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Chimeric antigen receptor (CAR) T-cell technology has seen a rapid development over 
the last decade mostly due to the potential that these cells may have in treating malig-
nant diseases. It is a generally accepted principle that very few therapeutic compounds 
deliver a clinical response without treatment-related toxicity, and studies have shown that 
CAR T-cells are not an exception to this rule. While large multinational drug companies 
are currently investigating the potential role of CAR T-cells in hematological oncology, the 
potential of such cellular therapies are being recognized worldwide as they are expected 
to expand in the patient to support the establishment of the immune memory, provide a 
continuous surveillance to prevent and/or treat a relapse, and keep the targeted malig-
nant cell subpopulation in check. In this article, we present the possible advantages of 
using CAR T-cells in treating acute lymphoblastic leukemia, presenting the technology 
and the current knowledge in their preclinical and early clinical trial use. Thus, this article 
first presents the main present-day knowledge on the standard of care for acute lym-
phoblastic leukemia. Afterward, current knowledge is presented about the use of CAR 
T-cells in cancer immunotherapy, describing their design, the molecular constructs, and 
the preclinical data on murine models to properly explain the background for their clinical 
use. Last, but certainly not least, this article presents the use of CAR T-cells for the 
immunotherapy of B-cell acute lymphoblastic leukemia, describing both their potential 
clinical advantages and the possible side effects.

Keywords: acute lymphoblastic leukemia, immunotherapy, chimeric antigen receptor T-cell therapy (CAR-T), gene 
transferred T-cell therapy, adoptive cell transfer

CURReNT MANAGeMeNT OF ACUTe LYMPHOBLASTiC 
LeUKeMiA (ALL)

Acute leukemias are classified into acute myeloid leukemia (AML) and ALL, depending on the 
result of immunophenotype characterization. The latest World Health Organization classification 
replaced the classic cytological classification of ALLs into B-cell ALL and T-cell ALL. B-cell ALL and 
acute lymphoblastic lymphomas are malignancies with B-cell lymphoblasts (1–3). In B-cell ALLs, 
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the bone marrow aspirate will detect at least 20% bone mar-
row lymphoblasts, with this type of malignancies representing 
around 85% of all pediatric ALLs (4–6). The accurate diagnosis 
is made after flow cytometry immunophenotyping, with positive 
cells for CD10, CD19, CD20, CD22, CD24, and CD79a. For 
these patients, karyotype analysis shows frequent alterations 
such as hyperploidy or t(12;21)(p13;q22), i.e., associated with a 
favorable prognosis. Cytogenetic alterations with poor prognosis 
are t(19;22)(q34;q11.2), t(1;19)(q23;p13.3) or t(4;11)(q21;q23) 
translocations (7–10).

For these malignancies, the prognosis in pediatric patients 
is excellent with 90–95% of cases achieving complete remission 
after chemotherapy. First-line chemotherapy for patients with 
ALL younger than 65 years is the intensive chemotherapy like 
Hoelzer protocol or hyper-CVAD (11). In patients with Ph+ALL, 
chemotherapy in combination with tyrosine kinase inhibitors 
(TKIs) is preferred (12). Ph+ALL patients were considered to 
be at high risk for disease progression or relapse before TKIs 
were introduced. However, the clinical outcome of patients with 
Ph+ALL has been significantly improved with the addition of 
TKIs (13). For patients with relapsed ALLs younger than 65 years, 
the salvage chemotherapy regimen is not well established  
(14, 15). Ph+ ALLs can be treated with a protocol in combina-
tion of chemotherapy with TKI (16). For older patients, with 
comorbidities, therapy consists of 600–800 mg/day of imatinib 
plus 1 g/kg prednisone for 30 days and continues with the admin-
istration of 600–800  mg imatinib on the long term. For older 
patients, induction chemotherapy includes the administration 
of vincristine plus doxorubicin, dexamethasone, or prednisone 
and intrathecal administration of 15 mg methotrexate at day 1 
(17). As maintenance therapy, patients receive a less-intensive 
continuation regimen.

Allogeneic stem cell transplantation (SCT) is indicated in 
B-cell ALL for the patients with a second complete remission, 
after the failure of the first-line chemotherapy. Patients may 
undergo up-front allogeneic SCT in complete remission if they 
have unfavorable prognostic factors (18, 19), including positive 
minimal residual disease (MRD). The term MRD represents the 
low-level disease, which persists and is characterized by the pres-
ence of a few malignant phenotype bearing cells not detectable 
by morphologic criteria (20). MRD has an incredibly important 
prognostic value in hematological malignancies, with labora-
tory protocols evolving into routing follow-up of patients who 
undergo chemotherapy. Such tools include multiparametric flow 
cytometry and quantitative PCR of Ig (19, 21). Flow cytometry 
is used to detect the aberrant immunophenotypes of malignant 
cells, but this method is pushed at limits not present in all labora-
tories. The role of detecting MRD is to help in taking therapeutic 
decisions regarding continuing or not a treatment taking into 
consideration the number or malignant cells that remained in 
that patient and that can cause relapse (22, 23).

In patients with relapsed/refractory Ph-negative B-ALL, 
blinatumomab can be an option. Blinatumumab is a byspecific 
antibody that targets both CD3 and CD19, and it has a reported 
complete remission rate of 67%, but it is also associated with 
adverse effects such as cytokine release syndrome (CRS), high 
fever, nausea, headaches, and hepatic and neurologic side effects 

(24–27). For Ph-negative ALL, in August 2017, the Food and 
Drug Administration (FDA) approved the use of inotuzumab 
ozogamicin (28, 29), a monoclonal antibody anti-CD22, but also 
chimeric antigen receptor (CAR) T-cells (30).

