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Monoclonal antibodies and their fragments have significantly changed the outcome 
of cancer in the clinic, effectively inhibiting tumor cell proliferation, triggering antibody- 
dependent immune effector cell activation and complement mediated cell death. Along 
with a continued expansion in number, diversity, and complexity of validated tumor tar-
gets there is an increasing focus on engineering recombinant antibody fragments for lead 
development. Single-domain antibodies (sdAbs), in particular those engineered from the 
variable heavy-chain fragment (VHH gene) found in Camelidae heavy-chain antibodies 
(or IgG2 and IgG3), are the smallest fragments that retain the full antigen-binding capac-
ity of the antibody with advantageous properties as drugs. For similar reasons, growing 
attention is being paid to the yet smaller variable heavy chain new antigen receptor 
(VNAR) fragments found in Squalidae. sdAbs have been selected, mostly from immune 
VHH libraries, to inhibit or modulate enzyme activity, bind soluble factors, internalize cell 
membrane receptors, or block cytoplasmic targets. This succinct review is a compilation 
of recent data documenting the application of engineered, recombinant sdAb in the 
clinic as epitope recognition “modules” to build monomeric, dimeric and multimeric 
ligands that target, tag and stall solid tumor growth in vivo. Size, affinity, specificity, and 
the development profile of sdAbs drugs are seemingly consistent with desirable clinical 
efficacy and safety requirements. But the hepatotoxicity of the tetrameric anti-DR5-VHH 
drug in patients with pre-existing anti-drug antibodies halted the phase I clinical trial and 
called for a thorough pre-screening of the immune and poly-specific reactivities of the 
sdAb leads.

Keywords: camelid heavy-chain antibody, drug-like properties, bioavailability, immunogenicity, broad epitope 
coverage, poly-specificity

inTRODUCTiOn

The success of monoclonal antibodies (mAbs) in cancer therapy is driven by the overall efficacy 
of targeted therapies. The rate of approval of recombinant mAbs continues to outperform that of 
small molecules in all indications and in particular for the treatment of cancer (1, 2). However, 
a recent rate of advancement of antitumor candidate leads from preclinical to clinical trial was 
estimated to be only 20% (3). One approach to improving this success rate is to focus early on 
a set of characteristics termed “developability” based on high-throughput qualification tests 
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Abbreviations: A431, epidermoid carcinoma cell line; Abzyme, an antibody 
with catalytic activity, binding a chemical group and stabilizing the transition 
state of a given reaction; ADA, anti-drug antibody; ADAMTS5, a disintegrin 
and metalloproteinase with thrombospondin motifs; ADM, Adriamycin; BMCD, 
bone marrow culture-derived macrophages; BMP, bone morphogenetic protein;  
CA9/CAIX, carbonic anhydrase IX encoded by the CA9 gene; CD47/SIRP α axis, 
cluster of differentiation 47 and the myeloid inhibitory immunoreceptor signal 
regulatory protein α signaling axis; CapG, macrophage capping protein oncogene; 
CD16, cluster of differentiation 16, a low-affinity Fc receptor; CDR, complemen-
tarity determining region or antigen-binding domain; CendR, C-end rule motif  
R/KXXR/K; CEA, carcinoembryonic antigen; cDNA, complementary deoxyri-
bonucleic acid; cMET, tyrosine-protein kinase Met or hepatocyte growth factor 
receptor (HGFR); CXCR4, fusin or CD184; CXCR7, atypical chemokine receptor 
3 or GPCR 159; DAF, decay-accelerating factor; DR5, death receptor 5 of the TNF 
receptor superfamily (TNFRSF) 5; EGFR, epidermal growth factos receptor, a mem-
brane tyrosine kinase; EpCAM, epithelial cell adhesion molecule or TROP1; EV, 
extracellular vesicle; Fab, immunoglobulin antigen-binding fragment composed 
of one constant and one variable domain of each of the heavy and the light chain; 
Fc, fragment crystallizable region of Ig; FDA, Federal Drug Administration; FR, 
framework region is a subdivision of the mAb variable region; FTCI, fluorescein 
isothiocyanate; GFP, green fluorescence protein; GITR, glucocorticoid-induced 
TNFR-related protein; GPI-DAF, glycosylphosphatidylinositol-anchored decay-
accelerating factor; HcAbs, heavy-chain antibodies; HCV, hepatitis C virus; HER2, 
human epidermal growth factor receptor 2/neu tyrosine kinase, erbB-2; HER3, 
human epidermal growth factor receptor tyrosine-protein kinase erbB-3; HGF, 
hepatocyte growth factor; IA, intra auricular; IgG, immunoglobin G; IgNAR, Ig new 
antigen receptor; IR, infrared; 131I-SGMIB, iodine-131- labelled N-succinimidyl 
4-guanidinomethyl-3-iodobenzoate; iRGF, 9-amino acid cyclic peptide (sequence: 
CRGDKGPDC) binding tumor cells; i.v., intra venous; mAb, monoclonal antibody; 
Neae, N-terminal fragment of enterohemorrhagic E. coli intimin; NIR, near infra-
red; NRP-1, neuropilin 1; PBL, peripheral blood lymphocytes; PCR, polymerase 
chain reaction; PEG2000, poly(ethylene glycol) methyl ether, average Mw 2,000; 
PD-L1, Programmed death-ligand 1, CD274; p.i., post injection; pI, isoelectric 
point; PSA, Prostate-specific antigen; PSMA, prostate-specific membrane antigen; 
p53-HDM2, functional p53 and human double minute 2 interaction; SAS, solvent 
accessible surface; scFv, Single-chain variable fragment; sdAb, single-domain anti-
body fragment; SPECT, single-photon emission computed tomography; SPECT/
CT, image fusion for anatomic imaging (CT or MRI) and functional imaging 
(SPECT) computed tomographies; SrtA, sortase A; RANKL, receptor activator of 
nuclear factor kappa-B ligand; RNA, ribonucleic acid; TNFα, tumor necrosis factor 
alpha; uPA, urokinase-type plasminogen activator; VCAM1, vascular cell adhe-
sion protein 1; VEGF/Ang2, vascular endothelial factor/angiopoietin-2; VEGFR1, 
vascular endothelial growth factor receptor 1; VHH, heavy-chain only antibody 
fragment or nanobody; VH and VL, variable heavy and light chain domains from 
conventional IgG structures; VNAR, variable new antigen receptor single domain.

