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The adaptive immune system recognizes antigens via an immense array of antigen- 
binding antibodies and T-cell receptors, the immune repertoire. The interrogation of 
immune repertoires is of high relevance for understanding the adaptive immune response 
in disease and infection (e.g., autoimmunity, cancer, HIV). Adaptive immune receptor 
repertoire sequencing (AIRR-seq) has driven the quantitative and molecular-level profiling 
of immune repertoires, thereby revealing the high-dimensional complexity of the immune 
receptor sequence landscape. Several methods for the computational and statistical 
analysis of large-scale AIRR-seq data have been developed to resolve immune reper-
toire complexity and to understand the dynamics of adaptive immunity. Here, we review 
the current research on (i) diversity, (ii) clustering and network, (iii) phylogenetic, and (iv) 
machine learning methods applied to dissect, quantify, and compare the architecture, 
evolution, and specificity of immune repertoires. We summarize outstanding questions 
in computational immunology and propose future directions for systems immunology 
toward coupling AIRR-seq with the computational discovery of immunotherapeutics, 
vaccines, and immunodiagnostics.

Keywords: systems immunology, B-cell receptor, T-cell receptor, phylogenetics, networks, artificial intelligence, 
immunogenomics, antibody discovery

iNTRODUCTiON

The adaptive immune system is responsible for the specific recognition and elimination of antigens 
originating from infection and disease. Molecular recognition of antigens is achieved through the 
vast diversity of antibody (B-cell receptor) and T-cell receptors (TCRs). The genetic diversity of 
these adaptive immune receptors is generated through a somatic recombination process that acts 
on their constituent V, D, and J segments (1, 2). During the gene rearrangement process, additional 
sequence diversity is created by nucleotide deletion and addition, resulting in a potential diversity 
of >1013 unique B- and T-cell immune receptor sequences (3–6). The adaptive immune repertoire 
often refers to the collection of all antibody and T-cell immune receptors within an individual and 
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FigURe 1 | The immune repertoire space is defined by diversity, architecture, evolution, and convergence. (A) Diversity measurements are based on (i) the accurate 
annotation of V (D) J segments using deterministic and probabilistic approaches with population-level or individualized germline gene reference databases. (ii) 
Probabilistic and hidden Markov models allow inference of recombination statistics. (iii) Measurement of clonotype diversity using diversity profiles. (B) Analysis of 
repertoire architecture relies predominantly on (i) clonal networks that are constructed by connecting nucleotide or amino acid sequence nodes by similarity edges. 
The sequence similarity between clones is defined via a string distance [e.g., Levenshtein distance (LD)], resulting in undirected Boolean networks for a given 
threshold (nucleotides/amino acids). An example of the global characterization of the network is the diameter, shown by black edges. An example of the local 
parameters of the network is the degree (n = 1) related to the individual clonal node in black. (ii) Degree distribution is a global characteristic of immune repertoire 
networks, which can be used for analyzing clonal expansion. (iii) Several similarity layers decompose the immune repertoire along its similarity layers. Layer D1 
captures clonal nodes similar by edit distance 1 (1 nt/a.a. different), D2 of distance 2 and so forth. (C) Assessing evolution of antibody lineages. (i) Reconstruction of 
phylogenetic trees. Stars indicate somatic hypermutation. (ii) Probabilistic methods for the inference of mutation statistics in antibody lineage evolution. (iii) Simulation 
of antibody repertoire evolution for benchmarking antibody-tailored phylogenetic inference algorithms. (D) Naive and antigen-driven cross-individual sequence 
similarity and convergence in immune repertoires. (i) The Venn diagram shows sequences shared in the two repertoires (circles). Signature-like sequence features are 
highlighted by black squares. (ii) Database of convergent or antigen-specific immune receptor sequences. (iii) K-mer sequence decomposition and classification of 
immune receptor sequences.
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represents both the ongoing and the past immune status of an 
individual. Current threats, for example of pathogenic nature, are 
countered by B- and T-cell clonal expansion and selection (7), 
whereas past ones are archived in immunological memory com-
partments (8). Immune repertoires are highly dynamic. They are 
constantly evolving within the repertoire sequence space, which 
is defined as the set of all biologically achievable immune recep-
tor sequences. Repertoire dynamics and evolution span several 
orders of magnitude in size (germline gene to clonal diversity), 
physical components (molecular to cellular dynamics), and time 
(short-lived responses to immunological memory that can persist 
for decades) (9–14).

The quantitative resolution of immune repertoires has been 
fueled by the advent of high-throughput sequencing (2, 15–20). 
Since 2009, high-throughput adaptive immune receptor rep-
ertoire sequencing (AIRR-seq) has provided unprecedented 
molecular insight into the complexity of adaptive immunity 
by generating data sets of 100 millions to billions of reads  
(6, 21, 22). The exponential rise in immune repertoire data has 
correspondingly led to a large increase in the number of com-
putational methods directed at dissecting repertoire complex-
ity (Figures 1 and 2) (23). Immune repertoire sequencing has 

catalyzed the field of computational and systems immunology 
in the same way that genomics and transcriptomics have for 
systems and computational biology (23). To date, the com-
putational methods that have been developed and applied to 
immune repertoires relate to (i) the underlying mechanisms of 
diversity generation, (ii) repertoire architecture, (iii) antibody 
evolution, and (iv) molecular convergence.