CAR T-CeLLS iN CANCeR 
iMMUNOTHeRAPY

The principle of this immunotherapy involves genetic engineer-
ing on patient T-cells to express a surface receptor for direct 
targeting the tumor cells. Bu using a recombinant technology, a 
T-cell receptor (TCR) construct was developed, formed by tumor 
associate antigen-specific single-chain variable fragment (scFv) 
antibody that is fused with a transmembrane domain (TMD) 
and then with a intracellular T-cell signaling domain. All these 
processes leaded to a CAR capable of specific tumor cell binding 
and activating T-cells to achieve cytotoxic potential (Figure 1).

Chimeric antigen receptor T-cell therapy emerges with vari-
ous advantages, both from a basic science point of view as well 
as for clinicians. First, CAR T-cells act independent of the HLA 
phenotypes, becoming useful for different patients, no matter if 
their cells express it or not because some tumors tend to down-
regulate it. The therapy acts in both CD4+ and CD8+ cells and 
allows for additional T helper and T cytotoxic cell action.

Chimeric antigen receptor T-cell technology has seen a rapid 
development over the last decade following the potential that 
these cells have in treating malignant diseases (31–33). The use 
of animal models in the preclinical assessment of CAR T-cells 
makes the molecular and genetic mechanisms of these cells 
interacting with a certain pathological process accessible to 
research and experiments, which would otherwise be obviously 
impossible in humans due to ethical reasons. Thus, the ethical 
justification of developing such animal models would be to have 
an experimental approach in extending the knowledge of CAR 
T-cells. By using these animal models, we have to assess not only 
the potential that these modified cells would have as a therapeu-
tic approach in various malignancies but also the potential toxic 
effects that these cells may have on healthy organs.

It is a generally accepted principle that very few therapeutic 
compounds deliver a clinical response without toxicity, and 
studies have shown that CAR T-cells are not an exception to this 
rule (34). Still, a harm–benefit analysis that would be in favor 
of a positive clinical outcome would sway the balance in the 
potential use of these cells in a clinical setting. While classical 
chemotherapy is related with non-selective cytotoxicity such as 
mucositis and myelosuppression, CAR T-cell therapy (CAR-T) 
is related with a specific type of toxicity expressed as immune-
mediated adverse effects. Some authors have reported the fact 
that these adverse effects may persist in the long term, extending 
the duration of possible toxicities beyond that of conventional 
pharmaceutical molecules (34, 35), as transplanted CAR T-cells 
have been shown to survive up to 6 months in human patients 
(36), after having been expanded ex vivo for up to 56 days with 
partially insufficient costimulation (37).

One of the first documented adverse effects of CAR-T in 
clinical use is the CRS and B-cell aplasia (38–42). CRS is caused 
mainly by the expansion of the infused T-cells (43), but other cells 
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including B, T, and natural killer (NK) cells, and myeloid cells 
such as dendritic cells, monocytes, and macrophages seems to 
contribute to the development of CRS. All of these cells become 
active and release en-masse inflammatory cytokines, thus the 
paraclinical hallmark of this syndrome being elevated levels of 
these cytokines. The current concepts in the diagnosis and man-
agement of CRS classifies the clinical and laboratory parameter 
range from mild CRS, expressing constitutional symptoms and 
grade 2 organ toxicity, to severe CRS, which shows a grade 3 organ 
toxicity and prompts the need for an aggressive clinical interven-
tion because of the potentially life-threatening toxicity (41, 44). 
CRS usually occurs around 6 days after the cells are transplanted 
(41, 45–47). Organ damage appears when engineered T-cells 
cross-react with a normal tissue or cells that has similar antigen 
expression with the malignant one (48, 49). The timing between 
CAR T-cell infusion and CRS is linked often to the release of 
inflammatory cytokines such as interleukin (IL)-6, interferon-
gamma, tumor necrosis factor (TNF), IL-2, IL-10, or IL-8. The 
increased concentration of these molecules is linked to clinical 
symptoms such as fever or arterial hypotension. Blood tests will 
show at this point a peak ferritin level, a peak C-reactive protein 
level, and significant expansion of CAR T-cells, as detected by 
flow cytometry (50–53).

Cytokine release syndrome may be linked to the activity 
of CAR T-cells taking into consideration the immunological 
cascade following the T-cell activation mediated by the CARs 
in opposition to native TCR activation, with important clinical 
consequences, as stressed out by Singh et al. (54). Furthermore, 
Teachey et  al. (55) present the cases of patients treated at the 
University of Pennsylvania who have died with a diagnosis of 
CRS and provided a detailed cytokine profile, concluding that 
cytokine dynamics is similar to the dynamics of hemophago-
cytic lymphohistiocytosis. The systemic inflammation is driven 
by macrophage activation and by elevation in IL-6. A fast and 
efficient of CRS resolution by IL-6 blockade is achieved by the 

administration of tocilizumab, a drug used primarily for the 
treatment of juvenile idiopatic arthritis, according to the FDA.  
It is also approved in Japan for the treatment of Castleman’s 
disease and is dosed for CRS every 2–4 weeks, being self-limited 
and without requiring extended treatment.

Hypogammaglobulinemia is often accompanied with a history 
of recurrent infections, with the site of infection providing clues 
to the significance and the type of immune deficiency, as well as to 
the type of microorganism. Infections often affect both the upper 
and lower respiratory tracts (sinopulmonary infections, sinusitis, 
bronchitis/bronchiectasis, or pneumonia) or the gastrointestinal 
tract (parasitic or bacterial gastroenteritis), as well as infections 
of the joints or skin. Less common symptoms include septicemia 
or osteomyelitis (56–58). Immunoglobulin replacement therapy 
should be considered in patients with severe hypogammaglobu-
linemia as in primary immunodeficiency (59, 60).

Taking into consideration all aspects in CAR T-cell design and 
experimental assessment, in this article, we aim to describe the 
main aspects in CAR T-cell use in ALL, from their molecular 
structure, to preclinical models and assessment in clinical trials.

