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For many years, the focus of prophylactic vaccines was to elicit neutralizing antibodies, 
but it has become increasingly evident that T cell-mediated immunity plays a central 
role in controlling persistent viral infections such as with human immunodeficiency virus, 
cytomegalovirus, and hepatitis C virus. Currently, various promising prophylactic vac-
cines, capable of inducing substantial vaccine-specific T cell responses, are investigated 
in preclinical and clinical studies. There is compelling evidence that protection by T cells 
is related to the magnitude and breadth of the T cell response, the type and homing 
properties of the memory T cell subsets, and their cytokine polyfunctionality and meta-
bolic fitness. In this review, we evaluated these key factors that determine the qualitative 
and quantitative properties of CD4+ and CD8+ T cell responses in the context of chronic 
viral disease and prophylactic vaccine development. Elucidation of the mechanisms 
underlying T cell-mediated protection against chronic viral pathogens will facilitate the 
development of more potent, durable and safe prophylactic T cell-based vaccines.

Keywords: T cells, quality, vaccine, prophylaxis, chronic infection, virus

iNTRODUCTiON

Our bodies are persistently exposed to various pathogens present in the environment. The immune 
system is fortified with physical barriers and with diverse immune cell populations that play an 
integral role in protection against disease. Long-term immune responses are mediated by antigen-
specific lymphocytes and antibodies that are formed upon pathogen entry. Memory B and T cells are 
numerically and functionally superior to their naïve precursors cells that are present before infection, 
and upon encounter with the same pathogen memory immune cells are able to induce a more rapid 
and powerful recall response (i.e., immunological memory) (1, 2).

The majority of prophylactic vaccines against viral infections have focused on the induction of 
neutralizing antibodies. Indeed, potent antibody inducing vaccines against virally induced diseases 
are available. Nevertheless, they fail to provide long-term efficacy and protection against a number 
of chronic viral infections. Studies in mice, non-human primates, and humans provide evidence 
that effective prophylactic vaccines against chronic (low level and high level) replicating viruses  
[i.e., herpesviruses, human immunodeficiency virus (HIV), and hepatitis C virus (HCV)] should 
engage strong cellular T  cell immunity (3–5). The development of T  cell-eliciting prophylactic 
vaccines has gained increasing attention, although such vaccines are not always able to provide 
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sterilizing immunity. Despite various promising vaccines that are 
capable of stimulating robust T cell responses, the critical fac-
tors of T cell-mediated immune protection against these chronic 
infections have not been clearly defined. Often, the memory 
response provoked by vaccines is not sustained and frequently 
diminishes over time (6, 7). Thus, more knowledge is required 
to tailor the vaccine’s capacity to induce durable CD4+ and/or 
CD8+ T  cell responses of appropriate magnitude and quality 
to effectively contribute to pathogen clearance. Elucidating the 
mechanisms through which antigen-specific T cell populations 
mediate long-term protection against viruses at body surfaces 
and (lymphoid) tissues remains an important goal, and will 
facilitate the development of more effective and safe prophylac-
tic T cell-eliciting vaccines. Here, we review determinants and 
mechanistic factors of effective T cell populations implicated in 
the vaccine efficacy against chronic viral infections, and discuss 
how this knowledge can be utilized to maximize the possibility of 
creating effective vaccine platforms for persistent viral infections.

THe COMPLeXiTY OF THe ANTiGeN-
SPeCiFiC T CeLL ReSPONSe DURiNG 
iNFeCTiON

The antigen-specific interactions between T cells and DCs result-
ing in activation may initially be short lived, before stabilizing 
and may last up to 12 h. During this period, T cells receive their 
necessary activating signals (8, 9). For proper activation of naïve 
CD4+ and CD8+ T  cells, cognate antigenic signals through the 
TCR (signal 1), costimulatory signals (signal 2) and signals 
provided by inflammatory cytokines (signal 3) are required (10, 
11). Expression of particular chemokine receptors such as CCL19 
and CCL21 enhance immune responses by stimulating the inter-
actions between T  cells and DCs during antigen presentation 
(12–15). In addition, the secretion of chemokines by activated 
DCs and CD4+ T cells enhances CD8+ T cell accumulation and 
help attract rare antigen-specific T cells (16, 17). The activation of 
T cells results in alteration of the expression of various molecules 
including integrins, selectins, and chemokine receptors, lead-
ing to the modulation of key intracellular signaling events that 
promote proliferation, differentiation, and migration of T cells to 
inflamed tissues (18–20).