applicable to mAb hits for a particular target. Two “develop-
ability” issues impacting candidate bioavailability are off-target 
binding and aggregation that can also result in toxicity and 
immune-reactivity. A candidate with a favorable profile is more 
likely to emerge from a large set of hits with a broad epitope 
coverage, by screening out off-target reactive mAbs (4) and 
guaranteeing “manufacturability,” or stability and solubility, of 
the lead candidate early in the pipeline (5–8). Camel and shark 
serum have provided a source of versatile antibody therapeutics 
with good “developability” and “manufacturability” prospects  
(6, 9–11). Most recombinant, variable heavy-chain (or VHH) 
single domains from homodimeric IgG2 and IgG3 found in 
camelids and VNAR of the so-called Ig new antigen receptor 
of sharks display higher solubility (above 1 mg/mL) and rapid 
refolding after temperature or chemical denaturation in com-
parison with the heterodimeric VL–VH domains in a Fab frag-
ment (Figure 1A) (12, 13). VHH expression yield, whether in the 
periplasm of Escherichia coli or the cytoplasm of eukaryotic cells 

is high. Sequence identity of the VNAR domain with canoni-
cal human VH falls as low as 25%, while known camelid VHH 
domains are distinctly close to human VH3 germline sequences 
and a source of easily humanized single-domain antibody (sdAb) 
drugs (10, 14–16). In addition, services such as Hybribody, 
a platform from Hybrigenics for the selection and validation 
of antibodies derived from a fully synthetic humanized sdAb 
library displayed on phage, can supply humanized sdAbs to 
specific targets (Table  1, item 3) (17). The immunogenicity of 
humanized sdAbs may be erroneously overlooked yet it is tested 
in phase I clinical trials (18). The antigen-specific combining 
sites may be immunogenic providing sufficient justification for 
the early use of immunogenicity-screening platforms (19). The 
detection of anti-drug antibodies (ADA) using highly sensitive 
ELISAs at Ablynx revealed the benefit of mutating sdAb residues 
in hydrophobic patches at the C-terminus of VH of single-chain 
variable fragment (scFv) and VHH fragments, shielded by the 
CH domains in the original structure (20, 21).