DeSiGN OF CAR T-CeLLS

Upon harvesting from patient’s peripheral blood and enrichment, 
primary T-cells need to be genetically modified for CAR T-cell 
production (61). A gold standard for transduction of primary 
T-cells is represented by lentiviral vectors (62–67), as a safer 
alternative to the retroviral vectors, which pose a genotoxic 
effect on the genome (68). By their integrative capacity into 
the host genome, expression of CAR transgenic construct can 
persist independent of cell division. This characteristic makes 
lentiviral vectors attractive tools for engineering of CAR T-cells. 
To limit their natural tropism toward CD4+ expressing cells, such 
as T helper lymphocytes, the lentiviral capsid has subjected to 
extensive pseudotyping with other viral glycoproteins. Toward 
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TABLe 1 | Current clinical trials regarding CAR T-cell therapy.

Type of CAR T-cell Targeted tumor 
antigen

Characteristics Phase Coordinating institution Reference

CD3-ζ domain and one 
or more costimulatory 
molecules

CD19 Proliferate in excess of 2.200- to  
2.500-fold ex vivo expansion in some 
patients, ultimately comprising over  
50% of circulating lymphocyte

Phase I clinical trial MD Anderson Cancer Center,  
Houston, USA

(76)

Control of  
CAR T-cell activity

Switchable CAR 
T-cell

Dimerizing small molecules Preclinical research Cellectis, New York, USA (85)
University of California in San Francisco, USA (86)

Suicide gene iCasp9 Phase I clinical trial Baylor College of Medicine, Houston, USA (87)
Antibody-mediated depletion Phase I clinical trial Fred Hutchinson Cancer Center, Seattle, USA (88)

Masked CAR T-cell Enhance selectivity of CAR T-cells Preclinical research CytomX Therepeutics, San Francisco, USA (89)

Enhance of activity scFv Enhance selectivity of CAR T-cells Preclinical research MD Anderson Cancer Center, Houston, USA (90)

Combinatorial antigen 
targeting

SynNotch CAR circulation Preclinical research University of California in San Francisco (91)

iCAR Preclinical research Memorial Sloan Kettering Cancer Center,  
New York, USA

(92)

CAR, chimeric antigen receptor; scFv, single-chain variable fragment.
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this end, vesicular stomatitis virus gp (VSV-G) is the most com-
monly used glycoprotein for pseudotyping of lentiviral vectors, 
which offers a broad spectrum of infectivity for different cell 
types (69–71). However, transduction of quiescent cells, such 
as B-cells and T  lymphocytes, are not permissive to transduc-
tion with VSV-G pseudotyped lentiviral vectors; therefore, new 
glycoproteins have been investigated toward this end. Measles 
virus (MV) hemagglutinin (H) and fusion (F) glycoproteins have 
shown promise for pseudotyping of lentiviral vectors, displaying 
an affinity for quiescent T- and B-cells (72, 73). The drawback of 
MV-pseudotyped lentiviral vectors is the low titer of virus when 
compared to the more commonly used VSV-G-pseudotyped 
lentiviral vectors. Using anion-exchange chromatography might 
offer an advantage over conventional methods for concentration 
of viral particles from cellular supernatant, reducing the volume 
of virus needed for transduction of quiescent lymphocytes (72). 
Recently, mRNA transfer technologies by electroporation and 
by endocytosis are proposed as new viral toxicity-free methods, 
which may also allow the expression of CAR in short term, thus 
resulting in suppressing cross-reactivity (74).

Although CAR-T has shown promise in clinical setups, there 
are several limitations that arise from a rapid expansion of the 
CAR T-cells in vivo, which can result in severe cytokine release 
upon antigen recognition (75). In addition, for anti-CD19 CAR 
T-cells, the inability to discriminate malignant from normal 
B-cells can lead to long-term B-cell aplasia (53). Therefore, con-
trolling the function of CAR T-cells would be highly desirable for 
reducing these potential life-threatening adverse effects. In this 
regard, researchers have used antibody-based switch molecules 
that intermediate the immunological synapse between CAR 
T-cells and malignant cells, leading to a regulated cytotoxic activ-
ity (66, 67). Engineered T-cells represent modern-day therapeutic 
options for cellular therapies, with improved safety and versatility 
when compared to classic cell therapies, such as SCT. Switch 
molecules are peptide-engrafted antibody-based molecules that 
could be used to titrate the therapy to minimize organ toxicity 
that appears as a result of shared antigen expression with normal 

tissues. A switch activates a CAR T-cell when it is triggered by 
both rimiducid and the targeted antigen expressed on the surface 
of leukemia cells. Current generation CAR T-cell constructs 
consist of a CD3-ζ domain and one or more costimulatory mol-
ecules that are both activated when a cancer antigen binds to the 
portion of the CAR on the surface of the engineered T-cell. This 
reliance on antigen for activation of the CAR T-cell results in an 
unpredictable and inherently uncontrollable therapeutic effect. 
CAR T-cells that target CD19 have been shown to proliferate in 
excess of 2.200- to 2.500-fold ex vivo expansion in some patients, 
ultimately comprising over 50% of circulating lymphocytes 
(76). CAR T-cells for solid tumor, on the other hand, often fail 
to proliferate or persist at all for more than a few days or weeks 
and have been largely ineffective (77–80). In normal physiology, 
conventional T-cells recognize single antigens, but a CAR can be 
modified to recognize multiple surface antigens, as is the case of 
universal ectodomain CARs, which incorporate either avidin or 
a FITC-specific scFvs and recognize malignant cells with multiple 
antigens (66, 81–83). This is the case of solid tumor antigens 
targeted by CARs and include CD171, folate receptor α, human 
growth factor receptor 2 (Her2/neu), carcinoembryonic antigen, 
or the vascular endothelial growth factor receptor 2 (84). The 
physician has no effective way to intervene to achieve greater con-
sistency once the cells have been administered. The switch mol-
ecule technology is designed to separate the dual costimulatory 
domain, MC, from the antigen recognition domain and moves it 
onto a separate molecular switch that rimiducid can control. This 
separation is designed to control the degree of activation of the 
CAR T-cells through adjustments to the schedule of rimiducid 
administration, but still in a tumor-dependent manner. This 
additional control system allows the engineered T  lymphocyte 
to be “turned off ” after the disease remission and tumor elimi-
nation with negative MRD. Thus, theoretically, healthy B-cells 
may repopulate the bone marrow of the leukemia or lymphoma 
patient. In addition, this strategy can offer an increased specificity 
for malignant cells, which can be extended for solid tumors as 
well, as presented in Table 1.
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Another safety concern is related to insertional mutagenesis 
potential of integrating vectors. Although an important step 
was made by switching from oncoretroviral vectors to lentiviral 
vectors, which are considered as a safer alternative to the former 
ones due to a relative random insertional pattern. However, the 
oncogenic potential of lentiviral vectors has been previously 
reported (93, 94), and this might raise safety issues regarding 
the use of integrating vectors. Toward this end, efforts have been 
made to reduce the insertional mutagenesis potential of delivery 
vectors for CAR into T-cells. Generation of integration-deficient 
lentiviral vectors and inclusion of a scaffold/matrix-associated 
region (S/MAR) in the vector backbone displayed comparable 
cytotoxic effect of CAR T-cells engineered with non-integrating 
vectors to those that have the integration function unaffected 
(95). Non-integrating vectors due to the presence of S/MAR ele-
ment in their design are maintained in subsequent cell generation 
as an episome.

