklin Lakes, NJ, USA) broth 
or agar, supplemented with kanamycin (25  µg/mL), ampicillin  
(100 µg/mL), or no antibiotics when appropriate.

generation of VlP-cspZ Proteins
To produce recombinant glutathione-S-transferase (GST)-tagged 
CspZ proteins, the plasmid pGEX-6P1 encoding the open read-
ing frames lacking the putative signal sequences of bbh06 (cspZ) 
from B. burgdorferi strains B31 (residue 21–236 of CspZ) or 
an altered open reading frame encoding CspZ-Y207A/Y211A 
(residue 21–236 of CspZ with tyrosine-207 and -211 replaced by 
alanine) generated previously (4, 6) was transformed into E. coli 
strain BL21(DE3). The GST-tagged CspZ or CspZ-Y207A/Y211A 
were produced and purified by GST affinity chromatography 
as described previously (4, 6) according to the manufacturer’s 
instructions (GE Healthcare, Pittsburgh, PA, USA). To produce 
recombinant CspZ proteins without affinity tags for VLP conjuga-
tion and vaccination, an cystein has been added to C-termini of 
both CspZ and CspZ-Y207A/Y211A for coupling these proteins to 
VLPs as described (25, 26). The genes encoding these proteins were 
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cloned into the pETm_11 expression vector (EMBL) encoding an 
N-terminal 6xHis-tag followed by a TEV protease cleavage site, 
resulting in an amino acid sequence of MHHHHHHENLYFQS-
CspZ-GSGC. E. coli XL1-Blue cells were transformed with the 
plasmids encoding cspZ or cspZ-Y207A/Y211A. The transforma-
tions were verified by sequencing the plasmid DNA extracted 
from isolated colonies. E. coli BL21(DE3) cells were transformed 
with these plasmids and grown in modified 2×TY medium at 
37°C until mid-log phase. The cultures were then induced to 
produce CspZ with 0.2 mM isopropyl thio-β-d-galactoside, and 
grown overnight at 20°C. The cells were lysed by sonication. After 
removing the debris, the supernatant was loaded onto a HisTrap 
FF column (GE Healthcare, Chicago, IL, USA) and eluted with 
300  mm imidazole at pH 7.5. The 6×His tag was removed by 
incubation with TEV protease at 4°C overnight. Imidazole was 
removed by dialyzing the proteins in PBS buffer. The protease, 
the digested 6×His tag, and un-cleaved proteins were removed 
using an additional round of HisTrap FF column purification. The 
purified protein fraction was concentrated using an Amicon cen-
trifugal filter unit (Millipore, Billerica, MA, USA). The purity of 
the recombinant proteins was evaluated by SDS-PAGE. The bacte-
riophage Qβ-derived VLPs were generated as previously described 
(27). Purified CspZ proteins were chemically conjugated to VLPs 
with SMPH (Succinimidyl-6-[(β-maleimidopropionamido) hex-
anoate]) following the manufacturer’s protocol (ThermoFisher, 
Waltham, MA, USA). The unbounded protein was removed using 
a Superdex200 size exclusion column (GE Healthcare).

Fh Binding assays by elisa
Quantitative ELISA for mouse FH binding by CspZ proteins was 
performed similarly to that previously described (28). Basically, 
1 µg of BSA (negative control) or mouse FH (MyBiosource, San 
Diego, CA, USA) was coated onto microtiter plate wells. One 
hundred microliters of increasing concentrations (0.03125, 
0.0625, 0.125, 0.25, 0.5, 1, 2  µM) of GST (negative control) or 
a GST tagged wild-type or mutant CspZ protein, including 
CspZ or CspZ-Y207A/Y211A were then added to the wells. To 
detect the binding of GST-tagged proteins, mouse anti-GST tag 
(Sigma-Aldrich, St. Louis, MO, USA; 1:200) and HRP-conjugated 
goat anti-mouse IgG (Promega, Madison, WI, USA; 1:1,000×) 
were used as primary and secondary antibodies. The plates were 
washed three times with PBST (0.05% Tween 20 in PBS), and 
100 µL of tetramethyl benzidine (TMB) solution (ThermoFisher, 
Waltham, MA, USA) were added to each well and incubated for 
5 min. The reaction was stopped by adding 100 µL of 0.5% hydro 
sulfuric acid to each well. Plates were read at 405  nm using a 
Tecan Sunrise Microplate reader (Tecan, Morrisville, NC, USA).