This review provides an overview of the computational 
methods that are currently being used to dissect the high-
dimensional complexity of immune repertoires. We will treat 
only those methods that are downstream of data preprocessing 
although currently there is no consensus on standard operating 
preprocessing procedures, and please refer to recent reviews 
on these subjects (2, 17, 24). Specifically, this review centers on 
computational, mathematical, and statistical approaches used to 
analyze, measure, and predict immune repertoire complexity. 
The description of these methods will be embedded within the 
main areas of immune repertoire research. Given that the genetic 
structure of antibody and TCRs is very similar, the majority of 
the methods illustrated in this review can be applied both in the 
context of antibody and T-cell studies. Exceptions to this rule are 
stated explicitly.

http://www.frontiersin.org/Immunology/
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FigURe 2 | An overview of selected computational tools used in immune repertoire analyses. Each horizontal colored bar colored bar in the Basis column 
represents a unique antibody or T-cell receptor (TCR) sequence. Vertical red bars represent sequence differences or somatic hypermutation. The Method column 
describes the general concept of the computational methods and how these are applied to immune repertoires. The Tools column highlights exemplary key 
resources for performing computational analysis in the respective analytical sections [rows (A–D)].
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MeASURiNg iMMUNe RePeRTOiRe 
DiveRSiTY

The immense diversity is one of the key features of immune 
repertoires and enables broad antigen recognition breadth 
(Figures  1A and 2A). The maximum theoretical amino 
acid diversity of immune repertoires is ≈10140 (calculated as 
20110  ×  2). The calculation takes into account the 20 unique 
amino acids, the 110 amino acids long variable region of immune 
receptors, and the 2 variable regions composing each receptor 

(IGVL-IGVH or TCRVα-TCRVβ) (25). However, this enormous 
diversity is restricted in humans and mice by a starting set of V, 
D, and J gene segments leading to a potential diversity of about 
1013–1018 (3–6, 26–30). Only a fraction of the potential diversity 
is represented at any point in time in any given individual: the 
number of B- and T-cells is restricted (human: 1011–12) and the 
number of different clones, depending on clone definitions, 
reaches about 109 in humans and 106–7 in mice (3, 5, 6, 31). The 
study of immune repertoire diversity ranges from the study of 
(i) the diversity of the building blocks of immune repertoires (V, 

http://www.frontiersin.org/Immunology/
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D, and J segments) and antibody lineage reconstruction (ii) to 
the mathematical modeling of VDJ recombination and (iii) to  
the estimation of the theoretical and biologically available 
repertoire frequency diversity (32). Together, these subfields of 
repertoire diversity analysis have expanded our analytical and 
quantitative insight into the creation of naive and antigen-driven 
antigen receptor diversity.

Accurate quantification of repertoire diversity relies first 
and foremost on the correct annotation of sequencing reads. 
Read annotation encompasses multiple steps: (i) calling of V, 
D, and J segments, (ii) subdivision into framework (FR) and 
complementarity-determining regions (CDRs), (iii) identifica-
tion of inserted and deleted nucleotides in the junction region, 
and (iv) the quantification of the extent of somatic hypermutation 
(for antibodies). VDJ annotation tools were recently reviewed by 
Greiff et al. and Yaari and Kleinstein (17, 24). An updated version 
is currently maintained on the B-T.CR forum.1 The B-T.CR forum 
is an AIRR-seq community platform for community-edited Wiki 
pages related to data sets and analysis tools as well as scientific 
exchange on current relevant topics in AIRR-seq (33, 34).

Accurate antigen receptor germline gene genotyping is 
crucial for predicting adaptive immunity (personalized and 
precision medicine) in the genetically diverse human popula-
tion (30, 35–38). All VDJ annotation tools rely, at least partly, 
on a reference database of germline gene alleles. A reference 
database that is not identical to that of the individual from 
which the sequencing data is being annotated bears the poten-
tial of inaccurate annotation. This could affect, for example, the 
accuracy of the calling of V, D, and J genes and alleles as well 
as the quantification of somatic hypermutation. Antibody gene 
allele variation has also been linked to differential effectiveness 
of the humoral immune response (30, 35). Indeed, an increasing 
number of human germline gene alleles—representing one or 
several single-nucleotide polymorphisms—has been recently 
detected (30, 37, 39–41). These discoveries call into question the 
widely adopted practice of using one central germline reference 
database containing a more or less static set of non-personalized 
germline gene alleles. To address this problem, Corcoran et al. 
developed a software package (IgDiscover), which employs 
a cluster identification approach to reconstruct de novo from 
an AIRR-seq data set the corresponding V-gene germline 
database—all without a priori knowledge of existing germline 
gene databases (36). By doing so, they detected extensive indi-
vidual germline gene differences among rhesus macaques (36). 
Complementarily, Gadala-Maria et al. developed TiGER (Tool 
for Ig Genotype Elucidation via Rep-Seq), which detects novel 
alleles based on the mutation pattern analysis (37). In contrast 
to IgDiscover, TiGER uses initial VDJ allele assignments with 
existing databases and software. Extending the analysis of 
germline gene diversity to the population level, Yu et al. built 
Lym1K, which is a database that combines validated alleles 
with novel alleles found in the 1000 Genomes Project (42, 43).  
In addition to database-centered approaches, probabilistic 

1 http://b-t.cr/t/list-of-v-d-j-annotation-software/18.

annotation enabled the detection of novel IgV genes and led 
to the discovery that substitution and mutation processes are 
(although reproducible across individuals) segment and allele 
dependent, thus further refining VDJ annotation and down-
stream diversity measurement (4, 44–47).

As a direct application in fundamental immunology, the 
advent of AIRR-seq has enabled the opportunity to describe 
quantitatively the statistical properties of VDJ recombination. 
Indeed, the ability to generate large data sets allowed several 
studies to show evidence of biases in VDJ recombination, as 
some germline gene frequencies (and combinations thereof) 
were found to occur more often than others (6, 21, 48–50).  
To mathematically model the process of VDJ recombination 
in both B- and T-cells, Elhanati et al. and Murugan et al. have 
employed techniques borrowed from statistical physics (maxi-
mum entropy, Hidden Markov, and probabilistic models) (4, 5, 45)  
to uncover the amount of diversity information inherent to each 
part of antibody and TCR sequences (entropy decomposition). 
VDJ recombination probability inference was mostly performed 
on non-productive sequences (e.g., out-of-frame, containing 
stop codon) as these receptors were assumed to be exempt from 
selection, thus representing unselected products of the genera-
tion process (4).