An alternative to lentiviral vectors could be represented 
by transposons, as they have been described as efficient gene 
delivery vectors and has been used for gene therapy applications 
in clinical trials (96–98). DNA transposons have been used as 
gene delivery vehicles instead of retrotransposons because their 
genomic insertions have not been associated with any human 
disease (99). However, delivery of the transgene is mediated by 
an encoding transposase that must be provided in trans from the 
same construct or a second construct, and this might add an extra 
level of complexity to the experimental setup.

Yet, another alternative to both viral and non-viral delivery 
could be represented by the newly described gene editing tool, 
named CRISPR/Cas9 (100, 101). This technology offers the 
possibility to target virtually any genomic site in a RNA-guided 
manner. The editing complex futures the Cas9 nuclease and a 
guide RNA, composed of a CRISPR RNA (crRNA) and a trans-
acting crRNA. Upon hybridization of the crRNA to the target 
sequence, Cas9 generates a double-strand break, which can be 
repaired by non-homologous end joining, an event that can 
result in a loss of function of the genomic locus. In the presence 
of a donor DNA, by a mechanism of homology-directed recom-
bination, an exogenous sequence can be introduced into the 
targeted locus (102, 103). This knock-in capability of CRISPR/
Cas9 can be exploited to deliver CAR expression cassette in a 
desired genomic locus that does not interfere with gene function 
and therefore minimizing the genotoxic effects experienced with 
integrating viral vectors. Recent improvements in gRNA and 
Cas9 have reduced the off-target effects to a minimum, increas-
ing the chances of CRISPR/Cas9 to reach clinical applicability. 
Up to date, CRISPR/Cas9 already proved its applicability in the 
field of immunotherapy by enhancing CAR T-cells potency by 
knockout diverse genes to improve target recognition and cyto-
toxic activity (104). This technology can be used to knockout 
PD-1 or the endogenous TCR in NY-ESO-1 TCR transduced 
T-cells (104, 105). Therefore, CRISPR/Cas9 will surely make a 
difference in advancing immunotherapies for malignant disor-
ders, in both hematological and solid cancers. However, further 
improvements in delivery systems are still to be made, and as 
stated above, designing more specific and regulated systems 
are desirable to achieve a controlled activity of CAR T-cells. 

Still, interesting and exciting features of CAR T-cells have been 
described by Kawalekar et  al. (106), who have concluded that 
4-1BB CAR but not CD28 CAR induce memory formation and 
enhance mitochondrial function and antitumoral potential. 
Additional functions of CAR T-cells enhance their efficacy as 
strong persistence is achieved by FAS signal inhibition (107). 
Gattinoni et al. even suggest that early memory T-cell subsets are 
suitable candidate for CAR T-cell-based therapy (108).

CLASSiCAL CAR CONSTRUCTS

The design of CARs can vary, and currently, there are three 
generations of CARs (Figure 2). The main components of a CAR 
system are the CD3 zeta intracellular domain of the TCR, the 
TMD, the hinge, and a scFv. As a result of this composition, the 
CAR can be defined as a hybrid antigen receptor (109). This basic 
system describes the first generation of CARs.

The design of the scFv influences the efficiency and the speci-
ficity of CAR T-cells in targeting malignant cells. In most cases, 
it has a murine origin, which determines the anti-CAR immune 
responses. In spite of their specificity for tumor antigens, in some 
cases, CAR T-cells target and kill normal cells, resulting in B-cell 
aplasia, loss of immunity, and finally long-term effects on the 
patient’s health that may eventually lead to death (58, 110–112). 
To minimize these drawbacks, further more sophisticated designs 
of CARs must be developed.

In the design of CARs, key elements are the connection 
components such as the hinge (also called spacer) and TMD. 
They form a bound between scFvs and the intracellular domain 
and are responsible for CARs position and attachment in T-cell 
membrane. Besides this structural role in CARs design, the hinge 
morphology characteristics, such as their length and sequence 
are important for an efficient targeting. The intracellular domain 
acts as signal transducer. It was shown that the cytoplasmic 
segment of CD3 zeta plays the principal role due to different 
functions in activated T-cells and the resting ones. However, 
this cytoplasmic part cannot activate the resting T lymphocytes. 
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This cytoplasmic part cannot activate the resting T lymphocytes 
(113). Although the first-generation CARs showed promising 
results in  vitro (114–116), these data emphasized the need of 
at least secondary signal for the fully activation of T-cells. To 
overcome these limitations, second- and third-generation CARs 
were developed. By using a costimulatory domain, T-cell activa-
tion was achieved in vitro, with good persistence in vivo (117, 
118). Also, incorporation of more potent costimulatory domains 
enhances T-cells functions in  vivo, as shown by later studies 
(119–121).