The VHH repertoire is as complex in sequence diversity as 
is the IgG1 VH camelid counterpart (65–67). Total peripheral 
blood lymphocytes and lymph node ribonucleic acid (RNA) 
from alpaca, llamas, dromedaries, and camels are easily 
extracted to build recombinant VHH libraries. Typically, a 
VHH phage display library containing 6 × 107 VHHs clones are 
generated from 200 µg processed RNA and diverse polymerase 
chain reaction strategies are available to amplify VHH gene 
fragments from lymphocyte complementary deoxyribonucleic 
acid (68, 69). Several reports have confirmed the ease of engi-
neering sdAbs (69, 70) and of selecting specific binders against 
conformational epitopes in comparison with hit selection of 
scFv, where library construction shuffles their immune speci-
ficity (68, 71, 72).

Two or three VHHs have been combined in a single polypep-
tide chain to express single, dual, or multimeric specificities 
without compromising folding or the binding affinities (22, 
73). In addition, “self-associating peptide” constructs have 
been designed to match VHH pairs (69, 74). Concomitantly, 
the experience gained in site-specific conjugations, in par-
ticular those driven by targeted enzymatic reactions, has 
ensured the preservation of antigen-binding properties of 
sdAbs (31, 75). The reported affinities of VHH fragments fall 
in the nanomolar to picomolar range, with binding kinetics 
comparable to those of conventional antibodies. Selection of 
stable antigen complexes is often the result of applying selec-
tion pressures, such as stringent washing, that enrich a library 
in VHH with slower off-rates while competitive elution was 
reported in selecting fragments with novel epitope targeting 
(70, 76–79). VHH genes are an established source of antibodies, 
as evidenced by the number of reported co-crystal structures  
(68, 80–82). Figure  1A highlights hallmark VHH residues 
and, when present, an inter-CDR disulfide bond in the VHH 
sequence. Around 10% of HcAbs lack these hydrophobic resi-
dues mutation but often show longer CDR3 covering putative 
VL contacts or a hydrophilic substitution of Trp118. Gonzalez-
Sapienza et al. suggested a plausible mechanism  of selection 
of HcAb producing B-cells that supports the emergence of 
independently folding, soluble VH and VHH domains (72).
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TAble 1 | Summarized single-domain antibody (sdAb) research and development in cancer diagnostics and therapy.

Servicesa Applied technologies Proposed clinical benefit Service providerb

1. Customizing sdAb  
engineering

Immune, naïve, and synthetic/humanized  
libraries phage display, bacterial display,  
intrabody library services, VHH production (45)

sdAb innovative binder formats,  
systems biology and target  
validation tools (46)

GenScript; Creative BioLabs; Lampire 
Biological Laboratories; Capralogics, 
Inc.; ProSci, Inc.; Hybrigenics 
Coporation, Allele Biotechnology and 
Pharmaceuticals, Inc.; Qoolabs, Inc.; 
Abcore Inc.; QVQ Holding BV;  
Rockland Immunochemicals, Inc.

Pipeline construction (47)

2. Optimizing sdAb lead  
candidate selection

Epitope binning and optimum epitope  
coverage antibodies and sdAb, tested  
in a pairwise combinatorial manner (8)

Multiple epitope bins reflect functional 
diversity, support oligoclonal therapy  
or the simultaneous targeting of biological 
pathways; watch for off-target binding (48)

Carterra, Inc.; Creative BioLabs

3. Humanizing and screening 
sequences to diminish sdAb 
immunogenicity

sdAbs humanization (15, 45) and Identification  
of potential immunogenic sequences (21)

lower sdAb immunogenicity GlobalBio, Inc.; Creative BioLabs; 
Hybrigenics Coporation; EpiVax, Inc.