After resolution of the infection, the majority (90–95%) of 
the effector T cells are eliminated due to programmed cell death 
and only a small, yet diverse pool of memory cells remains (21, 
22). Traditionally, memory T cells were classified into two major 
categories based on their proliferation capacity, phenotypic 
features, and migration potential (23). Effector-memory T 
(TEM) cells are identified based on combined expression and/or 
lack of certain cell surface markers including KLRG1hi/CD44hi/
CD127lo/CD62Llo. These cells have limited proliferation capac-
ity upon TCR triggering but rapidly produce effector molecules 
and cytokines such as IFN-γ and TNF (24, 25). Central-memory 
T (TCM) cells are distinguished by the expression of KLRG1lo/
CD44hi/CD127hi/CD62Lhi surface markers, exhibit a superior 
proliferation capacity and produce cytokines that are directly 
associated with better secondary expansion such as interleukin 

(IL)-2. Secondary lymphoid organs are the main homing sites of 
TCM cells whereas TEM cells are more dominantly present in (non-
lymphoid) tissues (26–29). Both TCM and TEM cells can circulate, 
whereas a recently discovered new category of T  cells present 
in tissues lacks migratory capacity. These cells, named tissue-
resident memory T (TRM) cells, permanently reside in peripheral 
tissues, even after the infection is cleared. TRM cells are present in 
most organs and tissues and can be defined based on the expres-
sion of CD69hi/CD62Llo/CD44hi and other surface markers (e.g., 
CD11a, CD38, CD49a, CD103, and CXCR3) (30–33). However, 
the composition of these markers depends on tissue-specific cues, 
and expression levels vary in different tissues. Besides these three 
main memory T cell subsets, a small subset of memory T cells 
exists that exhibit advanced stem cell like qualities and prolif-
eration capacities compared with other T cell subsets (34). These 
memory T cells, which were designated stem cell memory T cells 
(TSCM cells), display a phenotype highly similar to naïve T cells 
(TN cells), being KLRG1lo/CD44lo/CD127hi/CD62Lhi/CD69lo, but 
also co-express stem cell antigen (Sca-1), the β chain of the IL-2 
and IL-15 receptor (CD122 and IL-2Rβ), and the chemokine 
receptor CXCR3 (34–39). Some studies reported that T cells with 
an early stage of differentiation can be induced by vaccines (40, 
41) but whether this induction is important for vaccine efficacy is 
unclear. Thus, whether sufficient amounts of TSCM-like T cells able 
to elicit protection can be generated by vaccines needs further 
exploration. Notably, humans and mice have broadly analogous 
T cell biology, and the above described subsets (i.e., TCM, TEM, TRM, 
and TSCM cells) have been described in both species and share 
similar characteristics.

Live attenuated as well as synthetic or subunit vaccines are 
able to elicit TCM, TEM, and TRM cells (30, 32). With respect to live 
attenuated vaccines, the vaccine-induced T  cell subsets can be 
highly similar to those subsets that develop upon infection (42). 
However, live vaccines have disadvantages (e.g., transformation 
to a virulent form and requires refrigeration), which prompts the 
development of inactivated, synthetic, or subunit vaccines. T cell 
subsets that develop upon immunization with those vaccines are 
highly dependent on the addition of adjuvants and on the route 
of administration (43).

THe MAGNiTUDe OF THe T CeLL 
ReSPONSe iS iMPORTANT FOR  
OPTiMAL PROTeCTiON

The magnitude of viral-specific T cell responses is highly dictated 
by the infectious dose and route of infection (44). Higher infec-
tious dosages lead generally to higher peak values of effector 
T cells, and correspondingly larger amounts of memory T cells 
in the circulation are found. However, if the immune system is 
overwhelmed and virus replication remains at a high level, this 
eventually leads to exhaustion of T cells and poor memory forma-
tion (45).

