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Tuberculosis (TB) is a multifactorial disease governed by bacterial, host and environ-
mental factors. On the host side, growing evidence shows the crucial role that genetic 
variants play in the susceptibility to Mycobacterium tuberculosis (Mtb) infection. Such 
polymorphisms have been described in genes encoding for different cytokines and pat-
tern recognition receptors (PRR), including numerous Toll-like receptors (TLRs). In recent 
years, several members of the C-type lectin receptors (CTLRs) have been identified 
as key PRRs in TB pathogenesis. Nevertheless, studies to date have only addressed 
particular genetic polymorphisms in these receptors or their related pathways in relation 
with TB. In the present study, we screened the main CTLR gene clusters as well as CTLR 
pathway-related genes for genetic variation associated with pulmonary tuberculosis 
(PTB). This case-control study comprised 144 newly diagnosed pulmonary TB patients 
and 181 healthy controls recruited at the Bhagwan Mahavir Medical Research Center 
(BMMRC), Hyderabad, India. A two-stage study was employed in which an explorative 
AmpliSeq-based screening was followed by a validation phase using iPLEX MassARRAY. 
Our results revealed one SNP (rs3774275) in MASP1 significantly associated with PTB 
in our population (joint analysis p = 0.0028). Furthermore, serum levels of MASP1 were 
significantly elevated in TB patients when compared to healthy controls. Moreover, in 
the present study we could observe an impact of increased MASP1 levels on the lectin 
pathway complement activity in vitro. In conclusion, our results demonstrate a significant 
association of MASP1 polymorphism rs3774275 and MASP1 serum levels with the 
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development of pulmonary TB. The present work contributes to our understanding of 
host-Mtb interaction and reinforces the critical significance of mannose-binding lectin 
and the lectin-complement pathway in Mtb pathogenesis. Moreover, it proposes a 
MASP1 polymorphism as a potential genetic marker for TB resistance.

Keywords: c-type lectin receptor, MasP1, pulmonary tuberculosis, complement, ampliseq

1. inTrODUcTiOn

Tuberculosis (TB) remains a major global health problem 
affecting millions of people each year and ranking as the first 
leading cause of death from an infectious disease worldwide (1). 
Mycobacterium tuberculosis (Mtb), a highly successful intracel-
lular pathogen, is transmitted typically through aerosols into 
the respiratory system, thereby developing an infection. It has 
been well established that both innate and adaptive immune 
responses are required for host control of tuberculosis infec-
tion (2). In TB pathogenesis, the host cellular immune response 
determines whether an infection is arrested as latent or persis-
tent infection or progresses to the next stages, i.e., the active 
TB infection (3). Efficient cell-mediated immunity hinders 
tuberculosis infection by permanently arresting the infection at 
latent or persistent stage, but if the initial infection in the lung 
is not controlled or if the immune system becomes weakened, 
Mtb can cause active pulmonary and to a lesser extend extra-
pulmonary tuberculosis (4).

Several pattern recognition receptors (PRRs) expressed on 
various immune cells play a major role in the recognition of 
Mtb and transduce signals either directly via receptor ligation 
or through various adaptor molecules to initiate an appropriate 
immune response (5). The PRR family of Toll-like receptors 
(TLRs) has been well described for their contribution to the 
Mtb-associated immune responses (6–9). In addition, the family 
of C-type lectin receptors (CTLRs) has been recently discovered 
to also recognize Mtb, leading to a considerable modulation of 
Mtb-induced immune responses and have secured a promi-
nent and ongoing spot in TB research. Potent Mtb associated 
molecular patterns, including trehalose-6,6-dimycolate (TDM) 
and mannose-capped lipoarabinomannan (ManLAM), are 
recognized by CTLRs such as Mincle, MCL, and Dectin-2 
(10–13). Moreover, Dectin-1 has been shown to be important for 
generating reactive oxygen species and other proinflammatory 
responses (14–16), while the mannose-binding lectin (MBL) 
interacts with Mtb directly to activate the lectin pathway of the 
complement system (17). Therefore, CTLRs binding to Mtb 
are associated with the induction or the modulation of several 
important signaling pathways such as the Syk-CARD9-Bcl10-
MALT1 pathway, phagosome maturation, and complement 
activation (18–22).

