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Regulatory T cells (Tregs) are CD4+ T cells that are key players of immune tolerance. They 
are powerful suppressor cells, able to impact the function of numerous immune cells, 
including key effectors of inflammation such as effector T cells. For this reason, Tregs are 
an ideal candidate for the development of cell therapy approaches to modulate immune 
responses. Treg therapy has shown promising results so far, providing key knowledge 
on the conditions in which these cells can provide protection and demonstrating that 
they could be an alternative to current pharmacological immunosuppressive therapies. 
However, a more comprehensive understanding of their characteristics, isolation, acti-
vation, and expansion is needed to be able design cost effective therapies. Here, we 
review the practicalities of making Tregs a viable cell therapy, in particular, discussing the 
challenges faced in isolating and manufacturing Tregs and defining what are the most 
appropriate applications for this new therapy.

Keywords: regulatory T cells, suppression, immunotherapy, transplant, rejection, graft-versus-host disease

iNTRODUCTiON

One of the major challenges for allogeneic hematopoietic cell (HC) and solid organ transplantation 
is the continued interaction between donor and recipient immunity, requiring immunosuppres-
sive therapy to prevent rejection and/or graft-versus-host disease (GvHD). Unfortunately, many 
standard immunosuppressive drugs cause global immunosuppression, impairing the beneficial 
immune response to infections and tumor surveillance. In addition, many pharmacological agents 
also have untoward side effects, including steroid induced diabetes, osteoporosis and proximal 
myopathy, causing morbidity and mortality (1). Using novel cellular therapies, such as regulatory 
T cells (Tregs), to provide suppressive function could provide an alternative solution to conventional 
pharmacological agents.

Regulatory T  cells are a subset of T  cells that act a key regulators of immune tolerance and 
essential for maintenance of immune homeostasis. Tregs are typically characterized as CD4+ 
CD25+CD127lowFoxp3+ T cells, although a subset of CD8+ regulatory T cells have also been reported 
in mice and humans but mainly in autoimmunity (2–6). CD8+ Tregs are less well characterized and 
therefore will not be discussed further in this review. Tregs exert their suppressive function using 
a variety of cell contact dependent and independent mechanisms (7, 8); Tregs express high levels 
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of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) (9) 
and inhibit proliferation of T cells and B cells via this pathway 
in mice and humans (10, 11). In addition, CTLA-4 is involved in 
Treg-mediated suppression of dendritic cells (DCs) by causing 
up-regulation of indoleamine 2,3-dioxygenase (IDO) secretion 
in DC. In mainly animal models, this depletes local tryptophan, 
inducing apoptosis in T  cells and inducing a regulatory DC 
phenotype (12–14). Tregs also have high expression of the high 
affinity IL-2 receptor (CD25, CD122, and C132), sequestrating 
IL-2 and inhibiting IL-2-dependent activation and proliferation 
of conventional T cells (8, 15) and, in mice NK cells (16, 17). Tregs 
bind TGF-β to their surface, with evidence that it mediates T cell 
(18) (murine studies), and NK  cell suppression (19) (human 
studies), inducing IDO in DCs (14) (murine and human), and 
provide a positive feedback loop in which TGF-β induces and 
maintains FOXP3+ Tregs (20) (mouse). Murine studies also show 
that Tregs expressing soluble factors including IL-10 and IL-35 
can confer suppressive function to other cell types, such as con-
ventional T cells (infectious tolerance) (8, 21, 22). Finally, animal 
studies also indicate Tregs have cytotoxic T cell effects (23) and 
a number of indirect suppressive mechanisms, such as inhibition 
of antigen presentation (24), breakdown of extracellular ATP (a 
proinflammatory mediator) (25, 26) and metabolic disruption of 
target effectors (27). The relative importance and contribution 
of each mechanism in vivo remains uncertain. However, it has 
been clearly shown, in animal and human studies, that Tregs 
can inhibit the functions of multiple cell types including effector 
T cells, CD4 and CD8 T cells (28, 29), B cells (11), NKT cells (30), 
NK cells (19), DC (12, 31), monocytes, and macrophages (32).

In contrast to pharmacological agents, Treg-mediated immune 
suppression has the potential for specificity and allow the estab-
lishment of tolerance; with improvements in our knowledge of 
trafficking, it maybe possible to direct Tregs to specific tissues to 
achieve a level of local rather than systemic suppression. Allograft 
rejection animal models (33, 34) have shown that Tregs can 
prevent rejection through linked suppression. This is a form of 
bystander suppression, where tolerated and third-party antigens 
are presented by the same antigen-presenting cell (APC) or are 
present in the same tissue; such that Tregs become activated and 
suppress third-party antigen responses in addition to those of 
their cognate antigen (33). In these models, the grafts became 
tolerant through the generation and infiltration of Tregs into the 
tissues, conferring a form of immune privilege (33–35). Tregs, 
therefore, confer tolerance through “infectious tolerance” (35). As 
these concepts were developed in allograft rejection models, their 
relevance to the field of solid organ transplantation is clear (33, 
34), establishing long-term tolerance to solid organ transplants.