Given the frequently observed correlation between the mag-
nitude of T cell responses and establishment of immunity during 
infections, simply determining the magnitude of the vaccine-
elicited T cell response may already serve as a predictor of efficacy 
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in vaccination settings. A number of studies have shown a direct 
association between the vaccine-elicited T cell response size and 
the ability for virus control (5, 46–48). Several parameters directly 
impact the magnitude of the vaccine-induced T  cell response.  
In the case of live (attenuated) viruses, the size of the initial dose 
of the inoculum correlates to the magnitude of the vaccine-
specific T cell response until a threshold is reached (49). To reach 
similar levels as that elicited by virulent virus, inoculum sizes 
are generally higher for replication-deficient or single-cycle viral 
vectors. For synthetic vaccines, however, the saturation threshold 
may not be reached because of lack of sufficient inflammatory 
signals. However, recent discoveries in adjuvant development 
and synthetic (nano)particles provide promising approaches to 
augment T cell responses (50–52). Besides the initial inoculum 
dosage, booster vaccine regimens increase the magnitude of the 
T cell response (43, 53, 54) and are likely essential for the majority 
of vaccine platforms including live vaccines (55). In this regard, 
vaccines that prime with DNA or adenoviral vectors and boost 
with modified vaccinia Ankara are excellent demonstrations that 
underline the supremacy of prime-boost vaccination regimens 
(4, 56–64).

MeMORY T CeLL iNFLATiON PROvOKeD 
BY ReCOMBiNANT vACCiNeS

An alternative mechanism leading to a durable increased magni-
tude of memory T cells, described as memory “inflation” (65, 66), 
is observed for certain viral-specific responses following infection  
by cytomegalovirus (CMV). Here, antigen-specific T cells specific 
to a subset of viral peptides show an unusual response, whereby 
they expand gradually over time and are maintained at high 
frequencies as TEM-like populations—as opposed to the standard 
expansion and contraction kinetic of conventional memory 
cells. Critically, and unlike exhausted CD8 T cells that develop 
during other persistent infections these inflationary responses 
maintain their effector functions, tissue homing ability and can 
provide protection against pathogen rechallenge. Memory infla-
tion has also been observed for CMV-specific antibodies, whose 
levels gradually increase over time (67). Although the rules that 
determine the onset of memory inflation have not been fully 
defined, it is clear that for inflation to occur viral antigen must 
persist long term, a criterion fulfilled by CMV infection through 
periodic episodes of reactivation from its latent state. Memory 
T cell inflation appears to require T cell costimulation (68, 69), 
yet is less dependent on the immunoproteasome (70). Modifying 
the context of the peptide can convert a classical response to an 
inflationary one (71).

Recombinant CMVs may provide important vectors for 
vaccines, although they are highly complex viruses containing 
multiple immune evasion genes. Nevertheless, in experimental 
models engineered mouse cytomegalovirus (MCMV)-based 
vaccine vectors containing foreign viral sequences (e.g., derived 
from influenza virus, lymphocytic choriomeningitis virus, Ebola 
virus, herpes simplex virus, and respiratory syncytial virus) 
provide long-lasting protection (42, 71–73). In rhesus macaques, 
a recombinant CMV vector expressing simian immunodeficiency 

virus (SIV) antigens induced in addition to MHC class I-restricted 
CD8+ T cell responses also MHC class II-restricted and HLA-E-
restricted CD8+ T cell responses (74, 75). These unconventional 
responses are likely to arise because of the restrictions placed 
on normal antigen presentation by the attenuated CMV vectors 
used. More work is needed to identify which of these populations 
is critical for protection, and whether this protection correlates to 
magnitude, breadth, or effector mechanism.

Memory inflation is not exclusively induced by CMV. 
Similar phenomena have been observed with other viruses,  
e.g., Epstein–Barr virus (EBV), herpes simplex virus-1, parvovi-
rus B19, murine polyoma virus, and adenoviral vectors (66, 76). 
The latter is of interest with respect to vaccine-induced responses. 
In mouse models, adenovirus-based vectors can lead to induction 
of inflationary responses, which closely resemble those induced 
by natural CMV infections (77, 78). Moreover, in this vaccine 
platform, it is possible to generate inflationary responses against 
otherwise non-inflationary epitopes by constructing “minigenes,”  
in which only the CD8 T cell epitope of interest is inserted into the 
vector and expressed, thus bypassing antigen processing require-
ments (79). Adenoviral vectored vaccines have been developed 
against many pathogens, including EBV, HCV, HIV, malaria, and 
Ebola (4, 64, 80–82), and the responses elicited by these vectors 
in human volunteers are sustained over time. The HCV-specific 
responses induced in healthy CMV+ volunteers after immuniza-
tion with a chimpanzee adenovectored-HCV vaccine shared 
similar phenotype and functionality to their CMV-specific 
memory populations as well as to inflating memory cells induced 
after AdHu5 and MCMV infection in mice (78).