Mouse immunization
Twenty-five micrograms of VLP, CspZ, VLP-CspZ, or VLP-CspZ-
Y207A/Y211A were thoroughly mixed with 50  µL TiterMax 
Gold adjuvant (Norcross, GA, USA), which was utilized because 
it has been reported to induce higher and longer lasting titers 
with fewer injections than the other adjuvants (29). This vaccina-
tion was then inoculated into C3H/HeN mice intraperitoneally. 
Mice inoculated with 100  µL PBS were included as a negative 
control. Mice received boosters of the same composition at 14 

and 28 days post immunization, for a total of three immuniza-
tions over 6 weeks (Figure S1A in Supplementary Material).

Quantification of anti-cspZ Titers  
with elisa
Forty-two days post immunization, 100 µL blood was collected 
from 10 mice via submandibular bleeding to isolate serum. The 
sera were used to determine the titers of immunoglobulin M or G 
against CspZ using kinetic ELISA as previously described (30). In 
brief, microtiter plate wells were coated with 1 µg of recombinant 
CspZ. After blocking with 5% BSA (Sigma-Aldrich) in phosphate-
buffered saline, 50 µL of mouse serum diluted 1:100, 1:300, 1:900, 
1:1,800, 1:3,600, 1:7,200, 1:144,000, or 1: 288,000 was added to 
each well. HRP-conjugated goat anti-mouse IgM or IgG (1:20,000; 
Bethyl, Montgomery, TX, USA) and 50 µL of tetramethyl benzi-
dine (TMB) solution (ThermoFisher, Waltham, MA, USA) were 
subsequently added into the wells, and the binding was detected 
at 620 nm for 10 cycles of 60 s kinetic intervals with 10 s shak-
ing duration in a Sunrise absorbance ELISA plate reader (Tecan, 
Männedorf, Switzerland). The greatest maximum slope of optical 
density/minute per sample was multiplied by the respective serum 
dilution factor to indicate the antibody titers (arbitrary Unit).

B. burgdorferi Bactericidal activity  
of serum from immunized Mice
Forty-two days post immunization, 100 µL blood was collected 
from five mice via submandibular bleeding to isolate serum. 
The mouse sera were used to determine the bactericidal activity 
against B. burgdorferi with serum bactericidal assays modified 
from previous studies (31, 32). Prior to determining the bacte-
ricidal activity, these mouse sera were heat treated at 56°C for 
30 min to inactivate the complement system in these sera. Then, 
50  µL of diluted mouse serum (1:20, 1:40, 1:80, 1:160, 1:320, 
1:640, 1:1,280, and 1:2,560) was mixed with 10 µL of complement 
preserved guinea pig serum (guinea pig complement, Sigma-
Aldrich, # S1639) or heat-inactivated guinea pig serum (negative 
control) as well as B. burgdorferi strain B31-A3 (5  ×  105 cells/
mL) in 40 µL of BSK II complete medium and then incubated at 
33°C for 24 h. Surviving spirochetes were quantified by directly 
counting only motile spirochetes using dark-field microscopy. 
The survival percentage was the proportion of serum-treated to 
untreated B. burgdorferi. The 50% borreliacidal titer representing 
the serum dilution rate that effectively killed 50% of spirochetes 
was calculated using dose–response stimulation fitting in 
GraphPad Prism 5.04 (GraphPad Software, La Jolla, CA, USA).

Passive immunization of Mice
Six naive Swiss Webster mice were intraperitoneally inoculated 
with 100  µL of pooled serum from VLP-, CspZ-, VLP-CspZ-, 
or VLP-CspZ-Y207A/Y211A-immunized mice (Figure S1B in 
Supplementary Material). Six mice inoculated with pre-immune 
serum were included as negative control. They were then chal-
lenged subcutaneously with 104 infectious B. burgdorferi strain 
B31-A3 the next day. Mice were euthanized at 14 days post infec-
tion, and the inoculation site of skin, heart, tibiotarsus joints, 
bladder, and ears were collected and then placed at 33°C in BSK 
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medium supplemented with antimicrobial agents (rifampin at 
50 mg/mL, phosphomycin at 200 mg/mL, and amphotericin B at 
8 mg/mL). Cultures were checked weekly for 4 weeks using dark-
field microscopy to determine whether the live B. burgdorferi 
was present. A mouse was considered infected when at least one 
culture was positive.

active immunization of Mice and 
Tibiotarsus Joint Measurement
Forty-two days post immunization, the diameter of both tibiotar-
sus joints was measured with Digimax calipers (Bel-Art, Wayne. 
MJ, USA). Mice were then subcutaneously needle-infected with 
104 B. burgdorferi strain B31-A3 suspended in 100  µL BSK II 
incomplete medium (Figure S1C in Supplementary Material). 
Negative control mice were injected with an equal volume of BSK 
II incomplete medium. The diameter of both tibiotarsus joints 
were measured prior to infection and then were re-measured 7 
and 14 days post infection, and the diameters from each mouse 
averaged as Lyme-induced joint swelling is detectable as early as 
these time points (33).

histopathology of B. burgdorferi  
infected Mice
Three infected mice per vaccination type and three uninfected 
mice were sacrificed 14 days post infection to assess arthritis and 
carditis. Thus, tibiotarsus joints were collected for tissue histo-
pathology. Tissues were fixed for 48 h in 10% neutral-buffered 
formalin, and subsequently decalcified for 1 week in 10% formic 
acid. Fixed tissues were prepared as slides stained with hema-
toxylin and eosin (Wadsworth Histopathology Core Facility, NYS 
Department of Health, Albany, NY, USA). Arthritis was evaluated 
in a blind fashion as described previously (30).