4. Tailoring the sdAb in vivo  
half-life

Half-life optimization in circulation (49);  
Nanobody®-based half-life extension  
technology

Ozoralizumab, a next-generation bivalent 
tumor necrosis factor alpha (TNFα) blocker 
linked to a low-affinity albumin-binding 
domain

Ablynx; Eddingpharm

Applicationsc Targeted tumor antigens Clinical trials Developerb

5. Overcoming monoclonal 
antibody limitations by 
targeting inaccessible and 
intracellular tumor antigens

CapG (50), non-endocytic co-transport  
and cytoplasmic translocation (51), DR5 (52),  
dynamic transformation (53), Glioblastoma (54),  
CA9/CAIX activity (55), p53–HDM2 disruption 
(56), mesothelin (57)

not initiated or halted Novartis; ProSci Inc.; Hybrigenics 
Services; QVQ Holding BV

6. Selecting proficient probes  
for molecular imaging

131I-SGMIB Anti-HER2 sdAb Phase I, CAM-VHH1 Study  
NCT02683083

Camel-IDS NV, TBM programd  
(social, non-profit organization),  
QVQ holding BV68Ga-HER2-sdAb (near infrared) probes  

in sentinel lymph node detection or  
residual tumor tissue (58)

Phase II PET/CT. Clinical Trial II

7. Targeting known  
tumor antigens

Epithelial growth factor receptor (59),  
carcinoembryonic antigen (60), prostate- 
specific membrane antigen, anti-VEGF/Ang2  
(BI 836880 Nb®), anti-RANKL (ALX-0141 Nb®), 
TNFα, ADAMTS5

Phase I, Boehringer Ingelheim,  
anti-VEGF/Ang2 Nb®, safety in  
cancer patients

Ablynx/Merk; Boehringer Ingelheim; 
Eddingpharm, clinical development, 
registration and commercialization in 
Greater China of anti-RANKL Nb®  
and ozoralizumab; Merk KGaA

Phase I, Ablynx (ALX-0141 Nb®)  
safety and pharmacokinetic study

Anti-ADAMTS5, M6495 Nb®  
Interventional, Merk KGaG in  
healthy volunteers. NCT03224702

8. Targeting immune  
checkpoints

PD-L1 (61), CD47/SIRP α axis (62, 63),  
glucocorticoid-induced TNFR-related  
protein

Early Phase I, 99mTc labeled anti- 
PD-L1 sdAb for diagnostic imaging  
of non-small cell lung cancer.  
Pending. NCT02978196

Merck & Co.; Merck KGaA; Ablynx

FigURe 1 | Structure of a “conventional” IgG1 and of a camelid IgG3, showing variable domain differences and illustrations of potential, VHH-based, cancer 
therapeutics. (A) Schematic of an IgG1 showing canonical hypervariable domains (left top diagram) consisting of two light (L) chains, comprising the VL and CL 
domains, and two heavy (H) chains composed of the VH, CH1, hinge, and CH2 and CH3 domains; and, below a camelid homodimeric heavy-chain IgG3, a 
heavy-chain antibody (HCAb) (left bottom diagram) which comprises only H chains; each H chain contains a short VHH hinge, CH2, and CH3 domains. The 
homodimeric heavy-chain IgG2 (not shown) has longer VHH hinge domains compared to IgG3 and comparable CH2, CH3. The smallest intact functional 
antigen-binding fragment that can be generated from the immunoglobin G (IgG) canonical variable domains, consists of an oligopeptide linked VH–VL pair known as 
single-chain variable fragment (top right), while the smallest intact functional antigen-binding fragment of HCAbs is the single-domain VHH (bottom right) known as 
Nb. VH and VHH bars show framework (FR), complementarity domain regions (CDRs) (color coded), and key residues substitutions. Non-canonical C residues are 
involved in an inter-CDR disulfide bond in VHH structure. (b) VHH-associated strategies in targeting tumors and tumor accessory cells. Top, clockwise: bivalent 
bi-specific VHH (22–24); multivalent, high-avidity mono-VHH molecules (25, 26); VHH fusions ranging from vascular penetration peptide-VHH to engineered hu-Fab 
and albumin-binding domains (27–29); fluorescent dye fusions, for example, one spontaneously crossing the blood–brain barrier (30); radionuclide-VHHs (31, 32); 
toxin-VHH theragnostics (16, 33); chromogenic enzyme fusions: here an alkaline phosphatase-VHH may be applied in ELISA, dot blot, and transferred protein 
identification in western blot (34); oncolytic virus (35, 36); VHH decorated nanoparticles for therapeutics delivery and in facilitating photothermal therapy (37–42); 
bacteriophage engineered to display VHH and deliver targeted therapeutics (43) may also be developed for signal amplification in ELISA assays (44).