THe BReADTH OF THe iNDUCeD T CeLL 
ReSPONSe iMPACTS ON PROTeCTiON

An increased breadth of the vaccine-induced T  cell response 
has been found beneficial against many chronic viral pathogens  
(5, 54, 83–86). Induction of T  cells with multiple antigen- 
specificities correlates with advanced killing capacity for control 
of HCV or even complete eradication during primary infection 
with HCV and superior protection upon reinfection (80, 86, 87). 
Analysis of CD8+ T  cell responses in untreated HIV-infected 
individuals showed that an increasing breadth of Gag-specific 
responses is associated with decreased viremia (88).

Successful induction of potent and broad T  cell responses 
has been reported for DNA plasmid vaccines (89, 90) and 
adenovirus serotype 26 vector-based vaccines (91). The latter 
approach incorporated a combination of subdominant and 
dominant epitopes of rhesus macaques SIV in prime-boost vac-
cination schedules. In parallel with these findings, the efficacy 
of synthetic long peptide (SLP)-based vaccines to protect against 
MCMV was significantly improved by combinations of SLPs that 
increased the breadth of the antigen-specific T cell response (5). 
These findings indicate that cytotoxic CD8+ T  cell populations 
consisting of a broad repertoire of specificities are better capable 
to effectively kill virus-infected cells compared with T cell pools 
with a single specificity. Possible explanations are that T cells of 
diverse specificity results in enhanced killing of virus-infected 
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cells (compared with T  cells with one specificity) or that viral 
escape mechanisms become restricted. Moreover, an increase in 
recognition of multiple epitopes may also contribute to protec-
tion against infection with heterologous viruses via cross-reactive 
responses (92). Vaccine efficacy is expected to be also dictated 
by the TCR clonotypes within a polyclonal antigen-specific T cell 
population, since immune escape during viral infection is linked 
to conserved TCR motifs while diverse clonotypic repertoires 
without discernible motifs are not associated with viral escape 
(93, 94). Hence, the importance of the diversity in the antigen-
specific T cell repertoire (with respect to recognition of multiple 
antigens and diversity in clonotypes specific for the same epitope) 
should be taken into account while designing prophylactic T cell-
based vaccines.

As discussed earlier, both the magnitude and breadth of the 
T  cell response is of importance. However, it should be noted 
that simply determining the magnitude in the blood is not always 
valuable, as vaccine efficacy depends also on the type of memory 
T cell and its location. For example, a direct association between 
protection and the frequency of the T  cells in the circulation 
does not always exist (95). Actually, depending on the route of 
infection, T cells present in the mucosal surfaces or in the tis-
sues (TEM and/or TRM) play a dominant role in controlling the 
infection, and sufficient numbers in these areas rather than in the 
circulation are likely required to form a robust frontline defense 
against, e.g., HIV-1 (30, 96). Competition between antigens  
(e.g., the cellular processing and presentation machinery) is also 
an important consideration (5), highlighting that antigen selec-
tion is not simply a case of “the more the better.” Furthermore, not 
all antigen-specific T cell populations have the same efficacy on a 
per-cell basis. For example, T cell populations specific for CMV 
antigens that invoke inflationary responses show superior protec-
tive capacity (5). Selection of the correct but also the appropriate 
quantity of antigens will ultimately steer the immune response 
and is thus a very critical step of the vaccine development process. 
Especially, antigens provoking antigen-specific T cell populations 
with enhanced magnitude, breadth, and diversity in the clono-
typic repertoire should be tested and subsequently selected for 
inclusion when designing vaccine vectors or synthetic vaccines. 
Furthermore, there is evidence that, besides the quantity and 
breadth, specific features of antigen-specific T  cell populations 
such as their cytokine polyfunctionality and metabolic properties 
are also of crucial importance for vaccine efficacy, and this will be 
further discussed in the next sections.

CYTOKiNe POLYFUNCTiONALiTY OF  
T CeLLS AS PARAMeTeR OF  
vACCiNe eFFiCACY

Cytokine production is an important effector mechanism of 
T cell-mediated immunity. Upon most viral and bacterial infec-
tions protective T  cell immunity consists of CD4+ and CD8+ 
T cells with a “Th1” cytokine profile that is characterized by (co-)
production of IFN-γ, TNF, and IL-2 (97).

