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Low oxygen environments and accumulation of hypoxia-inducible factors (HIFs) are 
features of infected and inflamed tissues. Here, we summarize our current knowl-
edge on oxygen levels found in Leishmania-infected tissues and discuss which 
mechanisms potentially contribute to local tissue oxygenation in leishmanial lesions. 
Moreover, we review the role of hypoxia and HIF-1 on innate antileishmanial immune 
responses.
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iNTRODUCTiON

Low oxygen (O2) environments are a key feature of infected and inflamed tissue. Several lines of evi-
dence demonstrate that oxygen levels of afflicted tissues are much lower than these currently used 
in standard cell culture experiments and, in general, correspond to values below 4% O2 [reviewed 
in Ref. (1, 2)] Low oxygen levels are able to incapacitate oxygen-dependent antimicrobial effector 
enzymes such as the phagocytes oxidase or inducible NO synthase which both require oxygen as 
cosubstrate in order to produce their antimicrobial reactive oxygen species (ROS) and reactive 
nitrogen species (RNS) [reviewed in Ref. (1, 2)]. Moreover, hypoxia is not only a state of reduced 
availability of oxygen but also in addition induces a transcriptional response, which is governed by 
the transcription factors (TFs) hypoxia-inducible factor (HIF)-1 and HIF-2. Both TFs belong to 
the basic helix–loop–helix-PAS family of TF, consisting of HIF-1α or HIF-2α and its dimerization 
partner aryl hydrocarbon receptor nuclear translocator (ARNT) [reviewed in Ref. (3)]. Prolyl-
hydroxylase domain (PHD) enzymes play a key role in the regulation of HIF-1α and HIF-2α 
since oxygen is a critical substrate for the PHD enzymes. Under conditions of ample oxygen, they 
hydroxylate HIF-α subunits that target HIF-α in a von Hippel-Lindau tumor suppressor-dependent 
manner to proteasomal degradation [reviewed in Ref. (4–6)].

Subsequent studies revealed that HIF-1α is not only involved in adaption of cells to low oxygen 
environments but that this TF is also stabilized upon infectious and inflammatory stimuli under 
conditions of ample oxygen as well. Furthermore, HIF-1α is required for inflammatory responses 
of innate immune cells in vitro and in vivo [reviewed in Ref. (1, 7–11)]. Mechanistically, normoxic, 
inflammatory HIF-1α stabilization is closely linked to nuclear factor (NF)-κB activation (12, 13), and 
involves transcriptional and posttranslational signaling events (14–16). Altogether, these findings 
demonstrate that hypoxic and inflammatory responses are intertwined.

Therefore, there is a growing interest to uncover the impact of hypoxia and HIF-1α in infec-
tious diseases and its impact on host–pathogen interaction [reviewed in Ref. (1, 2, 17–21)]. In this 
review, we will summarize the evidence of hypoxia and the TF HIF-1α and its impact on innate 
immune responses directed against infection with Leishmania major, Leishmania amazonensis, and 
Leishmania donovani, which are able to cause cutaneous, mucocutaneous and systemic (visceral) 
diseases, respectively (Table 1).
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TAble 1 | Role HIF-1α in mononuclear phagocytes in Leishmaniasis.

Leishmania 
species

Type of disease Tissue tropism Role of HiF-1α in mononuclear phagocytes

In vitro In vivo

L. major Cutaneous leishmaniasis (Local) skin Parasite control Induction of Nos2
Cutaneous control of parasites

L. amazonensis Mucocutaneous leishmaniasis Skin with diffuse chronic progression Parasite survival Unknown

L. donovani Visceral leishmaniasis Spleen, bone marrow, liver Parasite survival Induction of MDSC
Propagation of parasites
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OXYGeN level iN leiSHMANiAl 
leSiONS