Quantification of B. burgdorferi Burden in 
infected Mouse Tissue with Quantitative 
Pcr (qPcr)
To quantify B. burgdorferi bacterial burden, 10 mice per vaccina-
tion type were sacrificed at 28 days post infection, and inoculation 
site of the skin, knees, and hearts were collected. DNA was purified 
from tissues using either DNeasy Blood and Tissue Kit (Qiagen, 
Valencia, CA, USA) or EZ-10 Spin Column Animal Genomic 
DNA Mini-Prep Kit (Bio Basic, Inc., Markham, ON, Canada). The 
quantity and quality of DNA were assessed by measuring the con-
centration of DNA and the ratio of the UV absorption at 280 nm 
to 260  nm using a Nanodrop 1000 UV/Vis spectrophotometer 
(Thermo Fisher Scientific, Waltham, MA, USA). qPCR was then 
performed to quantitate B. burgdorferi burden, as described 
previously (30). In brief, B. burgdorferi genomic equivalents 
were calculated using an Applied Biosystems 7500 Real-Time 
PCR system (Thermo Fisher Scientific, Waltham, MA, USA) in 
conjunction with PowerUp™ SYBR® Green Master Mix (Thermo 
Fisher Scientific, Waltham, MA, USA), based on amplification of 
the B. burgdorferi recA gene using primers BBRecAfp (5′-GTGG 
ATCTATTGTATTAGATGAGGCTCTCG-3′) and BBRecArp 
(5′-GCCAAAGTTCTGCAACATTAACACCTAAAG-3′). Cycling 
parameters were 50°C for 2 min, 95°C for 10 min, and 45 cycles 
of 95°C for 15 s, and 60°C for 1 min. The number of recA copies 

was calculated by establishing a threshold cycle standard curve 
of a known number of recA gene extracted from B31-A3, and 
burdens were normalized to 10 ng of total DNA.

statistical analyses
Significant differences between groups were determined with 
one-tailed Fisher Exact Probability Test or one-way ANOVA 
and post  hoc tests (GraphPad Software, La Jolla, CA, USA). A 
p-value < 0.05 was used to determine significance.

resUlTs

The generation and Verification of  
VlP-conjugated cspZ Proteins
We re-evaluated the potential of CspZ as a vaccine by utilizing two 
different strategies: conjugating CspZ with VLP (“VLP-CspZ”) 
and further modifying CspZ to eliminate its FH-binding activity 
(“VLP-CspZ-Y207A/Y211A”). The point mutant CspZ-Y207A/
Y211A has been shown with no human FH-binding activity (6). 
Because murine model of Lyme disease infection was used in this 
study to test the vaccine efficacy of these CspZ-derived proteins, we 
measured the mouse FH-binding activity of CspZ-Y207A/Y211A 
by quantitative ELISA. As shown in Figure S2 in Supplementary 
Material, CspZ binds to mouse FH in a dose dependent manner 
consistent with a previous finding (5) whereas CspZ-Y207A/
Y211A does not bind to mouse FH. In addition, the VLP utilized 
in this study was derived from the RNA bacteriophage Qβ, which 
has been used for vaccine development studies in different animal 
models (15–18). We attached recombinant CspZ proteins to VLPs 
by adding an engineered C-terminal cysteine to CspZ and linking 
it to surface-exposed lysine amino groups of VLPs using SMPH 
(Succinimidyl 6-((beta-maleimidopropionamido)hexanoate)) 
cross-linker (Figure 1A). The efficiency of coupling was verified 
by SDS-PAGE. Similar to other VLP-conjugated proteins (25), 
oligomerized coat protein of VLP was observed on SDS-PAGE 
(Figure  1B). VLP integrity was maintained as observed under 
electro-microscopy (Figure 1C).