Susceptibility to Mtb has a definite genetic component and 
host-genetic variation is thought not only to determine infection 
outcome, but also the risk of disease progression (3). Therefore, 
variants of genes involved in innate host-defense mechanisms 
have been associated with host susceptibility to TB (23). Various 
genome-wide association studies and candidate-gene studies 
demonstrate that several single nucleotide polymorphisms 

(SNPs) in certain genes are associated with TB susceptibility 
(24–26). In particular, SNPs in TLRs and their pathway adaptors 
have been widely associated with TB (27, 28). Additionally, par-
ticular SNPs in genes of the CTLR family have been investigated 
in case–control studies and found to be associated with TB sus-
ceptibility as reviewed in Goyal et al. (11). These include variants 
in the genes encoding for MBL and MASP2 (29, 30), which play 
a major role in the activation of the lectin complement pathway 
(Figure S1 in Supplementary Material). However, comprehen-
sive studies addressing susceptibility to Mtb in association with 
genetic variants in the entire set of CTLR genes and their related 
pathways have not been performed so far. Here, we aimed to 
identify specific SNPs in the genes of CTLRs or/and in the genes 
of the related pathway adaptors that may have an impact on 
TB susceptibility and/or disease severity in a well-phenotyped 
Indian population (31, 32) from Hyderabad, where the TB 
prevalence is very high (33). An AmpliSeq-based approach was 
used as innovative technique in a two-stage process to screen for 
relevant polymorphisms in 33 genes. In this study, we identified 
an intronic SNP in the MBL-associated serine protease (MASP1) 
gene, an important component of the lectin pathway of the 
complement, associated with pulmonary tuberculosis (PTB) 
infection in our population.

Identification of genetic variations among genes of the CTLR 
pathways that influence the susceptibility to TB may lead to a 
better understanding of the pathogenesis and the development of 
novel strategies for the prevention and treatment of this signifi-
cant infectious disease.

2. MaTerial anD MeThODs

2.1. subject and samples
We carried out a case–control study to determine whether com-
mon variants in genes involved in CTLR-dependent responses 
might be associated with the development of PTB in an Indian 
population. For that purpose, 144 PTB case patients and 181 
unrelated healthy controls were recruited at the Mahavir 
Hospital and Research Center in Hyderabad (India) between July 
2011 and November 2013. Criteria for inclusion of cases were: 
(i) admission in the Hyderabad Directly Observed Treatment, 
Short-course (DOTS) program at Mahavir Hospital, and (ii) new 
diagnosis of pulmonary sputum smear positive TB disease. The 
diagnostic criterion for PTB was defined as the presence of one 
of the following: at least 2 initial sputum smear examinations 
positive for Acid-Fast Bacilli (AFB) or sputum examination 
positive for AFB and radiographic abnormalities consistent with 
active PTB (34). Criteria for inclusion as healthy control were: 
(i) absence of apparent acute or chronic pulmonary diseases 
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Table 1 | Summary of case–control study characteristics.

Parameter cases (n = 144) controls (n = 181) p-Value

Age (years) 27 ± 11 31 ± 10 0.0008
Gender (M/F) 71/73 103/78 0.1808
BMI (kg/m2) 16 ± 2.6 24 ± 4.7 <2.2e−16
Smoking (yes/no) 32/112 29/151 0.1980

Statistical analysis was performed using T-test (for age and BMI) and exact Fisher-test 
(for gender and smoking).
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or diseases of other origin, (ii) clinically in good health at the 
time of enrollment, and (iii) a negative history of TB disease. All 
subjects were from the same geographical origin, and residing 
in Hyderabad.

2.2. ethics statement
All study participants gave written informed consent in accord-
ance with the Declaration of Helsinki. The study was approved by 
the institutional ethics committee for bio-medical research at the 
Bhagwan Mahavir Medical Research Center, Hyderabad, India 
(date: March 11, 2011).

2.3. study Design
This study was divided in two phases: a genomic stage with an 
AmpliSeq-based discovery approach followed by a validation 
through iPLEX MassARRAY genotyping of candidate SNPs. In 
Phase 1 (discovery), we used 40 samples from each cases and 
controls group for Next Generation Sequencing (NGS)-profiling 
of selected regions (detailed in the AmpliSeq Library Preparation 
section below). For this initial phase, the 40 case samples were 
chosen based on the severity of the disease (determined by the 
chest X-rays and sputum microscopy). The population charac-
teristics are provided in Table 1. After NGS, association analysis 
was performed at allele and genotype level. Candidate SNPs were 
then subjected to a second phase (validation), comprising the 
genotyping of all remaining cohort samples for the candidate 
SNPs obtained from the explorative approach. The genotyping 
was performed using the MassARRAY iPLEX Platform (Agena 
Bioscience).

2.4. Dna extraction
Peripheral blood samples were collected from 144 PTB patients 
and 181 unrelated healthy controls. DNA was isolated from blood 
samples using QIAamp DNA Blood Mini Kit (Qiagen; Hilden-
Germany) following manufacturer’s instructions. DNA samples 
were stored at −20°C until further usage.