Furthermore, the absence of highly specific proteins on the 
surface of some tumor cells is not a drawback for this therapy 
because CARs can have different modifications (first generation 
versus third generation) to increase its antitumor activity and are 
very specific for cell surface molecules (122–124). These receptors 
recognize and bind different structures, from protein epitopes to 
glycolipids and carbohydrates (125).

An optimal target for CAR T-cells would be a tumor-specific 
antigen. This would be ideal, but in ALL, no tumor-specific 
antigens are targeted efficiently. The main difference between a 
normal and leukemia cell is the antigen expression abundance, 
increased in the malignant one. In B-cell ALL, it is more efficient 
to develop CAR constructs depending on B-cell lineage, as shown 
in Figure 3.

By adding an additional costimulatory signaling domain 
such as CD28 or 4-1BB at the CD3 zeta intracellular signaling 
domain, one can build second-generation CARs. Both CD28 
and 4-1BB (CD137) costimulatory signaling domains are related 
with clonal expansion of activated T-cells, being recognized to 
be related to longtime survival of activated T-cells than CD28 
signals (50, 126–128). By further adding another two or more 
costimulatory signaling domains like CD27, CD28, 4-1BB, ICOS, 
or OX40 at the CD3 zeta intracellular signaling domain, one can 
build third-generation CARs (81, 129). CD27, ICOS, and OX40 
(CD134) costimulation with CD28 or 4-1BB improves T-cell 
survival (130–132).

Costimulatory signaling from CD28 is associated with 
improved CAR T-cell expansion and persistence after their 

infusion into the patient’s blood stream, with excellent results in 
indolent B-cell malignancies, as well in ALL. CD28 costimula-
tion is usually provided by antigen-presenting cells and are 
linked to various signaling molecules of the TNF receptor 
family such as OX40 and 4-1BB (20). CD28-containing CARs 
were investigated in a phase I clinical trial in which eight 
chronic lymphocytic leukemia (CLL) and one ALL patients were 
recruited (24). Although eight of the patients tolerated the CAR 
infusion well, one of them had a rapid clinical deterioration and 
died 48 h following the infusion. Others developed fever with 
or without arterial hypotension. One of the CLL patients had a 
partial response, and none of them had B-cell aplasia. The ALL 
patient was treated in remission, developed B-cell aplasia even if 
the other hematopoietic series were recovered, a clinical status 
that lasted until he received an allogeneic SCT after 8  weeks. 
For this trial, the persistence of the infused CARs was inversely 
proportional with the tumor burden, being enhanced by prior 
cyclophosphamide administration. This is an additional reason 
for the support of lymphodepletion chemotherapy before CAR 
infusion.

SeCOND-GeNeRATiON CAR 
CONSTRUCTS FOR HeMATOLOGiCAL 
MALiGNANCieS

In present-day clinical trials for hematological malignancies, 
the most widely used CARs for immunotherapy are the second-
generation CARs because of their enhanced viability and effi-
ciency in vivo (74, 133). Even if these CARs show a therapeutic 
potential in the treatment for ALL, severe side effects are a major 
drawback including CRS and B-cell aplasia (116, 134). Current 
state-of-the-art CAR design aims at programming T-cells using 
suicide genes transfer in CAR T-cell constructs (135).

Most of targeting immunotherapies involving CAR T-cell 
used in B-cell ALL are against the B-cell surface protein CD19. 
This receptor expresses during B-cell development and is specific 
to a single-cell lineage. Moreover, this antigen is expressed in 
almost all B-cell malignancies such as B-cell chronic lympho-
blastic leukemia, B-cell ALL, and non-Hodgkin lymphomas. 
Immunotherapy based on CARs is at its beginnings and various 
medical centers throughout the world have begun to assess their 
efficacy both in preclinical setting and in phase I/II clinical trials. 
Still, sometimes because of different manufacturing and delivery 
of CARs between various centers, it is somewhat difficult to com-
pare the results obtained between various researchers. This has 
lead to outcome differences due to the costimulatory sequence 
in the CAR construct. One such example is the optimization of 
CD19 CAR T-cell immunotherapy in multicentric clinical trials 
because of the lack of uniformity of the infused cellular product.

Anti-CD19 CAR T-cell products may vary depending on the 
institutional design, doses, and T-cell activation and transduction 
methods. Imai et al. have developed a second-generation CARs, 
anti-CD19-BB-zeta, by combining an anti-CD19 scFv, a hinge, 
a CD8 alpha TMD, a CD3 zeta-signaling domain with a 4-1BB 
co-signaling domain for B-cell ALL therapy. This CAR construct 
presented a durable expression due to the retroviral transduction 
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mechanism and an efficient cytotoxic activity against ALL cells 
(136, 137). Another example using the 4-1BB co-signaling 
domain for CD19+ ALL cells is the CTL019 construct, which 
was obtained using a lentiviral vector. CAR T-cells with this 
construct were administrated for B-cell ALL patients and showed 
an increased expansion in vivo more than 1,000 times in com-
parison to the initial dose injected. Good results are reported 
as a 90% complete remission rate in 30 patients with relapsed 
and refractory B-cell ALL (110, 124). CAR-based therapy that 
involves the 4-1BB co-signaling domain can be of high clinical 
potential for relapsed Ph-positive ALL patients, as shown by Zhu 
et al. (138). A negative aspect of this therapy refers to the side 
effects as described above: B-cell aplasia and CRS (124, 139), as 
well as encephalopathy. Neurological adverse effects have been 
associated with CAR T-cell activity, all of them being simultane-
ous or after the CRS. Such side effects include aphasia, confusion, 
hallucinations, delirium, or even seizures and are thought to be 
related to CD19 (140–142). Neurological complications following 
CAR T-cell infusion is closely related to CRS, a systemic inflam-
matory response incompletely understood so far (43). Similar 
effects have been described for blinatumomab in Ph-negative 
relapsed or refractory B-cell ALL, but the mechanism of action is 
incompletely understood.