In guinea-pigs, intravenous challenge experiments with 
guinea-pig adapted Leishmania enrietti demonstrate that skin 
tissue predisposes to the development of leishmanial lesions 
(22). Given that skin tissue is known to display low oxygen 
levels (23–25), these data suggest that low oxygen micro-
environments might provide a safe haven for Leishmania 
parasites (22). Araújo et  al. assessed lesional tissue oxygen 
levels with an immunohistochemical method in cutaneous L. 
amazonensis infection (26). For that purpose, they injected 
a 2-nitroimidazol derivative into L. amazonensis infected 
mice. Upon injection, these compounds are enriched in 
tissues with very low oxygen tensions and form adducts 
that can be visualized after staining with adduct-specific 
antibodies (27, 28). Using this technology, they found that 
in L. amazonensis-induced lesions very low oxygen tensions 
are present (26).

To the best of our knowledge, there are no data available on 
tissue oxygen levels after infection with L. donovani in liver tis-
sue. Since it is known that steep oxygen gradients exist in the 
liver (27), it is very likely that L. donovani-infected liver tissues 
display low oxygen levels as well. Using 2-nitroimidazol based 
techni ques to visualize hypoxic tissues, Hammami et al. revealed 
that in L. donovani-infected spleens, very low tissue oxygen 
prevail (29).

Although staining of hypoxic areas with 2-nitroimidazol-
derivatives allows for identification of severely hypoxic tissue, 
this method does not provide quantitative data and is not suitable 
for continuous recording of lesional tissue oxygen levels (25). 
Alternative methodologies to quantitatively assess tissue oxygen 
levels rely on polarographic oxygen sensors or imaging of tissue 
oxygenation by using oxygen-dependent luminescence quench-
ing (25). For instance, non-invasive luminescence-based oxygen 
imaging using sensor foils can be used to quantitatively assess 
tissue oxygenation in a non-invasive manner over time (25). 
Using this technology in a mouse model of self-healing cutane-
ous leishmaniasis, Mahnke et al. observed that oxygen tension in 
leishmanial skin lesions displayed oxygen levels around ~2.8% O2 
when the lesions reached their maximum size (30). Resolution 
and healing of the lesion was paralleled by an increase of tissue 
oxygenation (30). Altogether, these findings indicate that low 
oxygen levels prevail in Leishmania-infected tissue.