2.5. Discovery Phase
2.5.1. AmpliSeq Library Preparation
The targets for this study included the C-type lectin receptor genes 
encoded in two gene clusters of chromosome 12: the Dectin-1 
cluster (221 kb, comprising MICL, CLEC2, CLEC9A, CLEC12B, 
CLEC1, Dectin-1, and LOX1), and the Dectin-2 cluster (812 kb, 
comprising BDCA2, DCIR, Dectin-2, MCL, and MINCLE). Entire 
genes (including introns and exons) as well as several intergenic 
regions (including 1  kb of the 5′ flanking regions of all genes) 
of both clusters were selected for sequencing. In addition, an 

extensive literature search was performed to ensure the inclusion 
of SNPs in other CTLRs or adaptors in their signaling pathways 
that have been already associated with PTB and/or fungal infec-
tions as well as lung infections (35–48) as targets in our AmpliSeq 
panel (see Table S1 in Supplementary Material for final targets list). 
This selection was supplemented with Tag-SNPs, SNPs that were 
informative of common gene variation, of the other important 
CTLR receptors/adaptors. Tag-SNPs lists were extracted from 
the UCSC Genome Browser (https://genome.ucsc.edu/), using 
the Affymetrix Genome-Wide Human SNP Array 6.0 (Assembly 
GRCh37/hg19) as reference. All targeted regions were encoded in 
a bed file for megaplex primer pair design using the AmpliSeq 
Designer version 3.0.1 (Thermo Fisher Scientific, USA). The 
design resulted in 83% effective coverage of the targeted regions. 
The final AmpliSeq design (Table S1 in Supplementary Material) 
comprised 1,470 amplicons, with expected amplicon sizes 
between 125 and 275 bp, divided in two pools of 739 and 731 
amplicons.

DNA-AmpliSeq libraries were prepared using the Ion Ampli-
Seq™ Library Kit 2.0 (Thermo Fisher Scientific, USA), following 
manufacturers’ instructions. In brief, 10 ng of DNA (for each pool) 
from 80 samples (40 cases/40 controls) were used as input for the 
HiFi-amplification with the designed primer mix. Resulting PCR 
products were subjected to partial primer digestion using FuPa 
reagent and subsequently ligated to barcoded Ion adapters (Ion 
Xpress™ Barcode Adapters Kit; Thermo Fisher Scientific, USA). 
The Ion Library Equalizer Kit was used to normalize library 
concentration to 100  pM, and AmpliSeq libraries were pooled 
for sequencing.

2.5.2. Sequencing
Library template pools were clonally amplified on Ion Sphere par-
ticles using the Ion PI™ Template OT2 200 Kit v2 on the instru-
ment Ion OneTouch™ 2 System (Thermo Fisher Scientific, USA). 
The sequencing chips were prepared using the Ion PI Sequencing 
200 Kit v2 (Thermo Fisher Scientific, USA), and sequenced on an 
Ion Proton Sequencer (Thermo Fisher Scientific, USA). In total, 
80 samples were multiplexed on 2 chips for sequencing. The raw 
sequence data in bam format have been stored in the Sequence 
Read Archive (SRA) at National Center for Biotechnology 
Information (NCBI), and can be accessed at NCBI homepage 
(https://www.ncbi.nlm.nih.gov/; accession number: SRP123407).

2.5.3. SNP Identification
The quality of the raw data in fastq format was checked using 
FastQC (http://www.bioinformatics.babraham.ac.uk/projects/
fastqc) and, thereafter, adapter sequences and low-quality regions 
(Phred Q score < 20) were trimmed using cutadapt (49). The 
trimmed reads for each sample were mapped onto the hg19 refer-
ence genome with Bowtie2 (50).

To identify SNPs, the Variant Caller plugin of the Partek 
Genomics Suite 6.6 (Partek Inc., St Louis, MO, USA) was 
used. SNPs were then kept for further analyses according to a 
minimal sequencing depth (>20 reads/sample), Minor Allele 
Frequency (MAF > 0.02) and the existence of Hardy-Weinberg 
Equilibrium (HWE) in control samples. All known biallelic SNPs 
passing these filters were then subjected to association analyses.
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2.5.4. Association Study
In order to control population stratification in the discovery 
phase, we used the LASER (Locating Ancestry from SEquence 
Reads) v. 2.01 software (51). All entries corresponding to the 
superpopulation code SAS (South Asian) were obtained from the 
1000 Genomes Project (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
release/20130502/). These included datasets from the following 
populations: Gujarati (GIH), Punjabi (PJL), Bengali (BEB), Sri 
Lankan Tamil (STU), and Telugu (ITU). All known SNPs anno-
tated by the 1000 Genomes Project were retrieved as vcf files 
and filtered for the amplicon regions covered in our AmpliSeq 
approach using VCFtools (52) and for a MAF  >  0.05 using 
the GenomeAnalysisToolKit (GATK v. 3.2) (53, 54). The 
filtered SNP list was then pruned using PLINK (55) in order to 
exclude less informative SNPs in linkage disequilibrium (LD). A 
total of 161 resulting SNPs from the reference populations were 
then used as input for LASER (51) to define the PCA space and 
derive the background coordinates for ancestry adjustment.