The deep sequence coverage of AIRR-seq has also led to the 
discovery of public clones or clonotypes—sequences that are 
shared across two or more individuals (6, 51–54). The existence 
of naive and antigen-associated public clones signifies a predeter-
mined reduction in a priori genetic and antigen-driven immune 
receptor diversity (6). Although the exact definition of what 
constitutes a “public clone” is debatable (55), advancements have 
been made in understanding the generation and structure of pub-
lic B- and T-cell clonotypes. By quantifying VDJ recombination 
probabilities as described above, Elhanati et  al. have suggested 
that the emergence of public clonotypes is a direct consequence 
of the underlying VDJ recombination bias (56). The inference of 
VDJ recombination statistics of naive B- and T-cell populations 
may be of use in vaccination studies for helping distinguish public 
antigen-specific clonotypes from genetically (naive) predetermined 
ones. If feasible, such an approach might render the need of a 
healthy control cohort for determining naive public clones super-
fluous (47, 57). Complementarily, Greiff et al. have demonstrated 
extensive VDJ recombination bias by support vector machine 
analysis. Specifically, it showed that both public and private 
clones possess predetermined sequence signatures independent 
of mouse strain, species, and immune receptor type (antibody, 
TCR). These sequence signatures were found in both naive and 
antigen-selected B-cell compartments, which might suggest that 
naive recombination bias exerts a stronger diversity-constricting 
effect than antigen-driven evolution (58).

While the above-described methods of immune repertoire 
diversity analysis are relatively new, the quantification and 
comparison of clonotype diversity have been already studied 
in the era preceding high-throughput sequencing platforms by 
borrowing and adapting from mathematical ecology (59–62). 
The first step to quantifying clonal repertoire diversity is the 
definition of clonotype. Definitions of clonotype used in the 
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literature range from the exact amino acid CDR3 to clusters of 
(e.g., CDR3) sequences to the sequence of entire variable chain 
regions (IGVL-IGVH or TCRVα-TCRVβ) using methods ranging 
from likelihood-based lineage inference to distance-based meas-
ures. A complete list of clonotyping tools has been compiled on 
the B-T.CR forum.2 The debate on what constitutes a clonotype 
is ongoing and beyond the scope of this review. The interested 
reader is kindly referred to two extensive reviews (17, 63) and 
a recent report by Nouri and Kleinstein, who have developed a 
flexible user-defined method for clonotype identification (64).

To measure clonotype diversity, diversity indices are used 
[detailed reviews on diversity indices have been recently 
published in Ref. (17, 24)]. Briefly, diversity indices enable 
the comparison of repertoire diversity by parameterizing the 
repertoire space. They thus overcome the problem of clonally 
distinct repertoires (65). Several dedicated software packages 
exist for diversity index calculations (66–69). Briefly, the 
Diversity (αD) of a repertoire of S clones is usually calculated 

as follows: α α
α

D f
i

S

i=










=

−

∑
1

1
1  (Hill-Diversity), where fi is the 

frequency of the ith clone weighted by the parameter α. Special 
cases of this Diversity function correspond to popular diversity 
indices in the immune repertoire field: species richness (α = 0), 
and the exponential Shannon-Weiner (α→1), inverse Simpson 
(α  =  2), and Berger–Parker indices (α→∞). The higher the 
value of alpha, the higher is the influence of the more abundant 
clones on αD. Thus, each αD value captures a different region 
(clonal subset) of the clonal frequency distribution (65). Due 
to the mathematical properties of the Diversity function [Schur 
concavity (70)], different repertoires may yield qualitatively dif-
ferent αD values depending on the Diversity index used [Figure 
1 in Greiff et al. (65)]. Therefore, for any discriminatory diversity 
comparisons, at least two Diversity indices should be considered. 
Diversity profiles, which are collections (vectors) of several 
Diversity indices, have been suggested to be superior to single 
diversity indices, when comparing clonal diversity (65, 66, 71). 
Using hierarchical clustering, α-parametrized diversity profiles 
have been shown to faithfully capture the shape of a repertoire’s 
underlying clonal frequency distribution, which represents the 
state of clonal expansion (65). Thus, diversity profiles can serve as 
a parameterized proxy for a repertoire’s state of clonal expansion. 
In addition, Mora and Walczak showed that the Rényi entropy 
(the mathematical foundation of Hill-Diversity profiles) can 
be constructed, in some cases, from rank-frequency plots (72), 
thereby establishing a direct mathematical link between clonal 
frequency distribution and diversity indices. Another interesting 
novel diversity analysis method is the clonal plane and the poly-
clonal monoclonal diversity index developed by Afzal et al. (73). 
These two related mathematical concepts represent repertoire 
diversity in a coordinate system spanned by species richness and 
evenness. This allows a visually straightforward identification of 
polyclonal and oligoclonal samples.

Although clonal frequency distributions, in most cases, can-
not be compared directly across individuals due to restricted 

2 http://b-t.cr/t/list-of-b-cell-clonal-identification-software/22.

clonal overlap, their mathematical description has been the object 
of several studies. Specifically, clonal frequency distributions 
were found to be power-law distributed, with a few abundant 
clones, and a large number of lowly abundant clones (65, 74–76). 
Furthermore, Schwab et  al. showed analytically via numerical 
simulations that Zipf-like distributions, a subclass of power-law 
distributions arise naturally if fluctuating unobserved variables 
affect the system (e.g., a variable external antigen environment 
influencing the observed antibody repertoire) (77). Indeed, 
it could be shown that clonotype diversity (or state of clonal 
expansion) contains antigen-associated information on the host 
immune status (6, 65, 78).