Potential Factors Regulating Tissue 
Oxygen levels in Leishmania-infected 
Tissues
The mechanisms that drive low oxygen levels in Leishmania 
infected tissue are, however, largely unknown. Recent studies 
demonstrate that influx of granulocytes results in increased O2 
demand which ultimately results in low tissue oxygen levels (31). 
Low tissue oxygenation in L. major-infected tissue might result 
from either (i) infection-induced disturbance of local tissue per-
fusion or (ii) an increased local O2 consumption by the infectious 
agent and/or infiltrating immune cells (Figure 1). However, the 
contribution of infiltrating granulocytes, monocytes, NK  cells, 
and T cells on tissue oxygen levels in Leishmania infected tissues 
is unexplored. Moreover, Leishmania might interfere with inflam-
mation induced angiogenesis. For instance, Leishmania is able to 
scavenge angiogenic factors such as VEGF-A. Thereby Leishmania 
might interfere with inflammation-associated angiogenesis and 
disturb local oxygen supply (32). Nevertheless infection with  
L. major eventually triggers a vascular endothelial growth factor 
(VEGF)-A/VEGF receptor (VEGFR)-2-dependent proliferation 
of endothelial cells (33). Underscoring the potential important 
role of VEGF-A/VEGFR-2 signaling, Araújo and Giorgio suggest 
that VEGF-A levels upon infection might predict the outcome of 
L. amazonensis-infection. They recorded higher VEGF-A levels in 
healer mice compared to non-healer mice (34). Since VEGF-A is 
a known HIF-1α target (35) and HIF-1α is present in L. amazon-
ensis- and L. major-infected lesions in humans and in preclinical 
models (26, 33, 34, 36), it is possible that HIF-1α plays a role in 
infection-induced proliferation of the endothelial cells. However, 
to the best of our knowledge, this has not been tested in L. major 
and L. amazonensis mouse models yet. In addition to maintain-
ing oxygenation of infected tissue, endothelial cell proliferation 
might curtail L. major induced-inflammatory responses (37). 
The activity of endothelial NO synthase plays an important role 
in endothelial cell mediated anti-inflammatory activity (38–40). 
Endothelial cell mediated anti-inflammatory activity might reduce 
the influx of immune cells and/or their O2-consumption, thereby 
increase tissue oxygen levels and facilitate subsequent resolution 
of disease. Since endothelial NO synthase expression is linked to 
HIF-1α-accumulation (41), endothelial HIF-1α might promote 
anti-inflammatory properties in endothelial cells as well. Further 
studies, however, are required to investigate this issue. Earlier 
findings demonstrate that the “myeloid cell differentiation anti-
gen carcinoembryonic antigen-related cell adhesion molecule 1”  
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FiGURe 1 | Infiltration of immune cells might drive low tissue oxygenation in Leishmania major-infected skin. Upon L. major-infection, infiltration of granulocytes 
[polymorphonuclear granulocyte (PMN)], monocytes (Mono), dendritic cells (DC), NK cells, and T cells might induce increased local consumption of O2 resulting in 
hypoxic tissue O2 levels.
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(CEACAM1) is involved in angiogenesis and antileishmanial 
control (42). Whether CEACAM1-dependent signaling affects 
VEGF-A/VEGFR and/or HIF-1α signaling in this state of affair 
is unknown. Further investigations are required to understand 
the interplay of inflammation-triggered angiogenesis, enhanced 
O2 demand in inflamed tissues, and its impact on overall tissue 
oxygenation in leishmaniasis.

iMPACT OF HYPOXiA ON HOST–
PATHOGeN iNTeRACTiON

internalization of Leishmania and Hypoxia
After transmission of Leishmania by its vector, myeloid cells are 
the main host cell [reviewed in Ref. (43–45)]. Hypoxic condi-
tions are known to modulate the phagocytic/endocytic uptake 
of mononuclear phagocytes (46, 47). However, to the best of 
our knowledge, the impact of oxygen levels below 4% O2 on 
Leishmania uptake or internalization is unexplored.

Polymorphonuclear Granulocytes  
(PMN), Hypoxia, and Leishmania
Polymorphonuclear granulocytes are quickly attracted to the site 
of infection. Dependent on the Leishmania species and the host’s 
genetic background, they play a rather detrimental role in cutane-
ous leishmaniasis. PMN are inefficient in killing promastigotes 
and undergo apoptosis which hampers the proper activation 

of recruited dendritic cell (DC) [reviewed in Ref. (44, 48)]. In 
general, PMN are relatively short-lived cells, whose survival, 
however, is prolonged in NF-κB- and HIF-1α-dependent manner 
under hypoxic conditions. Moreover, hypoxia induces the pro-
duction of macrophage inflammatory protein-1β which further 
facilitates neutrophil survival (49). In line with this, Monceaux 
et al. demonstrated recently that anoxic conditions prolong PMN 
survival (50). Therefore, hypoxia most likely favors influx and 
lifespan of PMN in leishmaniasis as well. Since these cells are not 
able to eliminate Leishmania, this might ultimately prolong and/
or exacerbate the disease. However, to the best of our knowledge, 
there is no detailed analysis on the specific role of hypoxia on 
PMN–Leishmania interaction.