When used in the context of allogeneic HC transplantation 
(HCT), Tregs may provide adequate immunosuppression to allow 
tolerance mechanisms to prevent GvHD and graft rejection. Initial 
observations supporting this hypothesis were established in early 
animal models of acute GvHD using irradiated recipient mice 
infused with allogeneic donor bone marrow (BM) and T cells, or 
non-irradiated SCID mice infused with allogeneic donor T cells. 
Using these models, Taylor et al. demonstrated that depletion of 
the Treg population from allogeneic donor CD4+ cells exacerbated 
the onset of GvHD, while the addition of polyclonal expanded 

Tregs (anti-CD3) inhibited GvHD (36). Similarly, Hoffmann 
et al. showed that donor Tregs isolated from splenocytes or BM 
can suppress acute GvHD caused by the addition of donor alloge-
neic BM and T cells to irradiated recipient mice (37). Extending 
this work, Edinger et al. showed, in a murine model with an A20 
leukemia cell line, that donor BM alone could not control tumor 
growth. Addition of conventional T  cells controlled the tumor 
but the mice died from acute GvHD. However, addition of con-
ventional T  cells and Tregs maintained the graft-versus-tumor 
response but prevented GvHD (38). At the same time, Cohen at 
al. showed in a similar animal model of GvHD, that donor Tregs 
expanded with recipient splenocytes could also control GvHD 
(39). Trenado et  al., expanding with recipient allogenic APC, 
showed specific Tregs had an advantage over polyclonal Tregs 
in controlling experimental GvHD (40). More recently, human 
Tregs isolated under Good Manufacturing Protocol (GMP) 
compliant conditions were tested in a xenograft GvHD murine 
model (NSG mice with human CD3+ cells responding to human 
allogeneic DCs). In this model, both polyclonal and allogeneic 
DC expanded Tregs were able to improve GvHD (41). These 
animal studies, therefore, demonstrated that freshly isolated and/
or expanded Tregs (polyclonal and allospecific) can reduce acute 
GvHD. Hence, these animal data provided the initial rationale for 
the investigation of Treg cellular therapies in human allogeneic 
HCT. In support, subsequent retrospective observational stud-
ies in human HCT have shown that acute GVHD is inversely 
associated with the frequency of Tregs (42). Moreover, data from 
analysis of Treg content in the HCT grafts demonstrated that the 
presence of higher proportions of Tregs was also beneficial for 
overall survival post-HCT (43).

While Treg cellular therapies may become an important thera-
peutic option, the possibility of infectious tolerance and bystander 
suppression has raised concerns regarding inhibition of normal 
antitumor and antimicrobial activity. As will be discussed within 
this review, clinical trials (to date) have not shown an increase 
in relapse and only one study reported a trend toward increased 
infections. This was not replicated in later studies in which higher 
Treg numbers were infused (44, 45).

In this review, we describe the current status of Tregs therapies 
and discuss the challenges that remain in making Tregs therapy 
practical, including cell dose requirement, methods of isolation 
and manufacture and specificity requirements.

PRODUCiNG Tregs FOR CLiNiCAL USe

Source of Tregs
Regulatory T  cells for clinical therapies can be obtained from 
peripheral blood (PB) or umbilical cord blood (UCB). Within 
both sources, CD4+CD25+CD127lowFOXP3+ Tregs constitute 
approximately 5–10% of CD4+ cells, with CB Tregs being a more 
distinct population as they lack high numbers of CD25intCD127hi 
cells (46, 47). While PB Tregs are predominately CD45RA− 
(approximately 70%) (46, 48), the majority (>80%) of CB Tregs 
and CD4+ cells express the naive CD45RA+ phenotype (47, 48). 
CB Tregs are also CD31+, suggesting that they are direct thymic 
emigrants (49).
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Although the overall proportions of Tregs are similar in PB 
and CB, there are conflicting reports as to whether the phenotypic 
differences translate into functional differences. Some studies 
have reported that CB Tregs do not have suppressive function 
(48, 50), while others find no differences between PB and CB (47). 
Although the source of this discrepancy is unclear, it may in part 
be due to the nature and timing of the in vitro functional assays 
being used. For example, Fujimaki et al. used anti-CD3/28 beads 
(48) to stimulate target (conventional effector T cells) and used 
Treg populations (autologous) from CB and found poor suppres-
sion compared to PB Tregs. Similarly, Thornton et al. measured 
suppression using a mixed lymphocyte reaction and found no 
suppression immediately postisolation (50). However, they did 
observe suppressive function by CB Tregs after 5-day culture 
with ovalbumin (50). By comparison, Santner-Nanan et al. used 
soluble anti-CD3 in the presence of allogenic APCs and found 
no difference in function between CB Tregs and PB Tregs from 
different age groups (47). Taken together this would suggest that 
unlike PB Tregs, CB Tregs require specific stimuli (or maturation) 
to be able to demonstrate suppressive function.

The predominance of naive CD45RA+ Tregs in CB could also 
have functional implications for Treg cellular therapy products 
obtained from the two different sources (CB and PB). When 
comparing naive and memory conventional T cells (Tcons), it has 
been noted in murine studies that naive Tcons are the main source 
of alloreactive cells (51). This is likely the result of restriction of 
the memory Tcon TCR repertoire to environmental antigens 
reducing the chance of recognition of minor histocompatibility 
antigens (51). Whilst the exact specificity of Tregs is unknown, 
the TCR repertoire, in mice, has been shown to be diverse (52). 
Consequently, it is possible that CB Tregs are more alloreactive 
than PB Tregs. Polyclonal expanded CB have demonstrated more 
suppressive capacity than PB expanded Tregs, in mixed lympho-
cyte reaction assays, possibly reflecting expansion of a broader 
alloreactive repertoire (53). The important question then would 
be, “does a larger pool of alloreactive Tregs in CB translate into 
a lower dose requirement for cell therapy for graft rejection than 
with PB Treg sources”? Answering this question will probably 
require human clinical trials.

isolation of Tregs
Several surface cell markers are commonly used to isolate Tregs 
with high purity from both PB and CB. Tregs from either source 
have a CD4+CD25hiCD127low phenotype and, therefore, the most 
common isolation strategies select for cells with CD4+CD25high 
expression over CD25low/intermediate expression found on T effector 
cells, with or without additional selection of CD127low expression. 
Several published Treg isolation protocols also have an additional 
selection for CD45RA+ cells to isolate the naive Treg population 
(54, 55). In adult PB, it has been proposed that selecting this 
CD45RA+ population leads to a more stable Treg population if 
the cells are to be repeatedly restimulated during expansion (56).