Given the heavy-tailed distribution of clonal frequencies 
(large number of low-abundant clones), comprehensive sam-
pling of repertoires is challenging to achieve, thereby hindering 
cross-sample diversity comparison (65, 74, 77, 79). Indeed, 
diversity indices are highly sensitive to sample size variation 
caused by varying PCR and sequencing accuracy and biological 
and technological sampling depth (60, 62, 80). In general, two 
main approaches are used to mitigate sampling effects. (i) For 
the comparison of any two repertoires of unequal sampling size, 
Venturi et  al. devised the following strategy: (a) sequencing 
reads are drawn randomly n-times without replacement from 
the repertoire with higher sampling depth (higher cell number 
and/or higher sequencing depth). (b) The desired diversity 
measure for each bootstrapped immune repertoire data set is 
then computed. (c) From the distribution of n diversity meas-
ures, the median diversity measure is estimated and compared 
with the smaller data set. This approach, however, does not aim 
to estimate the true underlying diversity of a cellular compart-
ment (e.g., B- and T-cell developmental stages, antigen-specific 
repertoire). (ii) Inferring the true diversity of a repertoire is 
equivalent to the “missing-species problem,” which describes 
the challenge to estimate the number of clones (“species”) that 
have been missed in the sampling step. The quantification of 
missing (or unseen) species may be performed using diversity 
index estimators (60, 81, 82). These estimators attempt to 
estimate the number of missing receptors based on a more or 
less narrow region of the clonal frequency distribution’s tail.  
A dedicated diversity estimator, adapted to the microevolu-
tionary and high-diversity case of immune repertoires, was 
published by Laydon et al. They developed a rarefaction-based 
method called DivE, for estimating total repertoire size (spe-
cies richness) (82, 83), which they showed to be both superior 
to common estimators of species richness such as Chao1 
(81, 83) and Good-Turing (60, 84) and capable of estimat-
ing a repertoire’s underlying clonal frequency distribution. 
Complementarily, Kaplinsky and Arnaout developed a maxi-
mum likelihood (ML) clone-size distribution-independent 
algorithm called Recon (reconstruction of estimated clones 
from observed numbers) that does estimate not only species 
richness but also any Hill-diversity measure (80). In general, 
however, gold-standard procedures for estimating repertoire 
diversity in various sampling scenarios are non-existent.  
A meta-study benchmarking current diversity index estimators 
on simulated immune repertoires will be needed to establish 
reliable guidelines for diversity estimation.
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To compare differences between diversity profiles, one should 
also consider resampling strategies as implemented in the R 
package Change-O by Gupta et al. These allow the determination 
of confidence areas around each diversity profile (66, 85) in the 
presence of differently sized repertoires. Accurate diversity cal-
culation in case of incomplete sampling is of special importance 
when gaining information on human repertoires, which are often 
restricted to the isolation of a limited number of B- and T-cells 
from peripheral blood (17, 83, 86, 87).

Although the quantification of diversity is one of the more 
mature subfields of computational repertoire immunology, 
numerous open questions remain: (i) diversity has been measured 
from many different perspectives (germline gene diversity, state 
of clonal expansion, clonal size), thus capturing different dimen-
sions of the repertoire diversity space. Is it possible to devise a 
universal metric that synthesizing different aspects of immune 
repertoire diversity into one? Such a metric would be very useful 
for repertoire-based immunodiagnostics. (ii) Hidden Markov and 
Bayesian (probabilistic) approaches have been used for modeling 
VDJ recombination. Those approaches, however, capture only 
short-range sequence interactions. Therefore, recurrent neural 
network approaches might be more appropriate to model the 
immune repertoire sequence space given their ability to account 
for sequence interactions of arbitrary length (88, 89)? (iii) Finally, 
we still have only very superficial insight into the biological 
diversity of antigen-specific repertoires and the combination 
rules of IGVL/IGVH and TCRVα1/TCRVβ chains due to the lack 
of large-scale data (76, 90–93). Once more extensive data have 
become available, can we leverage machine learning to uncover 
the underlying structure of antigen-specific repertoires and the 
prediction rules of chain pairing? Uncovering these immunologi-
cal prediction rules is crucial for the knowledge-based develop-
ment of antibody and T-cell-based immunotherapeutics.

ReSOLviNg THe SeQUeNCe SiMiLARiTY 
ARCHiTeCTURe OF iMMUNe 
RePeRTOiReS

The entirety of similarity relations among immune receptor 
sequences is called the similarity architecture of an immune rep-
ertoire. Thus, unlike immune repertoire diversity, which is based 
on the frequency profiles of immune clones, sequence similarity 
architecture captures frequency-independent clonal sequence 
similarity relations. The similarity among immune receptors 
directly influences antigen recognition breadth: the more dis-
similar receptors are, the larger is the antigen space covered. 
Given the genetic, cellular, and clonal restrictions of immune 
repertoire diversity, the similarity architecture of antibody and 
T-cell repertoires has been a longstanding question and has 
only recently begun to be resolved. Understanding the sequence 
architecture of immune repertoires is, for example, crucial in the 
context of antibody therapeutics discovery for the conception of 
naive antibody libraries and synthetic repertoires that recapitulate 
natural repertoires (94).

One powerful approach to interrogate and measure immune 
repertoire architecture is network analysis (Figures 1B and 2B) 