DC, Hypoxia, and Leishmania
Upon Leishmania exposure, DC phagocytose the parasite, 
become activated and establish an antileishmanial T cell response 
and thereby critically contribute to the resolution of disease 
[reviewed in Ref. (51)]. For instance, priming and induction of 
Leishmania-specific TH1 response results in secretion of IFN-γ 
which is required for antileishmanial immunity [reviewed in  
Ref. (44)]. In addition, even after resolution of disease, DC still 
contain viable parasites which are able to maintain antigen-
specific T  cell responses against L. major. This contributes to 
the long term protection against the parasites [reviewed in  
Ref. (51)]. Although, there is evidence that oxygen levels impact 
on DC functions, there are to the best of our knowledge only 
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limited reports on the contribution of hypoxia on DC-mediated 
establishment of antileishmanial T cell immunity. Hypoxia might 
impact on DC viability (52), migratory capacity (53), maturation, 
and antigen presentation (54–56).

NK Cells, Hypoxia, and Leishmania
In early phase of Leishmania infection, NK cells are activated by 
IL-12 and IL-18. These activated NK cells contribute to parasite 
control through production of IFN-γ [reviewed in Ref. (57)]. 
NK  cells respond to hypoxia by downregulation of surface 
markers NKp46, NKp30, NKp44, NKG2D, and CD16, decreased 
cytotoxic and antiviral activity, and reduced IFN-γ expression 
(58–60). In contrast to these findings, Krzywinska et al. observed 
no mitigated IFN-γ secretion by NK  cells under hypoxia (61). 
However, the impact of hypoxia on NK-mediated antileishmanial 
defense is unexplored and requires further studies.

Monocytes/Macrophages, Hypoxia, and 
Leishmania
A few days after L. major and L. donovani infection, recruited 
monocytes are highly abundant in afflicted tissues (62, 63). 
Inflammatory monocytes are able to upregulate their ROS pro-
duction in the early stage of infection with L. major and L. dono-
vani (64, 65). However, in inflammatory monocytes infected with  
L. major, ROS production does eliminate the parasites (63).  
Moreover, L. donovani, for instance, has the ability to overcome 
the ROS-mediated apoptosis of host macrophages via induction 
of suppressor of cytokine signaling proteins (66). It is estab-
lished that IFN-γ and TNF are two key cytokines that empower 
macrophages (67–69) and monocytes (63) to clear Leishmania. 
In the mouse system this results in a robust induction of the 
antileishmanial effector enzyme, the inducible or type 2 NO 
synthase (iNOS or NOS2). A high level of NO production is 
prerequisite of the cutaneous defense against Leishmania major 
[reviewed in Ref. (70, 71)]. Moreover, in mouse models of vis-
ceral leishmaniasis, Nos2 expression is important for control of  
L. donovani in the liver (72), and contributes to the containment 
of L. donovani (73) in the spleen.

For induction of NOS2 and production of high level of 
leishmanicidal NO, costimulation of macrophages with TNF 
plus IFN-γ is required (63, 68, 72, 74–78). Low oxygen condi-
tions, however, impair NO production of activated macrophages 
because the inducible NO synthase activity critically hinges on 
the availability of O2 as a substrate (79–81). Accordingly, under 
oxygen conditions below 4% O2 NO production of activated mac-
rophages is diminished (30). L. major possesses a globin-coupled 
heme containing oxygen sensor soluble adenylate cyclase which 
allows for its adaption to hypoxic conditions (82). Hence, while  
L. major is able to adjust to hypoxia, low oxygen conditions impair 
the NO-dependent antileishmanial potential of macrophages 
resulting in impaired clearance and survival of L. major in 
activated macrophages under low oxygen conditions. However, 
leishmanicidal activity is restored when the cells are reoxygenated 
(30). These data demonstrate that local tissue oxygen levels—at 
least transiently—do not match the macrophages’ O2 demand to 
fight against L. major.