Currently, clinical grade Treg isolation remains a compromise 
between what is desirable and what is possible under GMP. Of 
the groups detailed in Table 1, the majority use magnetic based 
sorting, as these are closed systems, most of the reagents are 
CE-certified and validated protocols are available. Many protocols 

use the CliniMACS system, isolating cells with magnetic beads 
bound to anti-CD25 antibody. However, optimal purification is 
difficult as a proportion of Tcons express CD25 to high levels, such 
that it is difficult to select the CD25hi Treg population alone. An 
additional clinical grade negative selection for CD4+ cells, such 
as that used to generate research grade Tregs, would require large 
combinations of antibodies which is impractical in the clinical 
setting, as each antibody must be GMP validated. Consequently, 
the majority of studies using the CliniMACS system use an 
established two-step procedure of CD19/CD8 depletion followed 
by CD25+ enrichment (57–59). However, there are significant 
disadvantages with this methodology. First, variations in the 
source of the cells can lead to additional contaminants; Patel 
et  al. found that the standard two-step method produced very 
poor purity (<10%) when attempting to isolate Tregs from G-CSF 
mobilized PB (60). Additional CD14 depletion was required to 
improve purity. Second, even after depleting CD4− contaminants, 
enrichment with the anti-CD25 clinical reagent leaves significant 
numbers of CD127hiCD25intermedate cells. Even when selecting 
from more conventional apheresis samples, Treg purities are only 
between 40 and 60% (57–59, 61) of either CD45+ or total events. 
This led Peters et al. to employ an extra CD127 depletion step in 
order to achieve a ~90% Treg purity (61); as yet, though, there is 
no clinical grade anti-CD127 reagent.

As an alternative to CliniMACS selection, our group has 
been investigating the feasibility of using streptamer technolo-
gies to isolate Tregs as part of a European Union funded grant, 
T-Control. Streptamer based technologies involve a streptactin 
core conjugated to a magnetic bead and the Fab of an antibody 
of interest can be reversibly loaded onto the streptactin to create 
a selecting streptamer. The advantage with this system is that fol-
lowing selection the addition of d-biotin competes with the Fab 
for the streptacin, dissociating the Fab from the streptamer. The 
Fabs are designed to be low affinity so, in turn, dissociate from the 
selected cells leaving and “untouched” cell. This means that it is 
possible to perform multiple positive selections. It is also possible 
to select from whole blood without substantial cell processing. 
This allows for the selection from cryopreserved cell sources 
such as cryopreserved CB. In our own hands, we have developed 
a CD4+ selection followed by CD25+ selection from frozen CB 
units, to a point where full GMP compliance is possible. It is 
also possible to select CD4+CD25+CD45RA+ populations using 
streptamers from adult PB (55).

In view of the poor Treg purities obtained with conventional 
isolation strategies, a number of groups are now adopting flow 
cytometry-based Treg purification methods. This allows for 
purification based on multiple surface markers in one step, 
including CD127, CD25, CD62L, CD45RA, and CD27 (74). This 
allows sub-gating to generate a higher purity Treg population or 
a specific Treg subset (75). However, obtaining clinical grade flow 
cytometry sorting and reagents represents a major limitation for 
this technique.

As reviewed by Trzonkowski et al. (74) there are also now a 
number of new technologies for sorting being developed, such 
as microfluidic switch technologies (76) and closed cartridge 
super fast valve sorting (74). Microfluidic switch technologies 
use a 24-channel sealed microfluidic chip that redirects a fluidic 
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TABLe 1 | Treg use or planned to be used in clinical trials.

Disease 
application

Center Ph Cell dose Product indication effects Study iD Ref.

HCT Gdansk I 1 × 105–3 × 106/kg Expanded poly-Tregs GvHD treatment Safe/reduced immunosuppression NKEBN/458-310/2008 
(Gdansk ethics board)

(62)

Minnesota I 1–30 × 105/kga Expanded CB poly-Tregs GvHD prophylaxis Safe reduced acute GvHD, increased 
infection

NCT00602693b (44, 
63)

Minnesota I 3–100 × 106/kg Expanded CB poly-Tregs with 
engineered cell line

GvHD prophylaxis Safe reduced GVHD and no increased 
relapse

NCT00602693 (45)

Perugia I 2–4 × 106/kg Fresh polyTregs GvHD prophylaxis Safe/reduced leukemia relapses/
reduced incidence of GvHD

Protocol No 01/08, 
CEAS Umbria

(64, 
65)

Regensburg I  ≤ 5 × 106/kg Fresh polyTregs GvHD prophylaxis Safe Treg002EudraCT: 
2012-002685-12c

(56)

Milan I 1–3 × 105/kg Tr1 (IL-10 DLI or DC-10 DLI) GvHD prophylaxis Safe/long-term disease-free survival 
in 4 patients

ALT-TEN, 
IS/11/6172/8309/8391

(66)