(94–100). Networks allow interrogation of sequence similar-
ity and thereby add a complementary layer of information to 
repertoire diversity analysis. Clonal networks are built by defin-
ing each clone (nucleotide or amino acid sequence) as a node 
(Figure  1B). An edge between clones is drawn if they satisfy 
a certain similarity condition, which is predefined via a string 
distance [e.g., Levenshtein distance (LD)], resulting in undirected 
Boolean networks (94–97, 99, 100). The default distance is usually 
1 nucleotide or 1 amino acid difference, but larger distances have 
also been explored (94). Thus, the construction of clonal networks 
requires the calculation of an all-by-all distance matrix. While the 
complete distance matrix can be computed on a single machine 
with repertoires of clone sizes <10,000, it becomes computation-
ally expensive in terms of time and memory to calculate networks 
of clone sizes that exceed 105 clones, which is the size of many 
repertoires in both mice and humans (3, 5, 6). Therefore, Miho 
et  al. have developed a high-performance computing pipeline 
(imNet), which can compute distance matrices and construct 
corresponding large-scale repertoire networks (94). This method 
led to the biological insight that antibody repertoire networks 
are, in contrast to other systems (101, 102), resistant to subsam-
pling, which is of great importance for the network analysis of 
human repertoires where limited access to B-cell populations and 
lymphoid organs restricts complete biological sampling (17, 86). 
Although networks of a few thousand nodes may be visualized 
using software suites such as igraph (103), networkx (104), gephi 
(105), and cytoscape (106), interpretation of the visual graphics 
is not informative for networks beyond the clonal size of 103 (94). 
Furthermore, visualization of networks provides only marginal 
quantitation of the network similarity architecture, thus limiting 
the quantitative understanding of immune repertoires. Graph 
properties and network analysis have been recently employed 
to quantify the network architecture of immune repertoires  
(94, 100). Architecture analytics may be subdivided into proper-
ties that capture the repertoire at the global level (generally one 
coefficient per network) and those that describe the repertoire 
at the clonal and thus local level (one coefficient per clone per 
repertoire, vector of size equal to the clone size) (94).

Global coefficients are, for example, degree distribution, 
clustering coefficient, diameter, and assortativity (94). The 
degree of a node is the number of its edges (i.e., the number 
of similar clones to a certain clone), and a repertoire’s degree 
distribution quantifies the abundance of node degrees (i.e., 
clonal similarities) across clones of a repertoire. This degree 
distribution has been used to describe and classify the networks 
by type, such as power law (a few highly connected clones and 
many clones with few connections), which is reminiscent of 
antigen-driven clonal expansion, or exponential (more even 
degree distribution across clones, covering extensive sequence 
space), which is more reflective of naive repertoires (94). The 
degree distribution thus provides insights into the overall 
distribution of connectedness (clonal similarities) within a 
repertoire and its state of clonal sequence expansion. Local 
characterization allows for the interrogation and correlation 
of additional clonal-related features, such as frequency and 
antigen specificity, within the immune repertoire architecture. 
Local parameters are, for example, degree, authority, closeness, 
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betweenness, and PageRank (94). PageRank, for instance, 
measures the importance of the similarity between two CDR3 
clones within the network. Detailed mathematical descriptions 
of available network parameters have been described elsewhere 
(94, 107, 108).

Complementary to networks, which provide a discrete charac-
terization of repertoires, similarity indices, similarity indices have 
been devised that provide a continuous description of repertoire 
architecture by quantifying the similarity between all sequences 
of a repertoire (using distance metrics) on a scale ranging from 
0 (zero similarity) to 100% (all sequences are 100% identical)  
(6, 109). In addition to sequence similarity, the index by Strauli 
and Hernandez takes the frequency of each sequence into account, 
thus normalizing sequencing similarity by the frequency of each 
of the pairwise compared sequences (109).

The assessment of repertoire architecture has only recently 
started to transition from the visual investigation of clusters of 
immune receptor sequences to the construction of large-scale 
networks and the truly quantitative analysis of entire repertoires 
across similarity layers (>1 amino acid/nucleotide differences). 
This advance enabled the discovery of fundamental properties 
of repertoire architecture such as reproducibility, robustness, and 
redundancy (94). Although the biological interpretation of the 
mathematical characterization of immune repertoire networks 
is at an early stage, the universal use of network analysis in the 
deconvolution of complex systems (107, 108) suggests a great 
potential in immune repertoire research. Many important ques-
tions remain: (i) How can network repertoire architecture be 
compared across individuals without condensing networks into 
network indices and potentially losing information? Thus, can 
discrete and continuous representation of repertoire architecture 
be merged into one comprehensive mathematical framework? 
(ii) Can the linking of networks across similarity layers serve to 
understand the dynamic and potential space of antigen-driven 
repertoire evolution (94)? (iii) Is the network structure that is 
observed on the antibody immunogenomic level also maintained 
on the phenotypic and immunoproteomics level of serum anti-
bodies (110–116)?

ReTRACiNg THe ANTigeN-DRiveN 
evOLUTiON OF ANTiBODY RePeRTOiReS

Upon antigen challenge, B-cells expand and hypermutate 
their antibody variable regions, thus forming a B-cell lineage 
that extends from the naive unmutated B-cells, to somatically 
hypermutated memory B-cells (25), to terminally differentiated 
plasma cells (11). Somatic hypermutation is unique to B-cells and 
absent in T-cells. Retracing antibody repertoire evolution enables 
insights into how vaccines (78) and pathogens shape the humoral 
immune response (117–119).

To infer the ancestral evolutionary relationships among 
individual B-cells, lineage trees are constructed from the set of 
sequences belonging to a clonal lineage (Figures  1C and 2C). 
A clonal lineage is defined as the number of receptor sequences 
originating from the same recombination event. For building a 
lineage tree, a common preprocessing step is to group together 

all sequences with identical V and J genes and CDR3 length. 
Schramm et al. published a software for the ontogenetic analysis of 
antibody repertoires, which is designed to enable the automation 
of antibody repertoire lineage analysis. Importantly, it provides 
interfaces to phylogenetic inference programs such as BEAST and 
DNAML (120).

In antibody repertoire phylogenetics, there is no consensus 
as to which phylogenetic method is optimal for the inference 
of lineage evolution (17, 121). Most of the current phylogenetic 
methods rely on assumptions that may be true for species evolu-
tion but might be invalid for antibody evolution. One prominent 
example is the assumption that each site mutates independently 
of the neighboring nucleotides, which is not the case in antibody 
evolution (121). In addition, antibodies evolve on time scales that 
differ by several orders of magnitudes from those of species. These 
two factors likely decrease the accuracy of clade prediction (clade: 
set of descendent sequences that all share a common ancestor), 
thus potentially impacting antibody phylogenetic studies.