In visceral leishmaniasis, parasites express high tissue tropism 
toward monocytes in the spleen and bone marrow. L. donovani, 
e.g., induces expansion of hematopoietic stem cell-like mononu-
clear cells from bone marrow which serve as host cells for the 
parasite (62). Compared to the role of Nos2 in the defense against 
visceral leishmaniasis in the liver (72), the contribution of Nos2 in 
the control of parasite load in the spleen in visceral leishmaniasis 
is less pronounced. While there was no induction of Nos2 in 
spleen macrophages upon infection of hamsters with L. donovani 
(83), Nos2 expression, nevertheless, contributed to the parasite-
containment in the spleen of L. donovani and L. infantum-infected 
mice (73, 84). In preclinical models of visceral leishmaniasis, the 
impact of local oxygen levels on Nos2-mediated antileishmanial 
defense and NO production in the spleen and liver is, however, to 
the best of our knowledge unexplored. It is tempting to speculate 
that low oxygen levels found in L. donovani-infected spleen tissue 
(29) incapacitate the Nos2-dependent antileishmanial defense 
in the spleen and, thus provide a safe niche for persistence and 
proliferation of L. donovani.

In contrast to L. major, exposure of L. amazonensis-infected 
macrophages to O2 levels of 5% and 1% O2 resulted in enhanced 
clearance of intracellular parasites (85, 86). These findings sug-
gest that either (1) NO-independent mechanisms are involved 
in control of L. amazonensis under hypoxic conditions and/or  
(2) L. amazonensis is not able to adjust to low oxygen conditions. 
For instance, the divergent effect of hypoxia on the survival of 
members of the genus Leishmania in mononuclear phagocytes 
under hypoxia might be due to different metabolic requirements 
and O2-demands of the respective Leishmania species investi-
gated. While it is known that L. major and L. donovani are able to 
adjust to hypoxic conditions by increasing their rate of glycolysis 
(87, 88), to the best of our knowledge detailed investigations on 
the intermediary metabolism of L. amazonensis upon exposure to 
low oxygen conditions are lacking.

MONONUCleAR PHAGOCYTeS, HiF-1α, 
AND ANTileiSHMANiAl iMMUNiTY

In addition to low oxygen conditions, various pathogens and 
pathogen-derived molecules are able to induce HIF-1α even 
in the presence of ample oxygen [reviewed in Ref. (1, 8–17)]. 
Inflammatory HIF-1α accumulation under normoxic conditions 
critically hinges on NF-κB activation (12, 13). HIF-1α transac-
tivation potential, however, is highly contextual. For instance, 
hypoxic and inflammatory HIF-1α activation, both, result in acti-
vation of glycolytic HIF-1α-target genes while only inflammatory 
HIF-1α activation results in robust induction of inflammatory 
target genes such as Nos2 (89).

Leishmania and Stabilization of HiF-1α  
in the Presence of Ample Oxygen
Currently, there is no consensus on whether Leishmania on its 
own is able to induce HIF-1α accumulation under normoxic 
conditions (Table  1). Infection of mouse macrophages in  vitro 
with L. amazonensis and L. donovani triggers HIF-1α accumula-
tion under normoxic conditions without requiring any additional 
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inflammatory signals (90, 91). Blockade of this Leishmania-
induced HIF-1α accumulation with cadmium chloride or RNAi 
results in impaired Leishmania recovery under normoxic condi-
tions (90–93). In contrast to these findings and in contrast to stimu-
lation with Toll-like receptor ligands [reviewed in Ref. (1, 8, 9)] or 
infection with various pathogens such as S. pyogenes (35, 94), M. 
tuberculosis (95), Histoplasma capsulatum (96), infection of mouse 
macrophages with L. major does not induce HIF-1α accumulation 
on its own but requires exogenous stimulation by IFN-γ and/or 
LPS (36). In line with this, Hammami et al. demonstrated that upon  
L. donovani-infection HIF-1α accumulation in CD11c+ mouse 
mononuclear phagocytes in  vivo requires interferon regulatory 
factor-5-dependent inflammatory signaling (97). This suggests 
that L. donovani infection on its own is not sufficient to induce 
HIF-1α accumulation in mouse mononuclear phagocytes in vivo 
as well (97).