The frequency of IFN-γ-producing T  cells has been widely 
used as a parameter to assess vaccine-induced responses. In terms 

of effector function, IFN-γ has been shown to play a role in the 
clearance of various viral infections (98). However, there are many 
examples showing that the magnitude of the IFN-γ secreting 
T cell response is not a sufficient immune correlate of protection. 
Single positive IFN-γ-producing T cells can comprise a relatively 
large fraction of the total cytokine-producing CD4+ and CD8+ 
T cell population after immunization. However, such T cells have 
a limited capacity to be sustained as memory T cells (99). Hence, 
prophylactic vaccines that elicit a high proportion of single IFN-
γ-producing T cells would likely not be protective and provide 
a clear example for why the quality of the response is far more 
useful in assessing long-term protection than just measuring the 
frequency of IFN-γ-producing T cells. Instead, studies character-
izing (vaccine-elicited) T cell responses against HIV, HBV, HCV, 
CMV, influenza, and Leishmania revealed a strong correlation 
between the protection level and the induction of high frequencies 
of polyfunctional T cells [e.g., coproducing IFN-γ, TNF, and IL-2  
(4, 80, 100–107)]. Importantly, some of these studies showed that 
measuring the magnitude of IFN-γ-producing CD4+ and CD8+ 
T cells alone was not sufficient to predict protection, and provided 
evidence that measuring the quality of the CD4+ and CD8+ T cell 
response, vis-à-vis polyfunctional T cells, is required.

The supremacy of the polyfunctional T cells may relate to the 
superior survival properties of these cells (81, 99, 108) and to a 
higher level of target killing (109). This may be related to a higher 
IFN-γ production on a per-cell basis by polyfunctional cells 
compared with monofunctional cells (110), and to the capacity 
of TNF that is like IFN-γ also capable of mediating the killing of 
virus-infected cells (111–113). Moreover, reciprocal production 
of IFN-γ and TNF leads to synergistic actions (114).

Furthermore, the other cytokine in the panel, IL-2, is decisive as 
well. Studies analyzing the production of IL-2 and IFN-γ by CD4+ 
and CD8+ T  cells from individuals infected with HIV showed 
that long-term non-progressors, or individuals on anti-retroviral 
treatment, had increased frequencies of T cells expressing IL-2 
only or both IL-2 and IFN-γ, whereas individuals with high 
viral loads (progressors) have increased frequencies of T  cells 
producing IFN-γ only (95). Although IL-2 has no direct antiviral 
function, it promotes proliferation and secondary expansion of 
antigen-specific T  cells (115–120). In addition, IL-2 increases 
expression of the effector molecules perforin and granzyme, 
which mediate cytolytic function (121, 122). IL-2 signals may 
also enhance NK cell activity that could contribute to the early 
control of infection following challenge (99, 123–126). Taken 
together, we conclude that cytokine polyfunctionality is of major 
importance for the efficacy of T cell-based vaccines (Figure 1), 
hence dissecting how cytokine polyfunctionality is regulated 
during the programming of T cells is of interest and may reveal 
potential strategies to improve vaccine-mounted T cell responses.

iMPROviNG vACCiNATiON BY 
TARGeTiNG T CeLL MeTABOLiSM?

The transition of naïve T cells to active effector cells and memory 
T cells involves dynamic and coordinated metabolic modifica-
tions (129). This reprogramming of the cellular metabolism is 
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not a consequence of activation but is linked to the differentia-
tion and activation processes and reflects the fuel and substrates 
necessary to support the differentiation stages of a T  cell  
(130, 131). Both naïve T cells and memory T cells rely primarily 
on oxidative phosphorylation (OXPHOS) and fatty acid oxida-
tion (FAO) for fuel. This reflects the low level yet persistent need 
for energy as such cells are generally long-lived. Effector T cells 
on the other hand have particularly high energetic and synthesis 
demands. These cells have enhanced glycolysis and employ the 
mitochondrial tricarboxylic acid cycle to support their demand 
for de novo proteins, lipids, and nucleic acids synthesis. It is 
becoming increasingly clear that metabolic reprogramming 
plays a critical role in T cell activation, differentiation, and func-
tion. The distinct metabolic demands of different T cell subsets 
make them exquisitely sensitive to pharmacologic inhibitors of 
metabolism (132). These different metabolic requirements of 
T cell subsets provide us with a promising therapeutic opportu-
nity to selectively tailor (vaccine-induced) immune responses. 
Thus, targeting T  cell metabolism affords the opportunity to 
additionally regulate vaccine-induced responses.