(Continued )
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Applicationsc Targeted tumor antigens Clinical trials Developerb

9. Testing molecular mimicry, 
including anti-idiotypes and  
abzymes

Ab2 abzymes with alliinase activities  
(64), self-diversifying antibody library  
platform (SDALib)

New drug diacovery using Abzyme’s 
yeast-based camelid single domain VHH 
antibody library with self-diversifying ability, 
to generate VHH antibodies against cancer-
related target isoforms

Abzyme Therapeutics, LLC and  
Ibex BioSciences, LLC partnership

aServices that support sdAb generation and lead candidates screening.
bSearch business firm information with preferred online engine.
cApplications that may broaden the range of tumor targeting lead candidate.
dhttp://www.innovatienetwerk.be/projects/2275.

TAble 1 | Continued
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DiSTinCTive PROPeRTieS OF sdAbs

The ease of selecting sdAb under denaturing conditions has 
assisted in the isolation of “superstable” species with improved 
resistance to proteases that were proposed as antimicrobial thera-
peutics of oral intake (83, 84). Li et al. have successfully selected 
VHH expression products with a high isoelectric point (pI) that 
spontaneously crossed the blood–brain barrier (transcytosis) 
(30). High-pI sdAb have been found to penetrate cells and bind to 
intracellular proteins. For instance, a sdAb that bound specifically 
to the hepatitis C virus (HCV) protease, selected for its ability 
to penetrate cells (transbodies), interfered with heterologous 
HCV replication (15). A sdAb-based anti-β-catenin intrabody 
was expressed and folded in the cytoplasm retaining its ability to 
bind to β-catenin (85).

The solvent accessible surface (SAS) area of antigen-VHH 
and VNAR complexes are comparable to antigen–VH–VL 
complex SAS indicating that complementarity domain region 
(CDR) loops involved in antigen binding (Figure 1A) contribute 
similar surface contacts. VHH H1 and H3 loops connecting 
the β-sheets of the VHH domain are flexible, sometimes longer 
and packed in a less compact fashion compared to canonical 
VH of murine and human immunoglobin G (IgGs) (10, 86). 
Co-crystal structures of enzyme-VHH and -VNAR complexes 
showed CDRs that often protruded into the active-site cleft 
and the derived sdAbs were later shown to inhibit catalysis  
(65, 66, 87, 88). Alternatively, sdAbs have been selected to 
stabilize “drugable” targets that display multiple conformations  
(or conformational plasticity) (79, 82). For example, the urok-
inase-type plasminogen activator (uPA) from the trypsin-like 
serine protease family, a target involved in metastasis, is known 
to adopt high and low activity conformations. Selection of sdAbs 
against mouse uPA yielded both a catalytic-site inhibitor and an 
allosteric ligand. Crystal structures of the uPA sdAb complexes 
revealed high and low activity determinants that provided clues 
of therapeutic value on the regulatory determinants of uPA and of 
trypsin-like serine proteases in general (89). Table 1 documents 
the pharmaceutical relevance of sdAbs through the number of 
research and development companies involved in novel sdAb 
generation, available contract services, lead candidates under 
clinical trial, and examples of the sdAbs more recently generated 
against cancer targets.

sdAbs in iMAging APPliCATiOnS  
FOR CAnCeR DiAgnOSTiCS

Molecular imaging techniques, of widespread use in the 
clinic, allow the non-invasive quantitation and visualization of 
tumors in vivo and sdAbs have become promising, small-sized, 
high-affinity tracers (58, 90–92) (Figure 1B). Nuclear imag-
ing probes associated to sdAbs have been evaluated in both 
single-photon emission computed tomography (SPECT) and 
positron emission tomography (PET) (90, 93) (Table 1, item 6).  
The most advanced sdAb under clinical evaluation is the 
68Ga-labeled anti-HER2 sdAb 2Rs15d probe, developed to 
screen candidates who qualify for treatment with an anti-
HER2 therapeutics. A phase I study resulted in high-quality 
images without adverse reactions and retained 10% of injected 
activity in blood after 1 h (94). A phase II trial was launched 
to correlate tumor uptake with HER2 levels in biopsies of 
160 metastatic breast carcinoma patients (Table  1, item 6). 
In other studies, 2Rs15d labeled with the prosthetic group 
N-succinimidyl-4-[18F] fluorobenzoate ([18F]-SFB) was vali-
dated in preclinical models to advance PET imaging (95). The 
specific uptake of the sdAb 2Rs15d probe in HER2-positive 
tumor xenografts showed high tumor-to-blood and tumor-
to-muscle ratios, high contrast PET imaging and fast renal 
clearance (4% intra auricular/g at 3 h post injection.). The lead 
candidate MSB0010853, a biparatopic sdAb labeled with 89Zr 
bound efficiently to HER3 kinase, a potential clinical target 
associated with resistance to epithelial growth factor receptor 
(EGFR) and HER2 targeted therapies (96, 97).