Several phylogenetic methods, such as LD, neighbor joining 
(NJ), maximum parsimony (MP), ML, and Bayesian inference 
(BEAST), have been used for delineating the evolution of 
B-cell clonal lineages from antibody repertoire sequencing data  
(85, 122–124). For general information regarding the methods, 
refer to the review by Yang and Rannala (125). Briefly, both LD 
and NJ are distance-based methods that rely upon an initial all-
by-all distance matrix calculation and have been implemented in 
many computational platforms (Clustal, T-REX) and R packages 
(ape, phangorn) (126–129). Even in the event >105 sequences 
per sample, the distance matrix calculation in phylogenetics 
poses less of a problem than in network analysis since a sample’s 
sequences are grouped by lineage members of identical V–J gene 
and CDR3 length, thus reducing computational complexity. The 
relatively short computation time of distance-based methods 
renders them particularly useful for initial data exploration 
(125). MP attempts to explain the molecular evolution by non-
parametrically selecting the shortest possible tree that explains 
the data (24). MP trees can be produced using several available 
tools (e.g., PAUP, TNT, PHYLIP, Rphylip) (130–133). Both ML 
and BEAST infer lineage evolution using probabilistic methods, 
which can incorporate biologically relevant parameters such as 
transition/transversion rate and nucleotide frequencies. A vari-
ety of ML tools have been developed (e.g., PhyML, RAxML, and 
MEGA) (134–136). While multiple phylogenetic tools utilizing 
Bayesian methods exist (137, 138), this review focuses on BEAST 
given its recurrent use in antibody repertoire studies (120, 124, 
139–141). BEAST traditionally employs a Markov chain Monte 
Carlo algorithm to explore the tree parameter space. This com-
putationally expensive process limits the practical number of 
sequences per lineage tree to <103. Despite the extensive compu-
tational requirements (both in memory and in run time), BEAST 
has the advantage of producing time-resolved phylogenies and 
inferring somatic hypermutation rates (138, 139). The BEAST 
framework shows, therefore, the highest scientific benefit when 
applied to experiments examining antibody evolution within 
the same host across multiple sampling time points (124), as 
inferred mutation rates and tree heights (duration of evolution) 
are reported in calendar time.
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Yermanos et  al. have compared five of the most common 
phylogenetics reconstruction methods for antibody repertoire 
analysis in terms of their absolute accuracy and their concord-
ance in clade assignment using both experimental and simulated 
antibody sequence data (139). Correctly inferring the clades of 
a phylogenetic tree is crucial for describing the evolutionary 
relationship between clonally selected and expanded B-cells 
(i.e., memory B-cells) that belong to a given lineage (i.e., derived 
from a naive B-cell). Phylogenetic trees inferred by the methods 
tested (LD, NJ, ML, MP, BEAST) resulted in different topologies 
as measured by both clade overlap (number of internal nodes 
sharing the same descendant sequences) and treescape metric 
(comparison of the placement of the most recent common 
ancestor of each pair of tips in two trees) (142). These results 
suggest caution in the interpretation and comparison of results 
from the phylogenetic reconstruction of antibody repertoire 
evolution (139).

The accurate reconstruction of antibody phylogenetic 
trees is tightly linked to the detailed understanding of the 
physical and temporal dynamics of somatic hypermutation 
along antigen-driven antibody sequence evolution. Mutation 
statistics can be inferred probabilistically to account for the 
fact that the likelihood of mutation is not uniformly distributed 
over the antibody VDJ region (46, 47). For example, there is 
a preference to mutate particular DNA motifs called hotspots 
(length: 2–7  bp) and concentrated in the CDRs over others 
(coldspots) (4, 121, 143, 144). To uncover the sequence-based 
rules of somatic hypermutation targeting, Yaari et al. developed 
S5F, an antibody-specific mutation model. This model provides 
an estimation of the mutability and mutation preference for 
each nucleotide in the VDJ region of the heavy chain based 
on the four surrounding nucleotides (two on either side). The 
estimated profiles could explain almost half of the variance in 
observed mutation patterns and were highly conserved across 
individuals (121). Cui et al. have, in addition, reported two new 
models that add to the heavy-chain S5F model: the light-chain 
mouse RS5NF and the light-chain human S5F L chain model 
(145). In addition, Sheng et al. investigated the intrinsic muta-
tion frequency and substitution bias of somatic hypermutations 
at the amino acid level by developing a method for generating 
gene-specific substitution profiles (146). This method revealed 
gene-specific substitution profiles that are unique to each 
human V-gene and also highly consistent between human 
individuals.

The existence of hotspot and coldspot mutation motifs violates 
the standard assumption of likelihood-based phylogenetics, which 
is that evolutionary changes at different nucleotide or codon sites 
are statistically independent. Furthermore, since hotspot motifs 
are, by definition, more mutable than non-hotspot motifs, their 
frequency within the B-cell lineage may decrease over time as 
they are replaced with more stable motifs (147). To explicitly 
parameterize the effect of biased mutation within a phylogenetic 
substitution model, Hoehn et  al. developed a model that can 
partially account for the effect of context-dependent mutability 
of hotspot and coldspot motifs and explicitly model descent from 
a known germline sequence (148). The resulting model showed 
a substantially better fit to three well-characterized lineages of 

HIV-neutralizing antibodies, thus being potentially useful for 
analyzing the temporal dynamics of antibody mutability in the 
context of chronic infection. In addition, Vieira et  al. assessed 
the evidence for consistent changes in mutability during the 
evolution of B-cell lineages (140). By using Bayesian phylogenetic 
modeling, they showed that mutability losses were about 60% 
more frequent than gains (in both CDRs and FRs) in anti-HIV 
antibody sequences (140).