Metabolic reprogramming occurs simultaneously with 
T cell activation and is facilitated by mTOR (mammalian target 
of rapamycin) (133). mTOR activation promotes glycolysis, 
fatty acid synthesis, and mitochondrial biogenesis. As such, 
targets upstream and downstream of the mTOR signaling 
pathway are potential therapeutic targets. Rapamycin, although 
known as an “immunosuppressive” drug due to its ability to 
slow down T  cell proliferation, promote robust responses to 

vaccination by enhancing CD8+ T cell memory formation (134). 
Correspondingly, deletion of the mTORC1 inhibitory protein 
TSC2 leads to enhanced mTORC1 activity and increased effec-
tor function (135). Targeting of TSC2 or other molecules in the 
mTOR pathway might accordingly enhance immunity.

Targeting of glycolysis to inhibit immune responses in the 
setting of autoimmune disease and transplantation rejection is 
evolving, and this strategy is also used to enhance antitumor 
immunity by promoting long-lived memory cells ex vivo (136). 
Whether this can be used in vaccination strategies remains 
to be examined. Although most studies have focused on the 
critical role of glycolysis in promoting effector T cell generation 
and function, it has become clear that mitochondrial-directed 
metabolism also plays an important role. Memory T cells rely for 
their energy upon OXPHOS and FAO. Because these metabolic 
pathways are dependent on mitochondria, the abundance and the 
organization of the mitochondria are instrumental for develop-
ment of fit memory cells (137). Alterations in the mitochondrial 
biogenesis can influence the differentiation of T  cells, thereby 
providing opportunity to augment T  cell-mediated immunity 
(138, 139). The transcription factor PGC1α promotes mitochon-
drial biogenesis and function (140). Hence, pharmacologically 
or genetically enhancing PGC1α represents a potential strategy 
for improving vaccine-induced T cell responses. In ex vivo sys-
tems, it has already been shown that enforced overexpression of 
PGC1α, leads to improved metabolic fitness and effector cytokine 
function of CD8+ T cells (141). Finally, the immediate uptake of 
amino acids such as glutamine and leucine is critical for proper 
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metabolic reprogramming of T cells. This is accompanied with the 
upregulation of amino acid transporters involved in glutamine 
(SLC1A5) and leucine (SLC7A5/SLC3A2 heterodimer) (142, 
143). Whether in vivo targeting of the above described metabolic 
processes is possible remains to be examined and may depend 
on the specificity of metabolic inhibitors/enhancers as they 
could affect many cells of the body. The future will tell if indeed 
metabolic targeting is possible to enhance vaccines. Nevertheless, 
the metabolic profiles of (vaccine-induced) T cells are surely of 
interest and correlate to vaccine-mediated immunity (144).

COSTiMULATiON eMPOweRS T CeLL-
eLiCiTiNG vACCiNeS

Targeting costimulatory and inhibitory receptors on the cell 
surface of T cells has shown efficacy in various preventive and 
therapeutic preclinical vaccination settings. Costimulatory signals 
transduced via the CD28 family members CD28 and ICOS and 
via the tumor necrosis factor receptor (TNFR) family members 
CD27, 4-1BB, and OX40 play dominant roles in orchestrating the 
required “signal 2” for optimal T cell proliferation and survival 
(127). While CD28 and CD27 are constitutively expressed on 
naïve T cells, ICOS, 4-1BB, and OX40 are upregulated upon T cell 
activation (127, 145). Collaboration between costimulatory mol-
ecules was expected (127, 146) and confirmed in experimental 
models (147).

Enforced engagement of costimulatory molecules results in 
enhanced T  cell activation, expansion, survival, and establish-
ment of long-term memory (148–154), and has thus the potential 
to serve as effective immunomodulatory components of prophy-
lactic vaccines against chronic viruses (127, 151, 155). Indeed, 
this has already been observed for DNA and adenovirus-based 
vector vaccines in which enforced expression of costimulatory 
ligands stimulating CD27, 4-1BB, and OX40 leads to increased 
T  cell expansion, enhanced cytotoxic activity and antibody 
responses (156, 157). Strikingly, agonistic antibodies to OX40 
combined with synthetic peptide vaccines prompt robust effector 
and memory CD4+ and CD8+ antiviral T cell responses, thereby 
enhancing the prophylactic vaccine efficacy against lytic MCMV 
infection (153). Chronic viral infections are characterized by 
accumulation of functionally impaired antigen-specific CD8+ 
T cells. Studies have shown that activation via 4-1BBL alone or in 
combination with CD80 can enhance the generation of primary 
CD8+ T  cell responses and induce expansion of the antigen-
specific CD8+ T  cells from this pool of impaired T  cells (145, 
158). Similarly, 4-1BB stimulation has been shown to enhance 
the generation of primary CD8+ T cell responses (148, 159, 160) 
and synergizes with attenuated vaccinia virus vectors to augment 
CD8+ T cell responses (148).