Vaccinating mice with CspZ, VLP-CspZ, or VLP-CspZ-
Y207A/Y211A induced similar levels of anti-CspZ antibodies. 
To examine whether the conjugation of CspZ with VLP and/
or the elimination the ability of CspZ to bind FH enhances its 
immunogenicity, we immunized C3H/HeN mice with PBS, VLP, 
CspZ, VLP-CspZ, or VLP-CspZ-Y207A/Y211A (Figure S1 in 
Supplementary Material). This mouse strain, though deficient 
of TLR signaling (34), has been included in this study as C3H/
HeN mice develop apparent manifestations (e.g., arthritis) during 
B. burgdorferi infection (35). Therefore, this mouse model has 
been commonly utilized for the Lyme disease vaccine study to 
recapitulate associated manifestations in humans (20, 21). We 
quantitatively measured the levels of antibodies against CspZ in 
the sera from these mice using ELISA. As expected, the titers of 
anti-CspZ IgG and IgM in VLP-treated mice were not different 
from PBS-treated mice (Figure  2). Consistent with previous 
findings (7, 11), vaccination with CspZ elicited antibody response 
against CspZ, which was 5- (for IgM) to 10-fold (for IgG) higher 
than PBS- or VLP-inoculated mice (Figure  2). VLP-CspZ and 
VLP-CspZ-Y207A/Y211A vaccinations also induced anti-CspZ 
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molecular marker (kD) is in lane 1, followed by preparations of VLP (lane 2, “VLP”), CspZ (lane 3, “CspZ”), VLP-CspZ (lane 4, “VLP-CspZ-WT”), and VLP-CspZ-
Y207A/Y211A (lane 5, “VLP-CspZ-Y207/Y211A”). The arrows identify known protein products as indicated. (c) Representative images of VLPs generated in this 
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antibodies [5- (for IgM) to 10-fold (for IgG) greater than PBS- and 
VLP-treated mice; Figure 2]. However, the anti-CspZ antibody 
responses induced by CspZ, VLP-CspZ, and VLP-CspZ-Y207A/
Y211A vaccination were not different, suggesting that conjugating 
CspZ to VLP or eliminating FH-binding activity of this protein 
does not increase the total antibody response against CspZ.

Sera from mice immunized with VLP-CspZ-Y207A/Y211A 
eradicated spirochetes more effectively than that from CspZ- or 
VLP-CspZ-inoculated mice. Although antibody titers obtained 
with unmodified and modified CspZ were similar, the ability 
of these antibodies in killing spirochetes may be different. We 
thus examined if eliminating FH binding or VLP conjuga-
tion to CspZ would elicit more robust borreliacidal antibody 
responses. Stepwise dilutions of serum from PBS-, VLP-, CspZ-, 
VLP-CspZ-, or VLP-CspZ-Y207A/Y211A-inoculated mice 
were mixed with guinea pig complement and B. burgdorferi, 
and the levels of spirochete survival were quantified after 24-h 
incubation. The 50% borreliacidal activity (the dilution rate 
in which 50% of spirochetes are eliminated) was calculated to 
quantitatively compare the borreliacidal differences of these sera. 
Whereas the serum from the PBS- or VLP-inoculated mice was 
incapable of eradicating spirochetes, the serum from CspZ-, 
VLP-CspZ-, or VLP-CspZ-Y207A/Y211A-immunized mice killed  
B. burgdorferi in a dose-dependent manner (Figure  3A). The 
serum from CspZ-vaccinated mice killed 50% of spirochetes at 
an average dilution rate of 1:43, whereas diluting the serum from 
VLP-CspZ-immunized mice at an average of 1:143 eliminated 50% 

of B. burgdorferi (threefold more effective than that from CspZ-
vaccinated mice; Figure 3A; Table S1 in Supplementary Material). 
Interestingly, the serum from the VLP-CspZ-Y207A/Y211A-
immunized mice eradicated 50% of spirochetes at the average 
dilution rate of 1:395, which was ninefold or threefold more effec-
tive than that from the mice immunized with CspZ or VLP-CspZ, 
respectively (Figure 3; Table S1 in Supplementary Material). Our 
findings suggest that vaccination of VLP-CspZ-Y207A/Y211A 
induces antibodies with the greatest borreliacidal activity.