Stanford I/II 0.1–10 × 106/kg Fresh polyTregs GvHD prophylaxis Terminated (NCT01050764)
Recruiting (NCT01660607)

NCT01050764/
NCT01660607

–

Dresden I 0.6–5 × 106/kg Expanded polyTregs GvHD treatment Tumors in 2 patients/stable chronic 
GvHD

Protocol no. EK 
206082008

(58)

Bologna I/II 0.5–2 × 106/kg Fresh polyTregs Chronic GvHD prophylaxis Recruiting NCT02749084 –
Minnesota I/II Fresh CB polyTregs with IL-2 GvHD prophylaxis Recruiting NCT02991898 –
Boston I Fresh polyTregs with IL-2 Steroid refractory chronic GvHD 

treatment
Recruiting NCT01937468 –

Lisbon I/II 0.5–3 × 106/kg Fresh polyTregs Steroid refractory chronic GvHD 
treatment

Recruiting NCT02385019 –

Stanford I polyTregs Steroid-dependent/refractory 
chronic GvHD treatment

Unknown NCT01911039 –

Liege I 0.5 × 106/kg Fresh polyTregs chronic GvHD treatment Unknown NCT01903473 –
Houston I/II 1–10 × 106/kg Fucosylated polyTregs GvHD prophylaxis Active, not recruiting NCT02423915 –
Tampa I Donor expanded Tregs GvHD prophylaxis Recruiting NCT01795573 –
Minnesota I 3 × 10–1006/kg Induced Tregs GvHD prophylaxis Active, not recruiting NCT01634217 –

Organ trans London, Oxford, I/II 1–106/kg Expanded polyTregs Living donor kidney transplant Recruiting NCT02129881 (67)
Berlin I/II 0.5–3 × 106/kg Expanded polyTregs Living donor kidney transplant Recruiting NCT02371434 (67)
San Francisco I/II 4–10 × 106/kgd Donor-alloantigen-reactive Tregs Living donor kidney transplant Recruiting NCT02244801 (67)
Boston I/II Belatacept-conditioned Tregs Living donor kidney transplant Active, not recruiting NCT02091232 (67)
Chicago I Expanded polyTregs Living donor kidney transplant Active, not recruiting NCT02145325 –
Milan I/II Antigen-specific Tr1 (T10 cells) Living donor kidney transplant Not yet recruiting (67)
Moscow I 3 × 106/kgd Expanded polyTregs Kidney transplantation Unknown NCT01446484 –
Multicenter USA I/II 6 × 106/kg Donor reactive and polyTregs Kidney transplantation Recruiting NCT02711826 –
London I  ≤ 4.5 × 106/kg Expanded polyTregs Liver transplant Recruiting ThRIL, NCT02166177 (68)
Nanjing I 1 × 106/kg Alloantigen-specific Tregs Liver transplant Unknown NCT01624077 –

San Francisco I 7 × 105–10 × 106/kgd Donor-alloantigen-reactive Tregs Liver transplant Recruiting NCT02188719 –

Other Treg-
based trials

San Francisco I 5 × 106/kgd Expanded polyTregs Subclinical rejection in kidney 
transplantation

Active, not recruiting NCT02088931 –

San Francisco I 4–7 × 106/kgd Donor-alloantigen-reactive Tregs CNI reduction in liver transplantation Recruiting NCT02474199 –

(Continued)
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stream using a sealed air bubble system. A prototype sorter was 
able to select Tregs (CD4+CD25+CD127low cells) to high purity at 
very high cell selection rates compared to conventional cell sort-
ers. This is because multiple selections are being performed in 
parallel, compared to a single droplet stream with conventional 
flow cytometer sorters (76). Closed cartridge super fast valve 
sorting (74) uses a magnetic valve on microchip to select the 
interrogated labeled cells. Both systems have the advantage of 
using disposable selection chambers (microfluidic or disposable 
cartridge) and, thus, designed for sterile GMP grade selections 
from the outset.

Treg Dose
The optimal Treg dose for each clinical application is crucial 
because it dictates which Treg source can be used and whether 
postisolation manipulation and expansion are necessary. If Tregs 
are to be used unmanipulated, then the potential yield is depend-
ent upon the number of Tregs available in the original source. 
Using a single unstimulated PB apheresis from healthy donors, 
Di Ianni et al. were able to achieve an unmanipulated Treg dose 
of 2–5 × 106/kg (n = 21) (64). This Treg dose was used as GvHD 
prophylaxis, given 4 days prior to HC in the setting of haploiden-
tical HCT. However, the size of the apheresis donation, and hence 
the Treg dose, is determined by donor characteristics, the PB Treg 
concentration, and the regulatory and ethical considerations of 
the host country regarding the apheresis procedure.

Similarly, when using unmanipulated Tregs isolated from CB, 
the Treg dose is limited by the size of CB units currently banked. 
The largest CB units banked at the Anthony Nolan Cord Bank are 
2.9 × 109 TNC (77). Consequently, with an average CD4 content 
of 16% (78) and Treg content of 6% of CD4+ T  cells (47), the 
maximum predicted Treg yield possible would only be 28 × 106 
cells, even with 100% efficiency. Realistically, practical cell yields 
from frozen UCB are considerably lower than this with Brunstein 
et al. reporting 0.1–7 × 106 Tregs postisolation (45) and Parmar 
et al. 0.5–3.0 × 106 cells (79).