By respecting the CD28 co-signaling domain, the construct 
was integrated in an additional anti-CD19 second-generation 
CAR construct named 19-28z. This newly described construct 
proved good results for relapsed or refractory B-cell ALL patients 
(143). This therapy was shown to have 88% complete response 
(CR) rates in16 patients with relapsed or refractory B-cell ALL. 
Still, side effects such as CRS were reported, with high values 
of C-reactive protein as an indicator of its severity. Another 
second-generation CAR construct incorporating CD28 signal-
ing domain proved efficiency for 21 chemotherapy-resistant B 
precursor ALL patients (70% complete remission rate) without 
encountering prolonged B-cell aplasia after. In addition, the 
other side effects such as CRS were reversible (144). CAR 
T-cell-based therapy represents external stimuli that might be 
significant on the immune system. Hill et al. have addressed this 
question and investigated the epidemiology of infections 90 days 
following CAR T-cell infusion for 133 patients diagnosed with 
a B-cell malignancy (145). They concluded that the incidence 
and type of infections are correlated to the patients with B-cell 
malignancies who have received salvage chemoimmunotherapy. 
The ones with a greater immunosuppression had a higher risk 
of infections. Still, life-threatening or rare infections were rare, 
being present especially in the ones who received lymphodeple-
tion chemotherapy. Thus, efficient strategies to prevent infections 
must be developed to optimize CAR-T.

In some cases, the responses to an anti-CD19 CAR T-cells 
immunotherapy are not as good as expected, especially when 
B-cells lose their receptors expression (146, 147). Therefore, the 
need to identify other suitable targets on B-cells emerged. Other 
CAR-Ts focus on CD22 surface receptor. The CD22 antigen is 
another B-cell antigen family member, in fact a Siglec-family lec-
tin, which is expressed during B-cell development and lost upon 
the differentiation to plasma cells. The tissue distribution of CD22 
antigen is similar to CD19 (148). m971 anti-CD22 monoclonal 

antibody is a part of the derived second-generation CARs (m971-
28z or m971-BBz) and have showed good results in treating B-cell 
precursor ALL patients (149).

Some B-cell ALL patients overexpress the thymic stromal 
lymphopoietin receptor (TSLPR) due to rearrangements in 
order of translocations or deletions on CRLF2 gene, which 
encodes it (150, 151). This receptor may actually be a new target 
for developing new CAR constructs. Qin et  al. have used in 
their study two CAR constructs: a first-generation CAR and a 
second-generation CAR (152). The long one included a CD3 
zeta intracellular domain, a 4-1BB co-signaling domain, a CD8 
TMD, and the scFvs for TSLPR targeting. The shorter CAR 
proved a greatest activity than the longer one, even when it was 
comparatively analyzed with second-generation anti-CD19 and 
anti-CD22 CAR constructs.

PReCLiNiCAL MODeLS OF CARs iN ALL

One of the first documented adverse reactions on CAR-T 
in preclinical murine models is CRS. It has been shown in a 
murine model that CAR T-cell infusion-associated CRS can be 
prevented through the administration of the kinase inhibitor 
ibrutinib (42). Another potential side effect of CAR T-cell use is 
graft-versus-host disease (GVHD). To the present date, GVHD 
is not a real concern regarding CAR-T side effects (153). Provasi 
et al., using zinc finger nucleases against the endogenous TCR α 
and β genes, managed to edit Tg T-cells to express only Willms 
tumor-1 (WT-1)-specific TCRs in a Hu-PBL-severe combined 
immunodeficiency (SCID) animal model, a SCID mouse grafted 
with human peripheral blood lymphocytes, of WT-1+ leukemia. 
The results of the study have shown that the mice receiving edited 
WT-1+ T-cells developed neither leukemia nor GVHD 50 days 
postleukemic transplantation, while mice receiving un-edited 
WT-1+ T-cells had all succumbed to GVHD and mice that did 
not receive PBMC all died of leukemia (154). Years later, in two 
clinical reports, patients who underwent allogeneic SCT also 
received infusions of anti-CD19 CAR allogeneic T-cells from 
their initial transplant donors. The first report did not identify 
any GVHD in any of the 8 transplanted patients (155), while the 
second report showed that 1 of 20 patients developed a worsening 
of a pre-existing chronic GVHD (156).