Passive immunization of naïve Mice with 
serum from VlP-cspZ-Y207a/Y211a-
Vaccinated Mice Prevented lyme Disease
We next determined if passively immunizing mice with serum 
containing anti-CspZ antibodies with greater borreliacidal activ-
ity provides more effective protection against Lyme infection. 
Naïve mice were passively immunized with serum collected 
from VLP, CspZ, VLP-CspZ, or VLP-CspZ-Y207A/Y211A 
actively immunized mice or the pre-immune mouse serum, and 
then infected with B. burgdorferi (Figure S1B in Supplementary 
Material). As expected, the pre-immune mouse serum did not 
protect mice against B. burgdorferi infection (0/6; Table 1). The 
serum from VLP-immunized mice was unable to protect any 
passively immunized mice from being infected by spirochetes 
(0/6; Table  1). Similarly, no protection was observed in any 
mice passively immunized with serum from CspZ-vaccinated 
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FigUre 2 | Immunization of CspZ, VLP-CspZ, and VLP-CspZ-Y207A/Y211A 
triggered undistinguishable antibody response against CspZ. Ten C3H/HeN 
mice were inoculated with PBS (“PBS”), virus-like particle (“VLP”), CspZ 
(“CspZ”), VLP-CspZ (“VLP-CspZ-WT”), or VLP-CspZ-Y207A/Y211A 
(“VLP-CspZ-Y207A/Y211A”), and the serum was obtained at 42 days post 
inoculation. The serum collected from three C3H/HeN mice at 42 days post 
inoculation of PBS was also included as negative control. The levels of IgG 
(top panel) and IgM (bottom panel) against CspZ were determined using 
quantitative ELISA as described in Section “Materials and Methods.” Data 
shown are the mean ± SD of three (PBS) or ten (all others) mice per group. 
Statistical significances (p < 0.05) of differences in antibody titers relative to 
PBS-inoculated mice were determined using a one-way ANOVA test and are 
indicated (“*”).
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mice (0/6; Table  1). Passive immunization with serum from 
VLP-CspZ-vaccinated mice prevented Lyme infections in 33% of 
mice (2/6), but this protection efficiency is not statistically differ-
ent from that in pre-immune serum inoculated mice (p = 0.22; 
Table  1). Interestingly, passively immunizing with the serum 
obtained from VLP-CspZ-Y207A/Y211A-vaccinated mice pro-
tected 100% of mice from Lyme infection (6/6; Table 1), and such 
efficiency is significantly greater than that in pre-immune mouse 
serum-inoculated mice (p = 0.002; Table 1). These results suggest 
that the serum from the mice vaccinated with VLP-CspZ-Y207A/
Y211A completely protects naïve mice from Lyme infection via 
passive immunization.

immunization with VlP-cspZ-Y207a/
Y211a Provided greater Protection from 
lyme-associated arthritis than 
Vaccination with cspZ or VlP-cspZ
To test whether the CspZ antibodies with greater borreliacidal 
activity confer more efficient protection from Lyme arthritis via 

active immunization, C3H/HeN mice were actively immunized 
with VLP, CspZ, VLP-CspZ, or VLP-CspZ-Y207A/Y211A (Figure 
S1A in Supplementary Material). Joint diameters were measured 
at 7 and 14  days post infection (Figure S1C in Supplementary 
Material), as Lyme-induced joint swelling is detectable as early as 
these time points (33). C3H/HeN mice at the age group of 3- to 
4-week old infected with 104 of B. burgdorferi strain B31 have been 
previously shown to develop apparent swelling at tibiotarsus joint 
after 2  weeks of infection (36). Similarly, we observed that the 
VLP-inoculated mice at the similar age group and the identical 
infection dose of same spirochete strain also displayed tibiotarsus 
joint swelling, with the levels most apparent at 7 and 14 days post 
infection (at least eightfold greater joint diameters than uninfected 
mice; Figure 4). CspZ and VLP-CspZ vaccinations reduced joint 
swelling at these time points (approximately two fold less than the 
mice inoculated with VLP). However, the joint diameters were 
still significantly greater than that of uninfected mice (p < 0.05), 
suggesting that CspZ or VLP-CspZ vaccination was incapable 
of completely alleviating the joint swelling to the levels of unin-
fected mice (Figure 4). Interestingly, the joint diameters in the 
mice immunized with VLP-CspZ-Y207A/Y211A were at least 
threefold less than VLP-immunized mice at 7 and 14 days post 
infection, but were no different than uninfected mice (Figure 4). 
Our results imply that vaccination of VLP-CspZ-Y207A/Y211A 
reduces the joint swelling to the levels of uninfected mice during 
Lyme disease infection.

Additionally, we histologically examined the severity of the 
arthritis in the mice vaccinated with VLP, CspZ, VLP-CspZ, 
or VLP-CspZ-Y207A/Y211A at 14  days post infection. VLP-
inoculated mice developed apparent arthritis with inflammation 
at the joint, in which inflammatory cells infiltrated around the 
synovium (Figure 5). A similar arthritis phenotype was observed 
in CspZ- or VLP-CspZ-vaccinated mice (Figure  5). However, 
VLP-CspZ-Y207A/Y211A-vaccinated mice did not develop 
arthritis, with histopathology revealing inflammation similar to 
uninfected mice (Figure 5). C3H/HeN mice with the similar age 
group in this study infected with B. burgdorferi have been shown 
to display significant arthritis (36). Our finding thus suggests 
that vaccination of VLP-CspZ-Y207A/Y211 prevents mice from 
developing arthritis during Lyme infection.