Given the low Treg numbers isolated from PB and CB, many 
groups have focused on developing expansion protocols to 
achieve larger target doses (expansion methods will be discussed 
later). In phase I studies, expanded PB Treg lines have been used 
for prophylaxis and/or treatment of GvHD at ranges between 
0.1 and 5 × 106 cells/kg (58, 62). In the setting of autoimmunity, 
expanded polyclonal PB Tregs have been used at doses as low as 
0.06 × 106 cells/kg and as high as 23 × 106 cells/kg (67, 69–71). 
Expanded CB Tregs have been used in two studies as prophylaxis 
of GvHD, with doses between 0.1 and 3 × 106 and 3–100 × 106 
cells/kg (45, 63).

The majority of Tregs clinical studies performed so far are phase 
I safety studies (discussed below), demonstrating Tregs appear 
safe and tolerated over a range of doses. However, can we predict 
a required Treg dose for clinical efficacy? Tregs suppress a range 
of immune cell types using a many of different mechanisms in 
animals and humans (80, 81). Consequently, estimating cell dose 
is complicated. Tang and Bluestone predicted an effective Treg 
dose based on the suppression of Tcons (1). This calculation was 
based upon allometric scaling of the suppression of the resident 
Tcons pool in animal models. Proof of principle experiments in 
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animal models suggest that a higher Treg to Tcon ratio, amount-
ing to raising the proportion of Tregs of CD4+ cells from 5–10 to 
~30%, is required to control responses to grafts (82–84). Since the 
average adult human has ~150 × 109 CD4+ T cells, and 13 × 109 
Tregs, raising the total Treg pool to 30% would require 53 × 109 
Tregs (or ~700 × 106/kg for 70 kg individual) (1). This is unten-
able based on current Treg isolation and production technology. 
However, even in phase I studies, efficacy has been observed with 
lower doses [between 1 × 105 and 4 × 106/kg (62, 64, 66)]. It is 
notable that these are all in a lymphodepleted context, either as 
a result of preconditioning for HCT or during immune recovery 
following HCT (62, 64, 66).

A further complication to estimating the required dose for 
clinical use is the issue of trafficking and specificity; where do 
the Tregs need to be to exert their function and what propor-
tion of the Treg pool are responding? These factors are known 
to impact on allometric scaling calculations (retention in tis-
sues, active proliferation in lymph nodes) (85) and may also 
impact on the current clinical trials using Tregs (86). Recent 
trials have shown that increased total Treg dose did not lead 
to increased Treg presence in the periphery (45, 63). With the 
application of Treg clinical trials, there has been increased 
visualization of Tregs in  vivo, as studies seek to determine 
efficacy and longevity (72). This should have the added benefit 
of also indicating where these cells are going and, therefore, 
what trafficking markers are desirable, i.e., if efficacy correlates 
with the Tregs being present in a particular tissue, the effective 
dose might be improved by engineering markers that direct 
the manufactured cells to that site. Consequently, the “effec-
tive” dose may be improved by postmanufacture/expansion 
modification.

At present, there are only a few studies actively attempting to 
alter Treg migration with the aim of improving efficacy for Treg 
therapy. Of particular note are the studies investigating fucosyla-
tion of Tregs. In 2005, using murine studies, it was shown that 
knocking out a key step in the generation of selectin ligands 
(fucosylation of glycoproteins) prevented the expression of E 
and P-selectins without affecting the expression of other homing 
receptors (CD62L, β1-integrin, LFA-1) or suppressive function. 
However, it prevented the cells from migrating to the footpad of 
mice in a skin inflammation model, and subsequently blocked 
their ability to suppress in vivo inflammation (87). This, in turn, 
lead to a proof of principle study using a humanized murine 
model system with NSG mice being injected with human PBMC 
to generate a GvHD effect. Ex vivo fucosylated CB Tregs dem-
onstrated higher levels of binding E-selectin, were more potent 
suppressors of GvHD and persisted longer than untreated CB 
Tregs (88). Studies of autoimmunity also suggest a role for CCR2 
in Treg migration; in collagen induced arthritis animal models, 
blockade of CCR2 could prevent initiation of arthritis, but once 
established, exacerbated it by interfering with the function of 
CCR2+ Tregs. For other potential homing markers perhaps the 
best source would be those implicated in recruiting Tregs as a part 
of tumor immune evasion. These include CXCR3, CCR6, CCR5, 
CXCR4, CCCR8, and CCR10, as they have all been implicated in 
recruiting Tregs to tumor sites (89), as reviewed by Adeegbe and 
Nishikawa (90).

Treg Specificity
To date, Treg dose requirements have been based on therapies 
using polyclonal Tregs (see below). However, evidence from 
animal models suggest that graft tolerized animals generate a 
Treg population that can confer protection (91, 92) and are more 
potent than Tregs from non-tolerized animals (93, 94). Part of 
this tolerance mechanism is due to an increased proportion 
of alloantigen-specific Tregs (91–94) (Figure  1). Murine and 
human in vitro, experiments to expand alloantigen-specific Tregs 
also demonstrated that they are substantially more potent than 
polyclonal expanded Tregs (95–98). Consequently, this has led 
to a number of trials using GMP compliant donor expanded 
allogenic-specific Tregs (see below), mostly in a solid organ back-
ground and part of the ONE study (67). It is hoped that these will 
be more efficacious than polyclonal expanded Tregs and thereby 
will require a lower dose. In the kidney and liver transplant set-
tings detailed in the ONE study, recipient Tregs were exposed 
to donor B cells, i.e., the direct pathway of allorecognition (67). 
However, a major arm of tissue rejection is through the indirect 
pathway, namely, donor alloantigens presented to recipient T cells 
by recipient APCs. Unfortunately, expanding alloantigen-specific 
Tregs through this pathway has proven more challenging due to 
the low frequency in the periphery (99).