Across the large variety and number of preclinical publica-
tions focusing on CAR T-cells, very few of them document 
toxicity in animal models as it would seem normal with any 
new compound that has a potential use in a clinical setting. 
Paradoxically, there are numerous studies reporting the 
clinical use of CAR T-cells even though their safety has not 
yet been evaluated extensively in vivo. An explanation for this 
phenomenon could include factors such as the large variety 
of engineered CAR cells, the differences between mouse and 
human physiology and T-cell biology and the differences in 
drug metabolism capacity in each species. An example that 
would confirm this hypotheses would be the fact that one 
in  vivo study involves CAR T-cells targeting the Her2/neu 
antigen, proving the antineoplastic activity and the biological 
safety of Her2/neu-specific CAR T-cells in transgenic animals 
with lymphodepletion (157), yet the clinical trial involving the 
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same engineered cells showed that one of the patients died 
due to a massive CRS (158). The majority of preclinical studies 
investigating CAR T-cells have focused on verifying their speci-
ficity and potency for antineoplastic activity, the key advantage 
of CARs in vivo being the fact that they possess the ability to 
redirect T-cell effector function without HLA-restriction. The 
in  vivo testing of CARs expresses several drawbacks. First of 
all, the successful engraftment of T-cells in immunocompro-
mised mice is hard to achieve due to the residual elements of 
the mouse’s innate immune system; another drawback is the 
fact that even if the engraftment is successful, most of the mice 
develop GVHD in long-term studies (more than 60 days) (159), 
which stuns the research on the long-term effects of CAR T-cells 
in animal models. CAR T-cells target human antigens, which 
are restricted to transplanted tumor cells in mice, rendering 
the assessment of their effects on healthy tissues in mice models 
hard to achieve (46). The humanized NSG mouse has been 
an indispensable tool for evaluating short-term CAR T-cell 
activity in  vivo. CARs that act against ROR1 for mantle cell 
lymphoma and CD44v6 for AML and multiple myeloma have 
been tested in humanized NSG mice extensively (160, 161). 
Humanized mice have been also used to assess the function 
and efficacy of costimulatory domains such as CD27, ICOS, 
CD28, and 4-1BB, due to their potential enhanced efficiency in 
targeting malignancies and augmenting CARs safety (120, 130). 
In a humanized animal model, the Hu-PBL-SCID NSG mouse, 
engineered T-cells showed the ability to destroy a cancer cell line 
that expressed prostate tumor antigens (80). Modern genetic 
engineering methods like messenger RNA transduction have 
been used to generate CAR NK cells and to successful target 
a non-Hodgkin’s lymphoma in a Hu-PBL-SCID NSG model. 
The study confirmed that activated expanded peripheral blood 
NK  cell (PBNK) became highly cytolytic, eradicating resist-
ant CD20+ B-leukemia/lymphoma after nucleofection with 
anti-CD20 CAR messenger RNA (162). CAR-modified PBNKs 
are anti-CD20 CAR-modified expanded NK cells significantly 
mediate immunotherapy-resistant B-cell malignancies. 
Moreover, authorities have approved two clinical studies using 
CAR-expressing NK cells for the treatment of B-lineage ALL. 
One of the clinical studies (NCT00995137) is aimed to identify 
the maximum tolerance dose of genetically modified NK cells 
for patients with relapsed or refractory B-lineage ALL at St. 
Jude Children’s Research Hospital in Memphis, United States. 
In this clinical study, allogeneic NK cells were first expanded 
by co-culture with irradiated K562 cells that were modified 
to express membrane-bound IL-15 and 4-1BB ligand (K562-
mb15-4-1BBL) overexpression of these proteins promotes 
selective growth of NK cells. The in vitro expanded NK cells were 
then transduced with vectors encoding a signaling receptor that 
binds to CD19, which is only expressed on B-lineage ALL cells. 
A similar study (NCT01974479) performed by the National 
University Hospital in Singapore investigated the persistence 
and phenotype of redirected NK  cells in participants with 
residual B-lineage ALL after chemotherapy. In that study, donor 
NK cells were activated and expanded by K562-mb15-4-1BBL 
cell line combined with IL-2 and then transduced with vectors 
encoding a signaling receptor targeting CD19 (163, 164).

Even if current animal models for CAR T-cells have a poor 
predictive nature, these may relate to the biological differences 
between species, a barrier that could be overcome by developing 
new humanized mice models. Studies in the last decade have 
focused mainly on their clinical applications with toxicity being 
neglected as a main research aim. Most of the clinical studies 
report toxic effects on these engineered cells, which in turn will 
cause a stronger will of the researchers to better understand the 
potential mechanisms of in  vivo toxicity by developing better 
animal models to this purpose.

GeNeTiC eNGiNeeReD T-CeLLS FOR 
THe iMMUNOTHeRAPY OF ALL

State-of-the-art therapies for ALL have been developed during 
last decade, with a special emphasis on the role of immunother-
apy and T-cells genetic engineering. The first method regarding 
T-cells genetic engineering was gene transfer of α and β chain 
subunits of cloned T-cells receptors specific to tumor antigens. 
The strategy already succeeded for melanoma (165), but it was 
shown to have limitations in B-cell malignancies because of 
their restrictions to HLA phenotypes. CAR-T is an attractive 
targeted immunotherapy, which has proved its potential as an 
alternative for curing a lot of blood malignancies, especially 
B-cell ALL.

The outcomes are sometimes different as the different 
T-cell subsets are different regarding their ability to eliminate 
the malignant B lymphocyte, even in xenogenic models of the 
disease (166). This is of crucial importance in B-cell malignan-
cies that have a variable T-cell subset, as is the case of B-cell 
ALL (51). The overcoming of this problem was attempted 
by manufacturing CARs from well-defined CD4+ and CD8+ 
subsets (129). Even though the selection of manufacturing 
is slightly more complex, it allows the infusion of a uniform 
cellular graft, and thus, it made possible to correlate the CAR 
dosage and toxicity to disease response properly. In B-cell 
ALL, CD4+ T-cells formulated with either bulk CD8+ T-cells 
or central memory cells have led to almost universal CR rates 
in both arms of the study. A high CR rate was later confirmed 
by other groups that used engineered T-cells from bulk T-cell 
subsets (46, 52, 53).

Grupp et al. (45) describe the use of CARs for B-cell ALL in 
patients with active disease with multiple relapses after chemo-
therapy. One of the two patients underwent an unrelated cord 
blood transplant at the time of CAR infusion with PBMC that 
were 68% of donor origin, whereas the other patient received 
autologous cells. Both patients went into remission. The cord 
blood-transplanted patient had a relapse 8 weeks following the 
T-cell infusion, with CD19-negative leukemic cells. This suggests 
that a new leukemic clone emerged and escaped the immune rec-
ognition of the CAR. Both patients had a systemic inflammatory 
syndrome and transient neurological symptoms.

MRD-negative CR is higher, and CAR persistence is longer in 
B-cell ALL patients who were treated is two clinical trials that used 
CARs that were different and incorporated 4-1BB-costimulated 
CARs, when compared to two other trials that incorporated a 
CD28-mediated costimulation (46, 53). These differences in the 
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CAR construct, which included the scFv, the spacer, or the TMD, 
were additional to other differences in trial comparison such as 
the clinical characteristics of the patients, the lymphodepletion 
chemotherapy, or the schedule of treatments. From all of these 
differences, the choice of lymphodepletion chemotherapy may 
have the most profound impact on the transferred T-cell expan-
sion and persistence in the patient. This impact might be due 
to IL-7 and IL-15, highly used in CAR-based immunotherapy 
(167, 168). B-cell ALL patients who were treated with cyclophos-
phamide or fludarabine lymphodepletion before CAR infusion 
had a good T-cell expansion and persistence in vivo, whereas the 
ones who had received cyclophosphamide with fludarabine had 
a shorter in vivo T-cell expansion.