immunization with VlP-cspZ-Y207a/
Y211a conferred greater Protection 
against B. burgdorferi Tissue colonization 
than cspZ or VlP-cspZ Vaccination
To evaluate if vaccination with modified CspZ conjugated to VLP 
clears spirochete tissue colonization at later stages of infection, 
mice were actively immunized with VLP, CspZ, VLP-CspZ, or 
VLP-CspZ-Y207A/Y211A, prior to infection with B. burgdorferi 
(Figure S1A in Supplementary Material). Bacterial burdens were 
quantitatively assessed in tissues from these mice at 28 days post 
infection using qPCR (Figure S1C in Supplementary Material). 
B. burgdorferi strain B31 has been shown to colonize the inocula-
tion site of skin, joints, and heart of C3H/HeN mice (at the levels 
approximately 10 to 100 spirochetes per 10 ng DNA) after infec-
tion by needles with 104 of spirochetes for 28  days (30). When 
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TaBle 1 | Protection against Borrelia burgdorferi in mice passively immunized 
with serum raised from CspZ- or virus-like particle (VLP)-immunized mice.

immunogen no. of tissue culture positive/totala no. of mice 
protected/

totala,b

p-
Valuec

inoc.  
site

Bladder heart Joint ear

Preimmune 
serum

6/6 6/6 6/6 6/6 6/6 0/6

VLP 6/6 6/6 6/6 6/6 5/6 0/6 1.00
CspZ 6/6 5/6 6/6 4/6 4/6 0/6 1.00
VLP-CspZ 4/6 4/6 4/6 4/6 4/6 2/6 0.22
VLP-CspZ-
Y207A/
Y211A

0/6 0/6 0/6 0/6 0/6 6/6 0.002

aCombined two trials.
bMice were considered infected (not protected) when at least one culture was positive.
cOne-tailed Fisher Exact Probability Test, Compared to the mice inoculated with pre-
immune mouse serum.

FigUre 3 | Serum from mice immunized with VLP-CspZ-Y207A/Y211A had more robust levels of bactericidal activity than VLP- or VLP-CspZ-vaccinated mice. 
Serum collected five C3H/HeN mice at 42 days post inoculation of virus-like particle (“VLP”), CspZ (“CspZ”), VLP-CspZ (“VLP-CspZ-WT”), or VLP-CspZ-Y207A/
Y211A (“VLP-CspZ-Y207A/Y211A”) was mixed at indicated dilutions with guinea pig complement and 5 × 105 cells/mL Borrelia burgdorferi strain B31-A3. The 
serum collected from three C3H/HeN mice at 42 days post inoculation of PBS was also included as negative control. Surviving spirochetes were quantified using 
dark-field microscopy after 24-h of incubation. (a) The survival percentage was derived from the proportion of serum-treated to untreated B. burgdorferi. Data 
shown are the mean ± SEM of survival percentage derived from three fields under the microscope for each sample. (B) The 50% borreliacidal titer of each serum 
sample, representing the dilution rate of the serum that effectively killed 50% of spirochetes, was obtained from the cure-fitting in Panel (a) (see Materials and 
Methods). Data shown are the mean ± SEM of borreliacidal titers of each serum sample derived from five CspZ, VLP-CspZ, or VLP-CspZ-Y207A/Y211A mice per 
group. The 50% borreliacidal titers of the serum samples from PBS- or VLP-inoculated mice were not detectable (“ND”) as those serum samples displayed no 
bactericidal activity. Statistical significances (p < 0.05) of differences in bactericidal titers relative to CspZ-immunized mice were determined using a t-test and are 
indicated (“*”).
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similar dose and the B. burgdorferi strain were introduced into 
the same age group of C3H/HeN mice, spirochetes also colonized 
these tissues of VLP-inoculated mice at similar levels (Figure 6; 
Table S2 in Supplementary Material; 12–27 spirochetes per 10 ng 
DNA). Consistent with previous findings (7, 11), we observed 
that B. burgdorferi colonized inoculation site of skin, joints, and 
heart of CspZ-immunized mice at a detectable level (Figure  6; 
Table S2 in Supplementary Material; 12–26 spirochetes per 10 ng 
DNA). This level was no different than that from VLP-inoculated 
mice (Figure  6). Further, the bacterial burdens in VLP-CspZ-
immunized mice were below the detection limit in the heart 
and joints (detection limit = 10 bacteria copies per 10 ng DNA; 
Table S2 in Supplementary Material) and 2.7- to 4.4-fold lower 
than VLP-immunized mice (p < 0.05; Figure 6). However, there 

was no difference in the bacterial burden at the inoculation sites 
of VLP-CspZ and VLP-inoculated mice (Figure 6). Interestingly, 
vaccination of VLP-CspZ-Y207A/Y211A resulted in undetectable 
bacterial burdens at the inoculation site, joints, and heart during 
Lyme infection that were 2.8- to 5.4-fold lower than CspZ- and 
VLP-inoculated mice (p < 0.05; Figure 6). Our results indicate that 
immunization of VLP-CspZ-Y207A/Y211A reduces the spirochete 
colonization to an undetectable level during Lyme disease infection.