Using PLINK (55), we used logistic regression models for 
association analysis of genotypes under the assumption of an 
additive inheritance model, using the first coordinate to adjust 
for population stratification. Success of stratification correction 
was empirically assessed via quantile-quantile plots and statistical 
inflation estimates (lambda) using the gap package (56, 57) for 
R (58); R Development Core Team, 2013; http://www.R-project.
org/. Chi-square tests were also applied to test for allele frequency 
differences.

2.6. Validation Phase
2.6.1. iPLEX MassARRAY Genotyping
All SNPs with a statistical significance for association in the 
discovery (p < 0.2), and a nominal significance (p < 0.05) in the 
allele frequency distribution between groups were kept for follow-
up studies in the validation phase. In this stage, 245 additional 
samples (141 controls and 104 TB patients) from the cohort were 
analyzed by iPLEX MassARRAY at Agena Bioscience GmbH 
(Hamburg). Statistical analysis of all samples was performed 
using logistic regressions with PLINK (55).

2.7. Meta-analysis of association results
METAL (59) was used to combine the per SNP results from asso-
ciation studies in the discovery and validation phases. For this, 
the joint analysis used the p-values across the two phases taking 
sample size and direction of effect into account.

2.8. Measurement of MasP1, MasP3, and 
Map44 levels in serum
The serum concentrations of MASP1, MASP3, and MAp44 in 
106 healthy controls and 99 TB patients were measured using 
commercially available ELISA kits following the manufacturer’s 
instructions (Human MASP1 ELISA Kit, Cloud-Clone Corp., 
Human MASP3 ELISA Kit, Hycult biotech Inc., Human MAp44 
ELISA Kit, Hycult biotech Inc.). Diluted serum samples were 
incubated in the coated plates for the recommended time period 
and the amount of protein sandwiched was detected by a conju-
gated antibody and subsequent measurement of absorbance at 
450 nm.

2.9. Measurement of lectin Pathway 
complement activity
Serum from healthy donor blood samples was obtained by short 
centrifugation at 3,000 g at 4°C for 10 min. The serum MASP1 
and MBL levels were measured by ELISA (Human MASP-1 
ELISA Kit, Cloud-Clone Corp., Hycult Biotech Human MBL 
ELISA kit). To investigate the effect of increased MASP1 levels 
on complement function, recombinant human MASP1 (Creative 
BioMart MASP1-137H) was added at different concentrations 
(+13% rhMASP1, +26% rhMASP1, or +52% rhMASP1) to 
the donor serum, and complement activity after MBL pathway 
activation was measured using a commercially available ELISA 
kit (Complement system MBL pathway WIESLAB®) following 
manufacturer’s instructions. Briefly, six diluted serum samples 
were measured in duplicate along with blank, positive and nega-
tive controls, and incubated at 37°C for 1 h. After washing, the 
formation of terminal complement complex C5b-9 was detected 
using conjugated antibody and absorbance was measured at 
405 nm on a microplate reader (TECAN SpectraFluor Plus).

3. resUlTs

3.1. Discovery study (Phase i)
In the discovery phase of this study, we screened the Dectin-1 and 
Dectin-2 gene clusters, as well as other CTLR-relevant genomic 
regions for potential variants that might be associated with 
pulmonary tuberculosis in an Indian population. Our AmpliSeq 
design covered 83% of the targeted regions, and yielded over 
six hundred known SNPs that passed the filters for sequencing 
depth, MAF and HWE (Table S2 in Supplementary Material). 
Since a heterogeneous ancestral background can be presumed for 
our study population (Figure S2A in Supplementary Material), 
we corrected for potential stratification effects using the first 
coordinate derived by the LASER v2.1 software (51).

No inflation of association results was evident based on  
quantile-quantile plots and lambda results (lambda = 1.004; see 
Figure S2B in Supplementary Material). After association analysis, 
we selected 18 common variants as candidate SNPs for follow up 
studies in the next phase (Table S3 in Supplementary Material). 
These included 2 exonic SNPs in CD207 (chr. 2), 1 SNP in MASP1 
(chr. 3), 1 SNP in SFTPA1 (chr. 10), and 14 SNPs in CTLRs of the 
Dectin-clusters in chromosome 12, including an intronic variant 
in CLEC7A (Dectin1), a missense variant in CLEC1B, and several 
variants in CLEC12A (MICL) and CLEC12B. All these variants 
showed differences at nominal significance level in their allele 
frequency distribution between cases and controls, and yielded 
top p-values (cutoff p  <  0.2) when addressing their genotype 
distribution after ancestry adjustment using logistic regression 
models (Table S3 in Supplementary Material).