An alternative is to produce a specific Treg population to a 
known antigen (Figure  1). This has the advantage of reducing 
off-target suppression (as only the cognate antigen will activate 
the Tregs); bystander suppression is still likely to occur, but by 
controlling the availability and delivery of the antigen, a level of 
both antigen and tissue specificity could be imposed. As proof of 
principle, in animal models, Tregs raised to an exogenous antigen 
(HY peptide in female B6 mice) can prevent the induction of GvHD 
by allogenic BM and T  cells [B6 BM and T  cells into C57BL/6 
(B6) X (C3H) F1 females] when the antigen is provided (either 
HY pulsed DCs or HY peptide) (100). Similarly, this could be an 
induced Treg population, as in the case of ovalubumin-specific 
induced type-1 Tregs (Tr1) [cells being trialed in Crohn’s disease 
(73)]. Finally, specificity could be conferred onto a polyclonal Treg 
population for a particular application; for example, in the case of 
therapeutic protein replacement, such as factor VIII in hemophilia 
treatment, undesirable immune responses to the protein can be 
prevented using Tregs transduced with a factor VIII-specific TCR 
(101). Perhaps, however, of greatest interest is the application of 
chimeric antigen receptor (CAR) technology (99) (Figure  1). 
CARs, an extracellular antigen-binding domain linked to a intra-
cellular TCR and costimulatory domain, are now being used to 
treat Leukemia/lymphomas (102) by conferring antigen specificity 
onto a polyclonal T cell population. If an antigen is known, this can 
also be applied to a Treg population. Proof of principle has been 
demonstrated by Elinav et al. with a colitis-specific antigen (103) 
and Fransson et  al. with myelin oligodendrocyte glycoprotein-
specific CAR Tregs to protect against experimental autoimmune 
encephalomyelitis, a model of multiple sclerosis (104).

Polyclonal Treg expansion
The majority of published Treg expansion protocols use polyclonal 
expansion of Tregs, aiming to maintain the thymically derived, 
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natural Treg or, as recently adopted, thymic Treg (tTreg) phenotype 
(105). Multiple studies have now reported expanding tTregs from 
both PB or CB, and expansion conditions have become increasingly 
well defined and translated into GMP compliant protocols (62, 63, 
106). Most protocols use anti-CD3 antibody attached to beads, 
in combination with anti-CD28 costimulation and IL-2 (range, 
300–1,000  IU/ml) (62, 106, 107). Using these methods, average 

expansions of 500–600-fold have been achieved with PB Tregs 
(62, 70, 72). When expanding PB Tregs, Rapamycin [~100  nM 
(107–109), murine and human studies] is often added to expansion 
cultures, sometimes in combination with Retinoic acid [10 µM in 
serum; 10 nM in serum free conditions (108)]. This is to prevent 
the outgrowth of contaminant effector T cells and to promote Treg 
expansion, especially in the case of multiple restimulations (107). 
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In the presence of Rapamycin, 100–1,000-fold expansions have 
been achieved (with a single restimulation) (107).

When using CB Tregs, anti-CD3/28 bead based methods have 
produced 100–1,000-fold expansion (110). Brunstein et al. (2016) 
have, however, been able to achieve much greater expansion 
from CB Tregs using an engineered cell line as the expanding 
stimulus (10,000-fold expansion in 2 weeks) (45). Their protocol 
used anti-CD3 antibody-loaded K562 cells modified to express 
the high affinity Fc receptor (CD64) and CD86 the ligand of the 
costimulatory receptor CD28 (45).

Alloantigen-Reactive Tregs expansion
It is estimated that the frequency of direct allo-reactive Tregs in 
adult PB is around 1–10% of Tregs (95, 111). The alloreactive 
population in CB may be higher as they are naive, but this is dif-
ficult to determine as yet there have been no published large-scale 
expansions to alloantigens with CB. Allo-reactive Tregs can be 
expanded toward donor APC such as DCs, B cells, and PBMC 
(41, 95–97, 112). As part of the ONE study to prevent kidney 
and liver transplant rejection, Putnam et  al., developed a Treg 
expansion method using CD40L activated B cells from the donor 
to expand recipient Tregs (113) (Table 1). Following the primary 
stimulus, the expansion is continued with anti-CD3/28 beads to 
give a 200–4,000-fold expansion after 16 days. Attempts to gener-
ate indirect stimulated alloreactive Tregs (alloantigen presented 
by self APC) have been less successful (95, 114) due to a 100-fold 
lower frequency of indirect alloresponsive cells (95). Therefore, to 
generate an alloantigen-specific population the use of transgenic 
TCR Tregs may be a better, alternative strategy (115).

In both polyclonal and alloantigen driven expansion, it might 
be possible to introduce traceable markers, chemotactic receptors 
or drug-inducible suicide genes. These designer features would 
allow monitoring and control of trafficking as well as the ability 
to switch off the expanded cells if any adverse reactions were 
detected (1).