DiscUssiOn

A number of strategies have been used to develop a Lyme disease 
vaccine, including inoculation of dead or live spirochetes (20), 
or recombinant proteins from B. burgdorferi or Ixodes ticks (37). 
In this study, we chose B. burgdorferi CspZ as a potential vaccine 
candidate because of its antigenicity and its ability to facilitate 
evasion of complement system (4, 7, 11). While vaccination with 
CspZ elicits a robust antibody response, it does not protect mice 
from Lyme infection, possibly due to insufficient functional anti-
bodies (i.e., bactericidal) (7, 11). We thus re-evaluated the efficacy 
of CspZ as a vaccine against Lyme disease by conjugating CspZ 
to VLP to generate VLP-CspZ, and combined this approach with 
eliminating the FH-binding activity of CspZ to generate VLP-
CspZ-Y207A/Y211A (6). Conjugating antigens to the highly 
repetitive structures of VLPs may alter the topology of these 
antigens. This may eventually allow B cells to more efficiently rec-
ognize the epitopes and develop greater levels of antibodies with 
enhanced bactericidal activity (38, 39). In fact, vaccinating mice 
with other B. burgdorferi outer surface proteins OspA or OspC 
conjugated to VLP induces robust levels of protective antibody 
response (40, 41). Consistent with these findings, though neither 
VLP-CspZ nor VLP-CspZ-Y207A/Y211A triggered greater 
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FigUre 5 | VLP-CspZ-Y207A/Y211A immunization prevents Lyme arthritis 
in Borrelia burgdorferi-infected C3H/HeN mice at levels similar to uninfected 
mice. Three C3H/HeN mice were vaccinated with virus-like particle (“VLP”), 
CspZ (“CspZ”), VLP-CspZ (“VLP-CspZ-WT”), or VLP-CspZ-Y207A/Y211A 
(“VLP-CspZ-Y207A”) and subsequently infected with 104 B. burgdorferi strain 
B31-A3. Tibiotarsus joints were collected 14 days post infection and also 
from three uninfected mice of the same age. To assess inflammation, tissues 
were fixed and stained with hematoxylin and eosin. The representative 
images from one mouse per group are shown here. Top panels are 
lower-resolution images [joint, 10× (bar, 160 µm)]; bottom panels are 
higher-resolution images [joint, 2 × 20 (bar, 80 µm)] of selected areas (insets 
in top panels). Arrows indicate infiltration of immune cells.

FigUre 4 | Immunizing mice with VLP-CspZ-Y207A/Y211A prevented joint 
swelling compared to virus-like particle (VLP) or VLP-CspZ vaccination. Ten 
C3H/HeN mice were vaccinated with VLP (“VLP”), CspZ (“CspZ”), VLP-CspZ 
(“VLP-CspZ-WT”), or VLP-CspZ-Y207A/Y211A (“VLP-CspZ-Y207A/Y211A”) 
prior to infection with 104 Borrelia burgdorferi strain B31-A3. The diameters of 
tibiotarsus joints were measured at (top panel) 7 and (bottom panel) 14 days 
post-infection, and from uninfected mice of the same age. The joint size of 
six uninfected mice was also included as negative control. The increased joint 
diameters were derived from subtracting the group average tibiotarsus joint 
diameter prior to infection (0 days post-infection). Data shown are the 
mean ± SD of 6 (uninfected) or 10 (all others) mice per group. Statistical 
significance (p < 0.05) of differences in tibiotarsus joint diameters of each 
group relative to uninfected mice were determined using a one-way ANOVA 
test and post hoc analysis and are indicated (“*”). Significant differences 
(p < 0.05) between infected groups are indicated (“#”).
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titers of anti-CspZ antibodies compared to mice immunized 
with CspZ, immunizing mice with either of these VLP-CspZ 
proteins induced antibodies with robust levels of bacterial killing 
activity. Eliminating the ability of CspZ to bind FH exposes the 
FH-binding site and, therefore, may increase the ability of the 
epitopes close to/within this site to induce bactericidal antibod-
ies. In fact, immunization with point mutants of a Neisseria 
meningitidis FH-binding protein fHbp with reduced FH-binding 
activity induces greater levels of bactericidal antibodies in vac-
cinated human FH-transgenic mice and in non-human primates 
than immunization with wild-type fHbp (19, 42–45). This reduc-
tion in immunogenicity as a result of binding to host proteins 
thus is not restricted to FH-binding molecules (46).