3.2. Validation (Phase ii): rs3774275 in 
MasP1 is significantly associated with Tb
Phase II of the study consisted in a MassARRAY-based genotyp-
ing of a total of 245 independent samples (141 controls and 104 
TB patients) addressing the aforementioned candidate variants. 
Primer design failed for four of the 18 selected variants, which 
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Table 2 | List of common variants subjected to validation through MassARRAY, showing the results of the association analysis after phase II, as well as the joint 
analysis performed integrating data from phases I and II.

snP_iD location Type of 
mutation

alleles association (p-values) effect

gene chr Position 
(grch38)

gene location Test allele Other Phase ii 
MassarraY

Meta-analysis

rs741326 CD207 2 70831704 Exonic Missense a G 0.6727 0.1292 Risk
rs2080390 CD207 2 70831095 Exonic Synonym. T C 0.7578 0.1726 Risk
rs3774275 MASP1 3 187247480 Intronic Intron var. g A 0.0340* 0.0028** Protective
rs1914663 SFTPA1 10 79612197 Intronic Intron var. T C 0.9470 0.2902 Protective
rs76427726 CLEC12A 12 9950609 Intronic Intron var. c T 0.0995 0.5581 Risk
rs35333643 CLEC12A 12 9957832 Intronic Intron var. g A 0.2096 0.9281 Risk
rs148864420 CLEC12A 12 9959987 Intronic Intron var. a C 0.2497 0.8767 Protective
rs648985 CLEC12A 12 9963978 Intronic Intron var. c G 0.7202 0.5305 Protective
rs2961541 CLEC12A 12 9964134 Intronic Intron var. c T 0.9937 0.3519 Protective
rs193214822 CLEC12A 12 9971188 Intronic Intron var. T G 0.2497 0.8767 Protective
rs114421141 CLEC12B 12 10007247 Intronic Intron var. c T 0.8407 0.4977 Protective
rs79967076 CLEC12B 12 10004170 Intronic Intron var. a G 0.6343 0.6586 Protective
rs112915340 CLEC12B 12 10018224 Intronic Intron var. g T 0.9492 0.4278 Protective

Our results showed one SNP (rs3774275 in MASP1) significantly associated with pulmonary tuberculosis (*p < 0.05; **p < 0.01). Effect of test allele is also shown.
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were excluded from the validation by the MassARRAY. SNP 
rs374147676 was monomorphic in the samples from this phase 
and was removed from further analyses. Among the remaining 13 
common variant candidates, only one SNP (rs3774275; MASP1) 
was nominally significant in phase II (p = 0.0340, Table 2), show-
ing the same direction of effects as in phase I.

Joint analysis of phases I and II confirmed our findings, with a 
highly significant association of rs3774275 with pulmonary tuber-
culosis (joint analysis OR = 0.61 95%CI = 0.43–086, p = 0.0028; 
see Table 2). The G allele of rs3774275 showed a protective effect 
(G allele frequency: 39% controls vs. 28% TB patients; Table 3). 
The GG genotype was twice more frequent in the healthy group 
(15%) than in the TB group (7%) (see Table 3).

3.3. increased MasP1 levels in serum  
of Tuberculosis Patients
Next, we measured the concentrations of MASP1, MASP3 and 
MAp44 in the serum. Our results show that the mean concentra-
tion of MASP1 was significantly higher in TB patients (median 
( )x = .8 68 g mlµ / ; mean ( ) /x = .9 06 g mlµ ) than in healthy 
donors (x = .6 68 g mlµ / ; x = .6 99 g mlµ / ; see Figure 1A). We 
could also observe an increase in MAp44 and a decline in MASP3 
levels in the serum of cases when compared to controls, although 
these differences did not reach statistical significance after adjust-
ing for BMI (see Figure 1A). The increase of MASP1 in TB patients 
might suggest an important role of this protein in the immune 
response against Mtb.