Organometallic radiopharmaceuticals are also widely used in 
diagnosis with SPECT imaging. sdAbs that target either EGFR 
(98), VCAM1, an 8-kDa fragment of gelsolin or carcinoembryonic 
antigen (CEA) have been conjugated with 99mTc (99). Recently, 
an anti-PD-L1 sdAb labeled with 99mTc discriminated wild type 
mice from PD-L1 knock-out mice by SPECT/CT imaging (100). 
sdAbs used as fluorescence-guided near-infrared wavelength 
range (NIR) probes are also under preclinical studies address-
ing sentinel lymph node imaging quality and guiding surgical/
endoscopic removal of residual tumor tissue (101). NIR probes, 
IRDye800CW or IRDye680RD, were conjugated either by lysines 
or C-terminal cysteine to the 7D12 anti-EGFR sdAb. After IR dye 
conjugation, comparable specificities and affinities of 7D12 and 

http://d
http://www.innovatienetwerk.be/projects/2275
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


6

Iezzi et al. The sdAb in Cancer Therapy

Frontiers in Immunology | www.frontiersin.org February 2018 | Volume 9 | Article 273

the conjugate were measured toward EGFR in vitro (58, 102). This 
study also showed an accumulation of the cysteine-conjugated 
7D12 in A431 human tumor xenografts in nude mice or high 
tumor-to-muscle ratio.

The ultrasound imaging of vessel cell adhesion protein 1 
(VCAM1), using specific sdAbs coupled to lipid microbubbles 
as contrast enhancers, is used to assess potential adhesion sites 
of melanoma cell extravasation and metastasis (75). Although 
sdAbs are promising imaging probes renal retention during clear-
ance and toxicity were reported in preclinical studies. Adverse 
effects were attributed to the polar residue number favoring the 
interaction with the megalin/cubilin system in the renal tubuli 
(103). This issue was overcome by mutating positive residues, 
facilitating filtration at the negatively charged glomerular mem-
brane (104). Toxicity was also controlled by gelofusine or lysine 
added to the probe (103, 105).

sdAb AgAinST TUMOR TARgeTS  
FOR CliniCAl USe

Single-domain antibodies that bind either hepatocyte growth 
factor, EGFR, bone morphogenetic protein (TGFb superfamily 
growth factors), HER2, cMET, or VEGFR1, have been shown to 
efficiently block tumor cell proliferation (81, 106–109). Zhang 
et al. (61) have recently shown that KN035, an anti-PD-L1 sdAb, 
can induce T-cell responses and inhibit tumor growth; the KN035 
CDRs structure is remarkably similar to that of the VH of Federal 
Drug Administration-approved Durvalumab (110). Other sdAbs 
were developed to target uPA, and chemokine receptors such 
as CXCR4 and CXCR7 (111). More recently, sdAbs targeting 
antioxidant enzymes such as membrane catalase and superoxide 
dismutase were selected for their ability to induce reactive oxygen 
species-dependent cancer cell apoptosis and found to be syner-
getic to chemotherapy (112).

Single-domain antibodies modules have been engineered 
into multivalent structures to overcome fast clearance. The 
anti-DR5 sdAb tetramer showed excellent pharmacokinetics 
and efficacy in preclinical models, inducing robust antitumor 
responses and sustained caspase activation in vivo. However, in 
the phase I trial an unexpected hepatotoxicity which triggered 
hepatocyte apoptosis, later associated to the immune crosslink-
ing of the tetramer in those patients with pre-existing ADA, 
prompted its discontinuation (113). A bifunctional sdAb, target-
ing EGFR and TRAIL, inhibits the growth of different tumor 
cell types that were not responsive to either EGFR-antagonist or 
death receptor-agonist monotherapies is a clear step forward of 
the clinical application of sdAb modules (23). To improve the 
efficacy of a bifunctional therapeutic, the MaAbNA-PEG2000-
ADM chimera consisting of an anti-EGFR1 sdAb linked to two 
anti-HER2 affibodies was conjugated with Adriamycin (114). 
The bispecific sdAb chimera recognizing CEA and antigen clus-
ter of differentiation 16 (CD16) (NK-cell marker) was linked to a 
mutated human IgG1 Fc-fragment that equipped the dimer with 
an effector function (115). The bispecific antibody HER2-S-Fab, 
an anti-CD16 sdAb that is linked to a anti-trastuzumab Fab, also 
exhibited a potent tumor growth inhibition in a human tumor 
xenografts model (29). A multivalent, sdAb-based, in-tandem 