Assessing Phenotype and  
Function after expansion
Following expansion, Tregs should retain their tTreg phenotype 
as defined by CD4+CD127lowCD25+FOXP3+CD62LhiCCR7+ 

T cells (45). Although FOXP3 expression is vital for Treg func-
tion, FOXP3 can also be expressed on activated Tcons and so, 
in itself, does not distinguish between activated Tregs and Tcons 
(116). However, FOXP3 expression should be high and sustained 
compared with Tcons (117); a comparison with expanded Tcons 
line would be required to assess this. Expanded Tregs should also 
retain a central memory phenotype characterized by CD62L and 
CCR7hi expression (45); CD62L expression has been linked to a 
more suppressive population following adult PB Treg expansion 
(106) and the expression of CD62L and CCR7 are predictive of 
in  vivo function as they allow trafficking to lymphoid tissues 
in murine models (118). In addition, Helios expression (Ikaros 
transcription family), has been associated with tTregs (119), and 
its presence in expanded cells is an additional indication that the 
cells have retained a tTreg phenotype (45).

Expanded cells should be able to suppress; with suppression 
classically being defined as inhibition of in  vitro target adult 
PB T cell proliferation in coculture assays. Proliferation can be 
measured be either [3H] thymidine ([3H]tydr) incorporation 
(8) or CFSE dilution by flow cytometry (120). However, there 
are limitations to both techniques, as discussed extensively by 
McMurchy and Levings (121). These essentially concern false 
positives and negatives for suppression since all proliferating 
cells will uptake [3H]tydr, the assay relies on the premise that 
Tregs are hypo responsive, such that only target Tcons prolifera-
tion is measured (122). However, Tregs are not hypo responsive 
murine in vivo models (123), and so failure to detect inhibition 
of proliferation would not refute suppressive function. Labeling 
the target CD4+ cells with CFSE does overcome this limitation as 
it means that proliferation can be monitored by flow cytometry 
and any proliferating Tregs excluded (120). Both methods can 
falsely assign suppressive function to very active Tcons (such 
as a Tcons cell line) (121), though very active Tcons, that are 
releasing IL-2, can cause the peak proliferation in the coculture 
to occur earlier than with Tcons only. This can result in the [3H]
tydr being added too late for peak proliferation (usually added 
in the last 12–16 h of culture) while in the case of CFSE this can 
lead to exhaustion and or cytotoxicity. Both of these states would 
result in inhibition of proliferation (121). The use of non-Treg 
controls can illustrate the extent of the issue and an alternative 
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is to measure the inhibition of proinflammatory cytokine release 
(INFγ and TNFα) from the target cells (124). However, even if 
suppressive function is demonstrated this does not conclusively 
prove that tTregs have been expanded over induced Tregs. Thus, a 
better confirmation seems to be the stability of the FOXP3 expres-
sion. The methylation state of the FOXP3 locus is indicative of 
recent chromosomal remodeling and thus distinguishes between 
FOXP3 induction over constitutive expression. The study of Treg 
development in the thymus indicates that the FOXP3 promoter 
becomes demethylated during development and indicates a stable 
commitment to the Treg lineage in mice and humans (125–128).

Clinical Application of Tregs—The 
experience to Date
There are an increasing number of clinical trials looking at the 
safety of Tregs as cellular therapy as reviewed by Trzonkowski 
et al. and Gliwiński et al. (74, 129) and updated in Table 1. To 
date, there have been seven trials performed in the HCT setting 
(Table 1) and nine planned or in progress in solid organ trans-
plantation. There are also at least five phase I clinical trials in 
autoimmunity, notably type I diabetes, with three transitioning 
from phase I to phase II studies (Table 1).

In Minnesota, Brunstein et al. performed two phase I clinical 
studies of third-party CB Tregs in the setting of double UCB 
transplantation. In the first study (2011), 23 adults (median 
52  years, range 24–68) were infused with ex vivo isolated and 
polyclonal expanded (anti-CD3/28 beads) CB Tregs, at doses 
between 0.1 and 3 × 106 cells/kg (63). In this dose escalation study, 
Tregs were infused on day +1 and +15 and patients also received 
standard GvHD prophylaxis (Ciclosporin or Mycophenolate/
Sirolimus). Treg infusions were well tolerated with no infu-
sion toxicities reported, although, they did note an increase in 
viral reactivation compared with historical controls (44). More 
recently, 11 patients (median age 61 years, range 45–68) receiving 
an umbilical CB transplant, were given Treg doses of 3–100 × 106 
cells/kg, expanded using the transgenic K562 cell line (45). Again, 
these patients received standard GvHD prophylaxis (Sirolimus 
and Mycophenolate). In this study, there were no adverse events 
reported and the incidence of acute GvHD was low compared to 
22 historical controls.

In 2011, Edinger et al. reported a small phase I clinical trial 
using PB isolated Tregs postallogeneic HCT. After cessation of 
GvHD prophylaxis (within 1  year), nine patients at high risk 
of disease relapse were given up to 5 ×  106 Tregs/kg of unma-
nipulated magnetic bead sorted PB Tregs. This was followed by 
a donor lymphocyte infusion (DLI) 8 weeks later. While this was 
only a small study, there were no adverse reactions, relapse or 
GvHD (56).

Perhaps more ambitiously, Di Ianni et  al. in Perugia have 
performed a larger study in haploidentical HCT with unmanipu-
lated donor PB Tregs being administered (day −4) prior to HSC 
(9.4 × 106/kg) and escalating dose of Tcons (day 0). In this study, 
the Treg infusion was the only GvHD prophylaxis used. Twenty-
eight patients were given a fixed dose of 2 × 106/kg magnetically 
separated Tregs and a dose escalation of Tcons from 0.5 × 106, 
1.0  ×  106, 2.0  ×  106 to 4.0  ×  106/kg; the majority of patients 

(n = 17) received 1 × 106/kg Tcons. Onset of acute GvHD was the 
indication for stopping the dose escalation with two out of the 
five patients that received 4 × 106 Tcons/kg developing ≥grade 
2 GvHD. Although 50% of patients relapsed, all the patients had 
high-risk disease and was lower than an equivalent historical 
control group (64). A similar study is also being performed in 
Stanford (Table 1).