When the MASP1 serum concentrations were analyzed 
by genotype in each group, we could observe a slightly higher 
concentration of MASP1 in healthy donors with a GG-genotype 
(x = .7 74 g mlµ / ; x = .8 63 g mlµ / ) as compared to the other 2 
genotypes in the same group (x = .6 13 g mlµ / ; x = .6 73 g mlµ /
; see Figure 1B). Furthermore, the GG-genotype also exhibited 
higher MAp44 levels in the control group. However, none of the 
observed genotype-dependent differences reached statistical 
significance, probably due to the sample size and the proportion 
of GG-genotype in our population. Nevertheless, the association 

of rs3774275 with the MASP1 serum concentration has also been 
documented in other studies (38, 60), where a GG-genotype 
has been linked with an increased amount of MASP1, ranging 
between 11 and 13% over the other genotypes. In our popula-
tion, we observed a similar increase in the GG-genotype of the 
healthy study group. Median values of MASP1 were 20% higher 
for the GG-genotype when compared to the other two genotypes 
(Figure 1B). Interestingly, the MASP1 serum levels of the healthy 
GG-group were comparable to the concentrations observed in 
PTB patients.

We next examined radiographic abnormalities in chest 
X-rays from the TB patients (31) to determine the severity 
of the disease and to analyze whether the concentrations of 
MASP1, MASP3, or MAp44 might correlate with the progres-
sion of tuberculosis. The radiographic features here analyzed 
included the number of cavities, the extent of alveolar infil-
trates, and the presence of pleural effusion or lymph nodes. 
These characteristics and the overall percentage of lung affected 
were previously reported to correlate with TB severity (31). 
Nevertheless, we could not detect any correlation between the 
severity-criteria analyzed with neither MASP1 nor MASP3 or 
MAp44 levels (Figure 2). We also failed to observe a clear cor-
relation of MASPs levels with the BMI of the patients (Figure 
S3 in Supplementary Material).

3.4. MasP1 levels influence the lectin 
Pathway complement activity in vitro
Next, we tested whether small increases in MASP1 concentration, 
such as those observed in our study, could have any impact on 
the lectin pathway complement activation. We performed an 
in  vitro assay in which we added recombinant human MASP1 
to serum samples, and measured the MBL pathway activity 
using a commercially available ELISA kit. Our results showed 
a significant increase of the lectin pathway complement activity 
(p <  0.05) after addition of 13% more rhMASP1 to the serum 
samples (see Figure 3). This suggests that even a small increase 
in MASP1 concentration is sufficient to improve the efficiency 
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FigUre 1 | (a) Measurement of MASP1, MASP3, and MAp44 levels in serum of healthy controls and tuberculosis patients. Results after adjusting for BMI show 
significantly higher levels of MASP1 in tuberculosis patients (T-test; **p < 0.01) when compared to healthy controls. (b) Genotype-dependent distribution of MASP1, 
MASP3, and MAp44 levels across control and case samples. Shown are median values and 25–75th percentile box plots.

Table 3 | Distribution of allele and genotype frequencies for SNP rs3774275 
(MASP1) between controls and tuberculosis patients.

rs3774275 allele frequencies (n = 321)

allele all subjects healthy controls cases (Tb patients)

A 421 (65.6%) 219 (60.8%) 202 (71.6%)
G 221 (34.4%) 141 (39.2%) 80 (28.4%)

rs3774275 genotype frequencies (n = 321)

genotype all subjects healthy controls cases (Tb patients)

A/A 137 (42.7%) 66 (36.7%) 71 (50.3%)
A/G 147 (45.8%) 87 (48.3%) 60 (42.6%)
G/G 37 (11.5%) 27 (15.0%) 10 (7.1%)

Shown are the counts and percentages (in brackets) of the 321 samples genotyped for 
this variant (genotyping of four samples failed).
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4. DiscUssiOn

In the present work, we used an AmpliSeq-based approach to 
screen for TB-associated polymorphisms in several genes belong-
ing to the C-type lectin receptor family or their related signaling 
pathways. Coupling of this NGS approach with a MassARRAY 
validation phase allowed the identification of a polymorphism in 
MASP1 (rs37742752) that was significantly associated with disease 
susceptibility. Further analysis revealed increased MASP1 levels 
in serum of tuberculosis patients, constituting the first reported 
association between tuberculosis and this MBL-associated serine 
protease.

Previous studies were able to identify tuberculosis-associated 
variants in a few CTLR genes in different populations, such as 
for MRC2, MBL, or MASP2 in Chinese populations, DC-SIGN 
variants in African populations, and several variants of SPA-1, 
SPA-2, or MBL in diverse populations (29, 30, 61). In our study, 
we targeted these polymorphisms and expanded the sequencing 
approach to a total of 33 genes involved in CTLR signaling. We 
identified a significantly associated polymorphism in the MASP1 

of the MBL-dependent complement activity against pathogens. 
However, higher concentrations of rhMASP1 did not further 
increase the complement activation in our in vitro system.