The different potential of various Leishmania species to 
induce HIF-1α accumulation in mononuclear phagocytes is 
unclear.  HIF-1α accumulation in mononuclear cells might, for 
instance, help Leishmania to fuel its metabolic needs (98, 99). 
Mechanistically, the differential ability of certain Leishmania spe-
cies to interfere with NF-κB activation (100–102) might underlie 
the divergent ability of different Leishmania species to block 
infection-associated inflammatory HIF-1α-accumulation under 
normoxic conditions. However, further studies are required to 
assess this issue.

Role of HiF-1α expression in Mononuclear 
Phagocytes
Earlier findings demonstrate a requirement of HIF-1α for 
NOS2-induction (89, 94, 103–105). In line with this, LPS/INFγ- 
coactivated HIF-1α-deficient macrophages displayed a dimin-
ished NOS2-dependent production of NO under normoxic 
conditions and impaired killing of L. major in vitro. Conditional 
targeting of HIF-1α in macrophages revealed that HIF-1α-
activation is required for antileishmanial defense against cutane-
ous L. major-infection under normoxic conditions (36). This was 
paralleled by a blunted induction of NOS2 in lesional myeloid 
cells (36). However, it remains unclear whether in addition to 
Nos2 other HIF-1α-regulated targets are involved in cutaneous 
containment of Leishmania as well.

While HIF-1α in mononuclear phagocytes is protective in L. 
major-induced cutaneous leishmaniasis, HIF-1α expression in 
these cells emerged as detrimental factor in visceral leishmaniasis. 
Hammami et al. used CD11c Cre-deleter mice to target HIF-1α 
in Cd11c+ mononuclear phagocytes and to test the contribution 
of HIF-1α in a L. donovani-induced preclinical model of visceral 
leishmaniasis (29). In line with an inhibitory role of HIF-1α in 

DC-mediated T  cell responses (106), Hammami et  al. provide 
evidence that in L. donovani-infected mice HIF-1α in CD11c+ 
cells limits the expansion of short lived effector CD8+ T cells and 
thereby exacerbates disease at early time points after infections 
(29). In a recently published follow-up study, they demonstrate 
that HIF-1α in CD11c+ cells limits the frequency and numbers 
of granulocyte–monocyte progenitors and inflammatory mono-
cytes. Moreover, HIF-1α in CD11c+ cells enhances the inhibitory 
function of splenic mononuclear phagocytes while this TF is not 
involved in tissue neovascularization and splenomegaly (29). 
Of note, Hammami et  al. demonstrate that HIF-1α negatively 
impacts on the expression of Nos2 in L. donovani-infected mono-
nuclear phagocytes. Discrepancies of this finding to the published 
literature on the requirement of HIF-1α on Nos2-expression 
and NO production might be caused by the different context of 
HIF-1α stabilization (29). This issue, however, demands further 
detailed investigation. Overall, the data suggest that HIF-1α 
in CD11c+ cells favors a myeloid-derived suppressor cell-like 
(MDSC) behavior of these cells. These findings were paralleled 
by an impaired antileishmanial control in the bone marrow of L. 
donovani-infected mice at late time points (29).

Taken together, these findings demonstrate that HIF-1α 
expression in CD11c+ mononuclear phagocytes favors devel-
opment of visceral leishmaniasis in spleen and bone mar-
row, while HIF-1α in LysM+ myeloid cells supports defense 
against cutaneous L. major infection (Table  1). These findings 
underscore that the role of HIF-1α in myeloid cells is highly 
dependent on the respective context. HIF-1α is known to pro-
mote proinflammatory function of mononuclear phagocytes  
(35, 36, 94, 95, 105). However, the very same TF is able to induce 
regulatory and immunosuppressive functions in mononuclear 
phagocytes as well (107–109). Therefore, it is very likely that the 
differential context of HIF-1α stabilization in visceral and cutane-
ous leishmaniasis impacts on the functional consequence of HIF-
1α activation. Further studies are needed to uncover the distinct 
signals that ultimately result in differential HIF-1α-dependent 
innate immune cell function.
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