Targeting of inhibitory molecules on T cells, such as PD-1 and 
CTLA-4, has been shown to restore the effector function of (over)
activated T cells in settings of chronic viral infections and cancer 
(161–164). Inhibitor blockade with monoclonal antibodies in 
combination with therapeutic vaccines synergizes in reinvigorat-
ing antitumor and antiviral T cell responses (165, 166). Targeting 
of inhibitory pathways during primary immunization with 

prophylactic vaccines may advance the vaccine efficacy as well 
(167, 168).

Although the use of antibodies targeting costimulatory and 
inhibitory molecules as immunostimulatory modalities in vac-
cine approaches can facilitate antigen-specific T cell responses, 
the use of such Abs, however, is associated with toxicity as 
demonstrated in rodents and in clinical settings (164, 169–171). 
Nevertheless, given the potential benefit to significantly increase 
the effectiveness of vaccines, both the efficacy and safety of tar-
geting costimulation is currently extensively examined in various 
immunotherapeutic approaches against persistent viral infec-
tions. Examining the timing and/or the dosing is in this respect 
an important aspect, not only to prevent unwanted side effects 
but also to improve effectiveness. However, mass deployment 
of antibodies to improve vaccines may be too expensive, hence 
alternative methods able to target costimulatory and inhibitory 
molecules are desired.

CD28-mediated costimulation modulates T cell metabolism 
via activation of PI3K pathways, and this is essential to control 
effector cytokine production (172, 173). Moreover, CD28 signal-
ing leads to PI3K-dependent upregulation of surface GLUT1 
to facilitate enhanced glucose influx (172). This upregulation 
of GLUT1 is critical for T  cell function, as genetic deletion of 
GLUT1 markedly inhibits effector T  cells (174). Concomitant 
with increased expression of glucose transporters is the upregu-
lation of key glycolytic enzymes (175). The inhibitory receptor 
PD-1 also regulates metabolic activity including glycolytic and 
mitochondrial processes (139, 176). TNFR family members are 
also able to metabolically program T  cells (177, 178). Another 
important property of T cell costimulation is its effect on improv-
ing the T cell cytokine polyfunctionality. For example CD28 but 
also the TNFR family members are able to promote IL-2 produc-
tion (153, 179–181), thereby directly improving the cytokine 
polyfunctionality (Figure 1). The TCR affinity also impacts poly-
functionality (182), and likely the collective signals of the TCR 
and costimulatory receptors are programming the polyfunctional 
status of T cells. In conclusion, targeting of T cell costimulation 
can impact the important quantitative (magnitude, breadth) and 
qualitative (cytokine polyfunctionality and metabolic fitness) 
determinants of vaccine-induced T cells, and provides thus major 
opportunities for further exploration in future vaccine designs.

CONCLUSiON AND PeRSPeCTiveS FOR 
vACCiNe DeSiGN

The design of vaccines that imprint T  cells with the ability to 
protect against persistent viral pathogens has gained remark-
able progress. An understanding of the appropriate initial 
programming signals is a key step, as is how the route of priming 
or boosting influences the development of effective memory 
T cells. A combination of several metrics such as the type of the 
memory T  cell, breadth, polyfunctional quality, and metabolic 
characteristics demonstrate a valid toolbox to define when a 
vaccine-elicited T cell response is protective. Information about 
the anatomic location, activation, and differentiation of memory 
T cells in lymphoid compared with non-lymphoid organs could 
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be very valuable as well. Costimulatory signaling pathways medi-
ate important T cell memory properties (e.g., programming of 
cytokine polyfunctionality and metabolism) and may serve as 
interesting targets for vaccine improvement. Insight into these 
pathways may identify the requisite pathways and potentially 
other targets to improve T cell-based immunotherapy. Coupling 
this to the identification of the best correlates of protection for 
persistent viral pathogens will foster the development of more 
effective vaccination regimes.
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