http://www.frontiersin.org/Immunology/
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FigUre 2 | Correlation analysis of MASP1, MASP3, and MAp44 serum concentrations with disease severity, as measured by examination of chest X-rays. Shown 
are the p-values obtained after linear regression analysis for each of the following criteria analyzed: Percentage of lung affected, number of quadrants showing 
alveolar infiltrates, presence of pleural effusion, number of cavities observed and presence of lymph nodes. Shown are box plots with median values and p-values 
obtained for the correlation with eachMASP1-splicing product.
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gene, which has not been targeted in previous case-control 
studies addressing TB susceptibility. MASP1 plays a key role in 
the activation of lectin pathway of complement (Figure S1 in 
Supplementary Material). Mtb recognition via MBL leads to the 
activation of associated MASP1 homodimers, which catalyze the 
activation of MASP2 (17, 62, 63). MASP1 and MASP2 together 
cleave the C2 and C4 components of the complement and the 
cleavage products form C3 convertase. MASP1 is responsible for 

60% of C2a production needed to generate C3 convertase (63; 
Figure S1 in Supplementary Material), which further creates a 
membrane attack complex on bacterial surface ultimately killing 
the cell, while the by-products of the cascade such as C3b may 
act as opsonins enhancing the bacterial phagocytosis (22). While 
the role of C-type lectin MBL polymorphisms in tuberculosis 
have been studied in several populations (29, 30, 35, 64), not 
many studies have focused on the other components of the lectin 
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FigUre 3 | Measurement of lectin pathway complement activation in serum 
samples (n = 6) after addition of rhMASP1. As measured by an MBL pathway 
complement activation system, an increase in rhMASP1 leads to a slight 
enhancement of the complement activation in the serum samples (repeated 
measures ANOVA with Dunnett post hoc test; *p < 0.05).
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pathway. A recent work found no association between MBL, 
Ficolin-1, Ficolin-2, or MASP2 variants and TB susceptibility 
(65). In contrast, Chen et al. could observe a significant impact 
of MBL and MASP2 polymorphisms upon TB susceptibility in 
a Chinese population (29, 30). However, the important factor 
MASP1 has not been included in any studies addressing the 
genetic predisposition to TB so far. Our study demonstrates for 
the first time that MASP1 polymorphism rs3774275 is associated 
with TB susceptibility.

The SNP rs3774275 is located in the mutually exclusive splic-
ing region in intron 8 of the MASP-1/3 gene and is responsible 
for the alternative splicing and the regulation of serum levels of 
MASP1 protein and its splice variants MASP3 and MAp44 (38). 
Two independent studies by Ammitzboll et al. and Krogh et al. 
recently showed that rs3774275 is associated with MASP1 serum 
concentrations (38, 60). In both studies, they observed that the G 
allele was related to higher MASP1 levels (38, 60). In our study, 
we also observed higher MASP1 levels in the GG-genotype of 
the control population, but failed to reach statistical significance, 
probably due to the small sample size for this minor genotype. 
However, we were able to detect significantly higher levels of 
MASP1 in TB patients when compared to healthy controls. As 
shown by correlation of MASP levels with radiographic evalua-
tions, this increase seems to be independent of the severity of TB.

For long time, MASP2 had been considered the main effector 
of the lectin pathway of the complement and has been associ-
ated with several infectious diseases including Hepatitis C virus 
(HCV) infection, Pseudomonas infection, leprosy, as well as TB 
(29, 30, 66). Recent investigations on the mechanism of comple-
ment lectin-pathway activation suggest that MASP1 plays an even 
more central role than MASP2 (63). Nevertheless, MASP1 has not 
yet been studied in association to many infectious diseases. Some 

studies in HCV infection have demonstrated a high association 
between MASP1 activity and severe hepatic fibrosis (67, 68). In 
another study, a synonymous mutation in MASP1 in the MASP3 
serine protease domain was associated with early Pseudomonas 
aeruginosa colonization in cystic fibrosis patients (69). Our study 
is now the first study to demonstrate an association between 
MASP1 serum levels and pulmonary TB.

Recent research on MASP1, dissecting its physiological func-
tion, has revealed a much broader spectrum of its action than 
previously assumed. MASP1 is a promiscuous receptor and is 
shown to bind several ligands. MASP1 can not only activate the 
complement lectin pathway but also triggers cellular processes 
such as activation of signaling pathways. Megyeri et al. demon-
strated that MASP1 could activate the NFκB, p38-MAPK and 
Ca2+ signaling in endothelial cells in  vitro by cleaving surface 
protease activated receptor-4 (PAR-4) (62). Moreover, the p38-
MAPK activation in endothelial cells by rMASP1 led to IL-6 and 
IL-8 secretion along with other cytokines in vitro that were able 
to recruit neutrophils (70). PARs are also expressed on lung epi-
thelium (71), and therefore it may be speculated that high levels 
of MASP1 may help induce a similar response in lung tissue, 
activating cellular responses and recruiting phagocytes which 
may together contribute to bacterial clearance.