Although computational methods tailored to the phyloge-
netic analysis of antibody evolution are slowly beginning to 
surface, many important problems remain. (i) First approaches 
in coupling clonal expansion information to the inference of 
phylogenetic trees have been developed (149). Will these addi-
tional layers of information enable a better prediction of anti-
body evolution? (ii) There has been progress in comparing the 
differences of antibody repertoires in the context of phylogenetic 
trees using the UniFrac distance measure (150, 151). Briefly, 
for a given pair of samples, UniFrac measures the total branch 
length that is unique to each sample. The comparison of tree 
topologies, however, remains a challenge. This is because each 
lineage tree is composed of a different number of sequences, 
and there are thousands, if not more, of simultaneously evolv-
ing lineages within a single host. Although methods exists for 
the comparison of unlabeled phylogenetic trees by, for instance, 
means of their Laplacian spectra (152), their application and 
ability to extract meaningful biological conclusions have not yet 
been realized. (iii) It is unclear to what extent antibody evolution 
differs between different acute and chronic viral infections, or 
different antigens. Specifically, is it possible to relate antigen-
driven convergence and affinity (6, 50, 117) to phylogenetic 
antigen-specific signatures (153)?

DiSSeCTiNg NAive AND ANTigeN-
DRiveN RePeRTOiRe CONveRgeNCe

Convergence (overlap) of immune repertoires describes the 
phenomenon of identical or similar immune receptor sequences 
shared by two or more individuals. Specifically, sequence conver-
gence can either mean that (i) clones (public clonotypes, entire 
clonal sequence or clonotype cluster) or (ii) motifs (sequence 
substrings) are shared. Several researchers in the field have 
endeavored to quantify the extent of naive and antigen-driven 
repertoire convergence using a large variety of computational 
approaches that quantify cross-individual sequence similar-
ity (6, 53, 78, 117, 154–156) (Figures 1D and 2D). Repertoire 
convergence may be of substantial importance for the prediction 
and manipulation of adaptive immunity (6).

The simplest way to quantify sequence convergence is by 
clonotype overlap among pairwise samples expressed as a per-
centage normalized by the clonal size of either one or both of 
the samples compared (6, 48, 157). In case clonotypes are treated 
not as single sequences but clusters of sequences, clusters were 
defined as shared between samples if each sample contributed 
at least one sequence to the cluster (156). Overlap indices such 
as Morisita-Horn (158) add additional information to the meas-
urement of clonal overlap by integrating the clonal frequency 
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of compared clones (62, 159, 160). A parameterized version of 
the Morisita-Horn index, similar to the Hill-diversity, may be 
used to weigh certain clonal abundance ranges differently (60). 
Rubelt and Bolen expanded on the idea of an overlap index 
by incorporating both binned sequence features (e.g., clone 
sequences, germline genes) and their frequency for measur-
ing the impact of heritable factors on VDJ recombination and 
thymic selection. Their Repertoire Dissimilarity Index consists 
of a non-parametric Euclidian-distance-based bootstrapped 
subsampling approach, which enables the quantification of the 
average variation between repertoires (50, 161). Importantly, 
it accounts for variance in sequencing depth between samples. 
Another clone-based approach was developed by Emerson 
et al. who mined public TCRβ clonotypes in CMV-positive and 
CVM-negative individuals to predict their CMV status. To this 
end, they identified CMV-associated clonotypes by using Fisher’s 
exact test. Subsequently, these clonotypes were used within the 
context of a probabilistic classifier to predict an individual’s 
CMV status. The classifier used dimensionality reduction and 
feature selection to mitigate the influence of the variance of HLA 
types across individuals because the distribution of TCRβ clones 
is HLA dependent (154).

Moving from the clonal to the subsequence level, several 
groups compared the average distance between repertoires based 
on their entire sequence diversity (without predetermining fea-
ture bins). Specifically, Yokota et al. developed an algorithm for 
comparing the similarity of immune repertoires by projecting 
the high-dimensional intersequence relations, calculated from 
pairwise sequence alignments, onto a low-dimensional space 
(162). Such low-dimensional embedding of sequence similar-
ity has the advantage of enabling the identification of those 
sequences that contribute most to intersample (dis)similarity. 
As previously described, Strauli and Hernandez quantified 
sequence convergence between repertoires in response to influ-
enza vaccination not only by incorporating genetic distance 
(Needleman-Wunsch algorithm) but also by incorporating the 
frequency of each clonal sequence (109). Their approach relies 
on a statistical framework called functional data analysis (FDA), 
which is often used for gene expression analysis. In their imple-
mentation, FDA models each sample as a continuous function 
over sampling time points and is thus suitable for the analysis 
of sequence convergence over a time course experiment. The 
FDA framework has the advantage of accounting for uneven 
time point sampling and measurement error, both of which are 
common characteristics of immune repertoire data sets (2, 17). 
Bürckert et  al. also employed a method borrowed from gene 
expression analysis (DESeq2) (163) to select for clusters of 
CDR3s, which are significantly overrepresented within different 
cohorts of immunized animals (164). These clusters exhibited 
convergent antigen-induced CDR3 signatures with stereotypic 
amino acid patterns seen in previously described tetanus toxoid 
and measles-specific CDR3 sequences.

Given the high-dimensional complexity of the immune 
repertoire sequence space, sequence distance-based approaches 
might not suffice for covering the entire complexity of sequence 
convergence. A greater portion of the sequence space may 
be covered by sequence-based machine learning (artificial 

intelligence). Here, the idea is that sequence signatures and 
motifs are shared between individuals belonging to a predefined 
class (e.g., different immune status). Sun et  al. discriminated 
the TCRβ repertoire of mice immunized with and without 
ovalbumin with 80% accuracy by deconstructing it into 
overlapping amino acid k-mers (165). Sun Cinelli et al. used a 
one-dimensional Bayesian classifier for the selection of features, 
which were subsequently used for support vector machine 
analysis (166). As a third machine learning alternative, Greiff 
et al. leveraged gapped-k-mers and support vector machines for 
the classification of public and private clones with 80% accuracy 
from antibody and TCR repertoires of human and mice. This 
study used overlapping k-mers to construct sequence predic-
tion profiles, which highlight those convergent sequence regions 
that contribute most to the identity of a class (public/private 
clones but also, e.g., also different immune states and antigen 
specificities) (58). Beyond k-mers, several groups have exploited 
the addition of additional information such as physicochemical 
properties (Atchley and Kidera factors) to provide more exten-
sive information to machine learning algorithms (167–171). 
Finally, a machine learning independent approach using local 
search graph theory for the detection of disease-associated 
k-mers was recently published by Apeltsin et al. (172).