We then tested the combination of VLP conjugation and 
eliminated FH-binding activity of CspZ as a vaccine in protect-
ing mice from Lyme disease infection via active and passive 

immunization. TiterMax Gold adjuvant has been used as this 
adjuvant was reported to induce greater and longer lasting titers 
than other adjuvants (29). Our data showed complete in  vivo 
protection against Lyme disease from passive immunization with 
VLP-CspZ-Y207A/Y211A, but not CspZ or VLP-CspZ. During 
active immunization, CspZ-immunized mice partially allevi-
ated joint swelling compared to the mice inoculated VLP after 
infection with B. burgdorferi. This finding appears to contradict 
with a previous study in which no difference in joint swelling was 
observed between unvaccinated- and CspZ-vaccinated mice (7). 
However, the differences in methodologies and experimental 
design prevent direct comparison between these studies. For 
example, differences can be due to the infectious dose [104 in 
this study vs 105 in Ref. (7)] and the type of adjuvant [TiterMax 
Gold in this study vs Complete Freund’s adjuvant in Ref. (7)]. In 
spite of such differences, both studies found that vaccination with 
unmodified CspZ is ineffective at either preventing joint swelling 
(7) or reducing the joint swelling to the level of uninfected mice 
(Figure  4). In addition, vaccination with CspZ or VLP-CspZ 
did not prevent arthritis, which implies that the bactericidal 
ability of the antibodies induced by either of these proteins were 
insufficient in alleviating Lyme associated arthritis. Vaccination 
of VLP-CspZ-Y207A/Y211A prevented both joint swelling and 
arthritis, possibly due to the robust borreliacidal activity of the 
induced antibodies.

We also observed that B. burgdorferi colonizes colonization at 
both proximal (inoculation site) and distal mouse tissues (heart 
and joints) of unmodified CspZ-immunized mice, which is in 
agreement with previous observations (7, 11). Inoculating mice 
with either VLP-CspZ or VLP-CspZ-Y207A/Y211A decreased  
B. burgdorferi colonization to an undetectable level at distal tissues. 
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FigUre 6 | Vaccinating mice with VLP-CspZ-Y207A/Y211A eliminated 
Borrelia burgdorferi tissue colonization compared to virus-like particle (VLP) 
or VLP-CspZ immunization. C3H/HeN mice were immunized with VLP 
(“VLP”), CspZ (“CspZ”), or VLP-CspZ (“VLP-CspZ-WT”, five mice per group), 
or VLP-CspZ-Y207A/Y211A (“VLP-CspZ-Y207A/Y211A”, six mice per group) 
and subsequently infected with 104 B. burgdorferi strain B31-A3. Spirochete 
colonization at inoculation site of skin (“inoc. site”, top panel), knee joint 
(“joint”, middle panel), and heart (“heart”, bottom panel) was quantitatively 
measured 28 days post infection. Colonization was derived by normalizing 
the number of spirochetes detected by quantitative PCR to 10 ng total DNA. 
Data shown are the mean ± SD, of five (VLP, CspZ, VLP-CspZ) or six 
(VLP-CspZ-Y207A/Y211A) mice. Statistical significance (p < 0.05) of 
differences in bacterial burden relative to VLP-immunized mice was 
determined using a one-way ANOVA test and post hoc analysis and are 
indicated (“*”).
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However, VLP-CspZ-Y207A/Y211A vaccination cleared coloni-
zation at the inoculation site while VLP-CspZ immunization did 
not. One of the possibilities addressing this difference is that the 
clearance of B. burgdorferi in the inoculation site may require the 
antibodies with more robust bactericidal activity (e.g., the anti-
body induced by VLP-CspZ-Y207A/Y211A immunization) to 
penetrate the tight structure of the skin capillaries into this tissue 
(47). In this study, we have demonstrated that recombinant CspZ 
with both conjugating to VLP and eliminated its FH-binding 
activity is a protective antigen against Lyme disease infection in 
a murine model. Mice have been widely used as a model to test 
the efficacy of Lyme disease vaccine [e.g., Ref. (20, 37, 40, 41)]. 
Additionally, the observations from the previous generation of 
Lyme disease vaccine performed on mice reflect to the efficacy of 

this vaccine in humans (48–50). Thus, the findings in this study 
may provide useful information for the development of Lyme 
disease vaccine used in humans. Further, the specific strategy 
of VLP conjugation and eliminating binding to the target ligand 
may also be applied to antigens of other bacterial pathogens, 
potentially serving as a general model for vaccination develop-
ment to ultimately improve human health.
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