The pathognomonic increase of serum MASP1 observed in TB 
patients in our study reflects the important role that this serine 
protease plays in the immune response against Mtb. Interestingly, 
the rs37742752-GG-genotype, which is more frequent in healthy 
controls, correlates with elevated MASP1 expression as shown in 
this study and elsewhere (38, 60). Indeed, the MASP1 levels of 
healthy controls with the GG-genotype (x = .8 63 g mlµ / ) were 
comparable to those observed in TB patients (x = .9 06 g mlµ / ). It 
may be hypothesized that intrinsic upregulation of MASP1 (due 
to genetic predisposition), as observed in healthy controls with 
the GG-genotype, could play a protective role against infection 
with Mtb or the development of active TB in latently infected 
individuals. In the latter case, elevated MASP1 levels might 
contribute to prevent reactivation of latent Mtb. In this study, we 
could demonstrate a correlation between MASP1 levels and lectin 
complement activation in  vitro. It is likely that, as the amount 
of MASP1 in the serum increases, more MASP2 is activated 
and more C2 and C4 molecules are cleaved (see Figure S1 in 
Supplementary Material), which in turn leads to the formation of 
more C5b9 complexes and higher opsonization rates. Our results 
implicate that even a small increase in the amount of MASP1 
(+  13%) can significantly enhance the lectin pathway activity. 
However, we could not observe any dose dependency when 
higher concentrations of rhMASP1 were added to the system. 
The observed saturation might be explained by the interdepend-
ency between MASP1 and MASP2 in the activation of the lectin 
complement system. This activation might reach a plateau when 
MASP2 becomes the limiting factor, since it is responsible for the 
cleavage of C4—a process that cannot be engaged by MASP1 (see 
Figure S1 in Supplementary Material). Further in  vivo experi-
ments, as well as in vitro assays with blood samples of TB patients, 
are needed to confirm the effect of increased MASP1 levels on the 
lectin complement pathway and to investigate its potential impact 
on the phagocytosis and killing of Mtb.
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In the present study, we used a customized AmpliSeq approach 
to screen for relevant polymorphisms in 33 genes. Although this 
approach led to the identification of a TB-associated polymor-
phism in MASP1, which was strongly supported by the findings 
in the validation phase, certain limitations of the study have to be 
acknowledged. One polymorphism that was included in phase 
II of the study after NGS analysis resulted to be monomorphic 
during validation. This result might be related to the limita-
tions of the semiconductor sequencing technology. Although 
the High-Q chemistry of Ion Torrent has largely improved the 
sequencing output with regard to coverage, noise, and read qual-
ity (72), false positives are still possible at loci in proximity of 
homopolymers. Thus, AmpliSeq approaches should always be 
coupled with post-validation procedures. An additional chal-
lenge of this association study was the potential stratification of 
the population analyzed. Stratification in the Indian population is 
expected due to historical ethnic, religious and language barriers 
existing in the community, which might exert important genetic 
effects and should be addressed in association studies such as 
this one (73). Thus, in this study we used the LASER software 
to correct for potential stratification effects. Ancestry adjust-
ment resulted in a lambda value near 1 and no inflation of the 
association results (see Figure S2B in Supplementary Material). 
Finally, although rs3774275 showed a strong association with TB, 
it is still unclear how this SNP might be linked to other genetic 
variants or interrelates with other predisposing factors in this 
multifactorial disease. Moreover, due to the lack of control for 
asymptomatic Mtb infection in the control group of our study, 
it cannot be determined whether the rs3774275-GG-genotype 
confers protection against Mtb infection or resistance against the 
development of active tuberculosis disease. Considering that over 
90% of those who are infected with Mtb remain asymptomatic 
(74), latently infected individuals should be expected among our 
control group. Indeed, latent TB prevalence rate in endemic TB 
countries has been estimated to be as high as 79% (75). Further 
studies with controls classified for asymptomatic infection will 
help to clarify the type of protection that is associated with the 
MASP1 variant rs3774275.

In summary, in this study we investigated whether genetic 
variants of CTLR-related genes were associated with TB sus-
ceptibility. Our two-stage study allowed the identification of 
one MASP1 polymorphism (rs3774275) significantly associated 
with PTB. MASP1 had been considered the underdog of the 
lectin-dependent complement activation until recently, when a 
more prominent role of this protein has been dissected in the 
lectin pathway (63). Our results, which suggest an important 
role of MASP1 variants in tuberculosis, were reinforced by the 

observation of elevated MASP1 serum levels in PTB patients. The 
present work contributes to our understanding of host-Mtb inter-
action and highlights the critical role of the lectin-complement 
pathway in Mtb pathogenesis.
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