In Dresden, Theil et  al. used polyclonal expanded PB Tregs 
to treat five patients with steroid refractory chronic GvHD (58). 
Bead separated, donor derived Tregs were expanded with anti-
CD3/28 beads (300–1,000 IU/ml IL-2) and administered at doses 
of 0.6–5 × 106/kg. Three of these patients also received low dose 
IL-2 (0.3 × 106  IU/m2/day) to promote in vivo Treg expansion. 
Interestingly, there was an increase in Treg numbers in the IL-2-
treated group but these seemed to be of endogenous origin (naive 
phenotype). Two patients had improved symptoms and three 
patients were able to reduce immunosuppression. Two patients 
developed skin tumors, which may have been exacerbated by the 
Tregs. However, as noted by the authors of the study, all patients 
received significant other immunosuppressive therapy, including 
transplant conditioning with Fludarabine, Methotrexate, total 
body irradiation, anti-GvHD therapy of tacrolimus, mycophe-
nolatemofetil, extracorporeal photopheresis and, during Treg 
therapy, steroids such as Prednisolone. Secondary tumors are 
increased postallogeneic HCT and with such profound general 
immunosuppression (130).

Although several trials in solid organ transplantation are cur-
rently in progress (Table 1), the only other field where Treg clini-
cal trials have been reported is autoimmunity. In particular, there 
are two studies on the use of Tregs in type 1 diabetes (TD1), one in 
pediatric and one in adult patients. The use of expanded autolo-
gous Tregs to treat early TD1 was pioneered in Poland (69–71). 
Using flow sorted polyclonal expanded Tregs, in a succession of 
studies, Marek-Trzonkowska et al. have now treated 12 children. 
The idea was to use expanded Tregs to boost the protection of 
the beta-islet cells in the pancreas against autoimmune attack 
in the early stages of TD1. Most of the patients were between 8 
and 16 years and within 2 months of diagnosis. Treg doses were 
between 10 and 30 × 106/kg and were more practical to achieve 
than with adult patients. After one year, no serious adverse events 
were reported and 8 out of 12 patients continued to be in clinical 
remission. Two remained insulin independent. Overall, insulin 
doses continued to be significantly lower than in an untreated 
control group suggesting that beta cells functionality had been 
protected to varying degrees (71).

The results of a similar study in San Francisco with adult 
TD1 patients is perhaps less encouraging; 14 patients (mean 
age 30, mean time after diagnosis 39 weeks) were treated in four 
cohorts with escalating doses of 0.06 × 108, 0.4 × 108, 4 × 108, and 
23–27 × 108 (fixed doses rather than body weight) of flow sorted, 
polyclonal expanded Tregs. Whilst there were no adverse events, 
they only observed modest effects on insulin production with a 
decline in some cases, although this did not correlate with Treg 
dose. Of note, they were able to detect the transplanted Tregs up 
to 90 days after infusion by utilizing deuterium labeling of the 
cells during the expansion (72).
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In summary, in HCT the Tregs have been well tolerated, 
although with mixed data toward viral reactivations with CB 
and skin tumors with PB Tregs. Efficacy has been more difficult 
to determine, as most of the reported studies are phase I safety 
trials. Being safety studies, the immunosuppression was often 
still present and these agents will also affect the Tregs, further 
complicating any indications of efficacy. However, a number of 
phase II studies are now planned or in progress (Table 1) and 
should progress our understanding further.

CONCLUDiNG ReMARKS

Regulatory T cells are able to suppress the function of many cells 
types using a variety of cell contact dependent and independent 
mechanisms. In theory, therefore, Tregs therapies could poten-
tially cause general immunosuppression, much like standard 
immunosuppressive drugs they may replace. However, early 
in vitro animal models in HCT demonstrated the Tregs have the 
potential to suppress GvHD while maintaining a GVL effect (38). 
Furthermore, over the last few years, there have been an increas-
ing number of phase I clinical studies reported, demonstrating 
the safety of Tregs cellular therapies. In the clinical trials to date, 
even those using high Tregs doses (100–500 × 106 cells/kg), there 
has been no conclusive evidence of general immunosuppression, 
in terms of increased relapse after HCT, higher numbers of 

opportunistic infections or outgrowth of tumors. As the field of 
Treg cellular therapy advances, it is now hoped that the results of 
the phase II/III clinical Treg studies in progress will answer the 
question of whether Tregs have efficacy in vivo in preventing allo 
and autoimmune complications.

Clearly, however, a number of important hurdles remain; what 
is the best cell source, how can Tregs be isolated practically and 
safely, and what Treg cell dose should be given? Added to this are 
aspects of specificity; can a more directed Treg population allow 
for a lower dose to be administered and, which antigens should 
they be directed toward? The next round of clinical studies, espe-
cially the ONE study, will hopefully answer some of the questions 
of efficacy, although these are mainly in the field of solid organ 
transplant. Also, whichever method of isolation and/or expan-
sion is employed, the cost of producing these cells for clinical 
use can be prohibitive. Therefore, if Treg therapies are to become 
viable, multicenter collaboration, and large phase III randomized 
trials will be required and are likely to require the assistance of 
commercial pharmaceutical companies. As with many biological 
cell-based therapies though, they have the potential to be more 
effective than pharmacological therapies.
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