For patients who undergo an allogeneic SCT, there is a theoret-
ical risk of inducing graft-versus-host-disease by the polyclonal 
activated T-cells. The alternative approach to replace polyclonal 
CAR T-cells is the transferring of the CAR into T lymphocytes 
with a well-defined specificity through their native antigen 
receptor. Thus, it will exclude the alloreactive cells (169–171). 
This principle was assessed both in the preclinical setting and 
in a trial for neuroblastoma, and the patients were treated with 
both polyclonal T-cells and EBV-specific T-cells genetically 
modified to express the GD2 neuroblastoma antigen (172, 173). 
The results were afterward confirmed in B-cell hematological 
malignancies in a trial that included high-risk CLL, trans-
formed CLL, and ALL. All of the patients had relapsed or were 
at high risk of relapse after a previous allogeneic SCT (155). The 
CARs were administered without preinfusion chemotherapy. 
T lymphocytes were activated and expanded with CMV, EBV, 
and adenoviral antigens and only afterward transduced with the 
CD19 CARs, thus resulting cells active against all three types 
of viruses due to their native TCR. Eight patients were treated 
and infusions were tolerated, without any systemic inflamma-
tion or signs of acute GVHD. The CARs were detected in the 
peripheral blood of all patients 12 weeks following the infusion, 
with objective responses achieved in 2 of 8 patients, 1 complete 
remission and 1 partial remission. Still, both remissions were 
transient. It is worthwhile to mention that the patients for 
whom long-term follow-up was possible, no B-cell aplasia was 
recorded, as well as no agammaglobulinemia, suggesting that 
allogeneic virus-specific T-cells that express CD19 CAR are well 
tolerated, efficient against B-cell malignancies up to a certain 
point.

The tumor microenvironment plays an important role in the 
initiation and progression of a malignancy, including resistance 
to chemotherapy (137, 138), as previously shown by our group. 
Lim and June have addressed this issue, linking CAR-T to tar-
geting the malignant microenvironment as even if engineered 
T-cells may specifically recognize and target a cancer cell, the 
microenvironment has a suppressive effect on the CAR T-cells, 
thus limiting its efficacy (139). Thus, combination therapy with 
checkpoint inhibitors may provide a viable solution for enhanc-
ing the antitumor effect of the CAR T-cells, as it was proven 
by the team of O’Rourke et al. in solid malignancies (140). A 
good strategy would be to develop the so-called armored CARs, 
which also express the very efficient cytokine IL-12, which has a 
pleiotropic on both innate and adaptive T lymphocytes (141). To 

further augment the antitumor activity, the fourth-generation 
CAR that contains a transduction domain to promote produc-
tion of a T-cell-activating cytokine such as IL-12 (so-called 
armored CAR T) are currently being researched (174, 175). The 
choice of the “armor” agent is based on the knowledge of the 
tumor microenvironment and the roles of other elements of the 
innate and adaptive immune system. Although there are several 
variants of armored CAR T-cells under investigation, here, we 
focus on three unique approaches using IL-12, CD40L, and 
4-1BBL. These agents have been shown to further enhance CAR 
T-cell efficacy and persistence in the face of a hostile tumor 
microenvironment via different mechanisms. Other molecules 
that could be useful in combination with CARs, which could 
also be used to remodel the malignant microenvironment, is 
the synNotch receptor system, which may aid in producing 
specific secreting payloads in response to the recognition 
in a target antigen, thus turning the CARs into the so-called 
pharmacytes (142). The synNotch system is a flexible method of 
programming cells to find and respond to molecular signals of 
disease. The highly customizable system, known as synNotch, 
can be used to deliver therapeutic molecules to a disease site or 
modulate local immune activity. Roybal et al. have used syn-
Notch to instruct immune cells to carry out specific activities 
in the presence of their targets, such as delivering therapeutic 
antibodies to tumors or triggering the release of signaling 
molecules that can dampen overactive immune responses 
(176). The synNotch system is an adaptation of a naturally 
occurring receptor molecule called Notch, which facilitates 
critical cell-to-cell communications in most organisms. Notch 
receptors are embedded in cells’ outer membranes, with func-
tional components protruding into both the cell’s interior and 
its external environment. When the exterior part of a Notch 
receptor connects with its molecular partner, its interior end 
is freed from the rest of the molecule and moves to the cell’s 
nucleus, where it activates specific genes.

Thus, CAR T-cells may potentially represent a new age in 
cancer immunotherapy, with endless possibilities that must be 
investigated in hematology and oncology, both in the preclinical 
setting and in phase I to phase III clinical trials, before being 
approved as standard of care.

CONCLUSiON

Chimeric antigen receptor T-cells have been reported to show 
an exceptional activity against B-cell malignancies, may it be 
CLL, non-Hodgkin’s lymphomas, or ALL in the preclinical set-
ting, as well as in early clinical trials. Despite the excellent results 
obtained so far, intriguing questions related to the engineering 
and their clinical activities have emerged. We still do not know 
exactly the optimal method for transferring CARs into T-cells, 
may be it lentiviral or retroviral, or which specific costimulatory 
domain to use. CARs are also related to severe side effects such 
as tumor lysis syndrome or release of inflammatory cytokines, 
as well as their effectiveness in replacing the hematopoietic SCT 
altogether or being just a bridge to transplant as consolidation 
therapy. Still, the results of CAR T-cells were far from being 
imaginable 10 years ago, and numerous trials are expanding these 
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opportunities and answering these questions. Up to this point, we 
can only state that CAR T-cells represent an interesting option 
for treating B-cell ALL, which became one of standard of cares in 
this type of cancer.
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