trimer was capable of simultaneously binding to CEA, EGFR, 
and green fluorescence protein with high efficacy for inhibition 
of human epidermoid carcinoma A431 cell proliferation (26). 
An interesting approach to increase the half-life of sdAbs with-
out affecting the affinity for its target was the fusion between 
an anti-TNFα sdAb with an albumin-binding domain derived 
from Streptococcus zooepidemicus (~39-fold half-life increase 
with respect to the sdAb alone, Table 1, item 4) (28).

Targeting tumors with ionizing radiation is also a promising 
area for growth for sdAb therapeutics. The most relevant in vivo 
study demonstrated that i.v. administration of the sdAb anti-
HER2 labeled with 177Lu, a γ-emission radionuclide, completely 
prevented tumor growth in mice with small HER2-positive 
tumors (32). The α-emitting radionuclides 213Bi and 211At coupled 
to sdAbs are tentatively used to treat minimal residual disease and 
micro-metastasis and their clinical application is being intensely 
explored (116).

eMeRging DRUg-DeliveRY 
STRATegieS THAT USe sdAbs

To improve solid tumor penetration an EGFR-targeted sdAb 
was fused to an iRGD, a cyclic domain selective of αvβ3 and 
αvβ5 integrins that carries a CendR motif that binds neuropilin 
1 (NRP-1) (117). The efficacy of this construct was measured 
in BGC-823 multicellular spheroids that overexpress EGFR, 
NRP-1, and integrins. The anti-EGFRsdAb-iRGD showed better 
performance in reducing spheroid size than anti-EGFRsdAb or 
cetuximab. In vivo, anti-EGFRsdAb-iRGD-FITC was shown to 
bind to αvβ3 and αvβ5 expressed in the tumor vessels, malignant 
cells, and cancer-associated stromal cells, penetrating further 
than the anti-EGFR-FITC (27). Recently, anti-EGFRsdAb-iRGD 
was conjugated to silk fibroin nanoparticles loaded with pacli-
taxel, resulting in a significant anti-neoplastic activity in EGFR-
expressing cells in vitro and in vivo (41).

Single-domain antibody has been successfully used to retarget 
oncolytic adenovirus to a non-cognate receptor following the 
incorporation of an anti-CEA sdAb into the adenovirus capsid 
fiber (Figure 1B). This modification was shown to control viral tro-
pism, entry, and gene transfer specifically in CEA-overexpressing 
cells (36, 118). sdAb displayed on genetically engineering phage 
combined with target drugs or imaging probes has recently been 
proposed for preclinical evaluation (43, 119).

Single-domain antibodies have been used to retarget nano-
particles with particular diagnostic or therapeutic properties 
(120, 121). Branched gold nanoparticles functionalized with an 
anti-prostate-specific antigen sdAb were shown to destroy can-
cer cells in response to laser irradiation in a preclinical model of 
photothermal therapy (37). Pegylated liposomes, schematized in 
Figure 1B, may be re-directed away from the reticuloenthoelial 
system by coupled sdAbs and are under preclinical evaluation 
as drug nanocarriers (39, 40). A novel potent delivery system 
based on extracellular vesicles (EVs) has recently been described 
where an anti-EGFR sdAb was anchored on the surface of EVs 
via glycosylphosphatidylinositol signal peptides derived from 
the decay-accelerating factor significantly improving EV target-
ing (42).
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PlATFORMS FOR THe geneRATiOn  
OF new sdAbs

Epitope recognition and coverage appear to be dependent on 
immune-selection pressure of VH and VHH sequences in vivo 
and by the library diversity (122, 123). To amplify antigenic 
epitope coverage, naïve and semi-synthetic libraries are being 
promoted to amplify antigen epitope coverage often limited by 
B-cell IgG amplification in vivo. Low affinities may be matured or 
optimized as required. sdAb discovery may now count on high-
throughput, high-resolution broad epitope coverage analysis and 
poly-specificity and affinity screening tools to increase the likeli-
hood of selecting sdAbs with the desired therapeutic functions 
(Table 1, item 2) as well as to discriminate between functional 
sdAbs, such as those that can trigger receptor internalization 
(124) and polyreactive leads (8).