One of the longest standing challenges in immunology is 
whether it is possible to predict antigen specificity from the 
sequence of the immune receptor (2, 15, 173–175). Sequence-
dependent prediction implies that immune receptor sequences 
specific to one antigen share exclusive sequence signatures 
(motifs) or have higher intraclass than interclass similarity 
(class  =  antigen). Two investigations towards sequenced-based 
specificity prediction using sequence similarity (sequence distance) 
approaches have recently been reported (155, 176). In one example, 
Dash et al. developed a distance measure called TCRDist, which 
is guided by structural information on pMHC binding (155). 
Two TCRs sequences were compared by computing a similarity-
weighted Hamming distance between CDR sequences, including 
an additional loop between CDR2 and CDR3. TCRDist was used 
to detect clusters of highly similar, antigen-specific groups of TCRs 
that were shared across different mouse or human samples. To pre-
dict the antigen specificity of a TCR, it was assigned to the cluster 
to which it had the highest similarity (as based on the TCRDist), 
resulting in highly accurate prediction (155). By using a similar 
approach, Glanville et al. developed GLIPH, a tool that identifies 
TCR specificity groups using a three-step procedure: (i) determin-
ing of shared motifs and global similarity, (ii) clustering based on 
local and global relationships between TCRs, and (iii) analyzing the 
enrichment for common V-gene, CDR3 lengths, clonal expansion, 
shared HLA alleles in recipients, motif significance, and cluster 
size. This approach yielded also highly accurate prediction of 
antigen-specific TCRs and led to the design of synthetic TCRs (not 
existing in biological data) that retained antigen specificity (176).

One of the biggest bottlenecks of learning the underlying princi-
ples of antigen-driven repertoire convergence is the scarcity of anti-
gen-specific sequence data. This is not only a problem for machine 
learning but also a problem for network-based approaches, where 
one wishes to map antigen-specific information onto generated 
networks (94, 100). To address this issue for T-cells, Shugay et al.  
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(VDJDB) and Tickotsky et al. (McPAS-TCR) have built dedicated 
and curated databases. VDJDB gathers >20,000 unique TCR 
sequences from different species associated with their epitope 
(>200) and MHC context (177). McPAS-TCR contains more than 
5,000 pathogen-associated TCRs from humans and mice (178). 
For antibodies, Martin has conceived Abysis, which encompasses 
>5,000 sequences of known function (from literature) from many 
species (>15) along with, where available, PDB 3D structure 
information (179). Finally, the Immune Epitope Database has also 
started capturing epitope-specific antibody and TCR information 
(>20,000 and >2,000 epitopes) (180).

Significant progress in the understanding of antigen- 
associated signatures has been made. However, several long-
standing questions remain to be answered. (i) The emergence 
of antigen-driven convergence and phylogenetic evolution are 
inherently linked. Is it feasible to model both phenomena in a 
unified computational environment similarly to recent efforts 
in coupling phylogenetics with the understanding of somatic 
hypermutation patterns (140, 148)? (ii) Can recently developed 
models for the inference of VDJ recombination patterns and 
selection factors be applied to the analysis of antigen-associated 
sequence signatures (4, 56)? (iii) Do more advanced sequence-
based machine learning techniques such as deep neural net-
works, capable of capturing long-range sequence interactions 
(out of reach for k-mer-based approaches), improve modeling 
of the epitope and paratope space (89, 181–186)?

CONCLUSiON

The toolbox of computational immunology for the study of 
immune repertoires has reached an impressive richness lead-
ing to remarkable insights into B- and T-cell development and 
selection (6, 52, 56, 187, 188), disease, infection, and vaccine 
profiling (78, 85, 117, 189–192), propelling forward the fields 
of immunodiagnostics and immunotherapeutics (65, 118, 193). 
Here, we have discussed computational, mathematical, and 
statistical methods in the light of underlying assumptions and 
limitations. Indeed, although considerably matured over the last 
few years, the field still faces several important and scientifically 
interesting problems. (i) There exist only few platforms to bench-
mark computational tools, thus hindering the standardization of 
methodologies. Recently, a consortium of scientists working in 
AIRR-seq has convened to establish and implement consensus 

protocols and simulation frameworks3 (2, 17, 33, 34, 43, 194, 195).  
(ii) With the exponential increase of both bulk and single-cell 
data (90, 196), the scalability of computational tools is becoming 
progressively important. Although advances in this regard have 
been made in sequence annotation, clonotype clustering, and 
network construction (64, 94, 197, 198), further efforts especially 
in the field of phylogenetics are necessary to infer the evolution 
of large-scale antibody repertoires (139). (iii) Although there 
exist many approaches, which capture parts of the immune rep-
ertoire complexity, a computational approach for the synthesis 
of many dimensions of the repertoire space at once is missing 
thus hindering a high-dimensional understanding of the adaptive 
immune response. (iv) Very few attempts exist yet, which aim 
to link immune receptor and transcriptomics data (199, 200). 
Recently, computational tools have been developed that can 
extract immune receptor sequences from bulk and single-cell 
transcriptomic data (197, 200–204). Linking immune repertoire 
and transcriptome may provide a deeper understanding of how 
antibody and T-cell specificity are regulated on the genetic level 
with profound implications for synthetic immunology (205–207). 
(v) Many methods capture a static space of repertoires, but few 
methods create predictive quantitative knowledge. Increasing the 
predictive performance of computational methods will help in the 
antibody discovery from display libraries and immunizations and 
the design of vaccines and immunodiagnostics (15, 19, 208–210).
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