Three novel VHH library presentation and selection plat-
forms have been recently proposed for a high-throughput 
selection of sdAb to integral membrane tumor antigens, 
or proteins overexpressed on the surface of whole cells or 
on virus-like particles (70, 123). Two of the platforms were 
designed to identify binders to antigen diluted in lysates or 
in complex mixtures for the discovery of sdAbs that bind 
critical pathway targets (78, 125). Rosotti et al. reported high 
throughput, parallel selection and characterization strategies 
to identify phage-displayed sdAbs against receptors expressed 
on murine bone marrow-derived dendritic cells (123). As a 
result of en masse cloning and whole-cell screening, the in vivo 
biotinylation of selected VHH facilitated the identification of 
targets. The isolated VHH were effectively mapped, or binned, 
by epitope, and target coverage was recorded [also see Ref. 
(126), Table 1, item 2].

Salema and Fernandez optimized the display of VHH on 
Gram-negative E. coli, and the direct expression of selected 
VHH clones, by anchoring the expression product on the outer 
membrane by fusing to the N-terminal, intimin β-domain 
(Neae) (78, 127, 128). High-affinity clone selection was opti-
mized by magnetic cell sorting on immobilized recombinant 
biotinylated antigen (MACS) or by flow cytometry on whole 
cells (CellS) (78).

A third sdAb selection platform was presented by Cavallari 
using a Gram-positive Staphylococcal (Staphylococcus aureus) 
display of sdAb (125). Here, VHH clones were engineered with 
the signal peptide from staphylococcal enterotoxin B, with the 
sortase A (SrtA) LPXTG motif, to display folded VHH on the 
surface. Endogenous SrtA covalently, and irreversibly, coupled 
expressed sdAb on the outer membrane. A nucleophilic attack 
of the SrtA sdAb-acyl intermediate by polyglycine nucleophile-
biotin was used to release and biotinylate selected VHH clones. 
The major advantages of bacterial display were the efficiency of 
selection as reflected by a high “hit” frequency, or high frequency 
of success, in comparison to hit selection by phage display, 
and minimum avidity. Also attractive is the choice of evaluat-
ing selected sdAbs by flow cytometry or in SPR binding assays 

directly enabling screening sdAbs by epitope and a discrimina-
tion of poly-specificity in a high-throughput mode (78, 128).

COnClUDing ReMARKS

Single-domain antibodies are soluble, stable, recombinant pro-
teins that fold independently and display an outstanding versatil-
ity. The hardware-building concept of “plug and play” appears as 
an excellent paradigm in which sdAbs are part of a therapeutics 
generation tool kit that includes engineered recombinant sdAbs, 
radionuclides, dyes, peptides, proteins, nanostructures, phage, 
and virus.

Currently, 20–25% of the mAbs in clinical development for 
cancer and non-cancer indications are recombinant human 
antibodies derived from phage display libraries or from trans-
genic mice. Five antibody “fragments” (scFv) were reported 
in clinical phase 2/3 this past year. These include a human 
scFv-doxorubicin loaded liposome; two scFv conjugates, a 
humanized anti-EpCAM scFv-immunotoxin conjugate; and 
an anti-fibronectin extra-domain B human scFv for cancer 
indications.

The unexpected toxicity of the anti-DR5 tetramer, TAS266, 
opened the question of pre-existing immunity against sdAb. This 
issue has been addressed by developing sensitive immune serum 
assays and immunogenicity-screening platforms (Table 1, item 
3, EpiVax) to identify the safer lead candidates, helping reduce 
the risk of clinical trial failure of sdAb-based drugs. The promise 
of recombinant, engineered, antibody-based building modules 
with optimal efficacy and biovailability may soon translate into 
tangible cancer drugs.
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