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Helicobacter pylori is a causative pathogen of chronic gastritis, gastric ulcer disease, 
and gastric cancer. Humans are known to be a natural host for H. pylori and tend to 
acquire the pathogen before the age of 5 years. The infection may then persist lifelong 
if eradication therapy is not applied. One of the modes of transmission of H. pylori is 
between family members, and therefore, the presence of infected family members is an 
important risk factor in children. However, other environmental factors have not been 
fully analyzed. The present study was performed to clarify whether and to what extent 
intestinal microbiota affect H. pylori intrafamilial infection. The fecal specimens from  
H. pylori-infected infants and H. pylori-infected and non-infected family members were 
collected in cohort studies conducted by Sasayama City, Hyogo Prefecture from 2010 
to 2013. In total, 18 fecal DNA from 5 families were analyzed. Samples were amplified 
using 16S rRNA universal primers, and the amplicons were sequenced using the Ion 
PGM system. Principal-coordinate analysis demonstrated that there was no difference 
in intestinal microbiota between H. pylori-positive and H. pylori-negative groups. In intra-
familial comparison tests, the Manhattan distance of intestinal microbiota between the 
H. pylori-infected infant proband and H. pylori-negative mother was nearest in the family 
with low intestinal microbial diversity. However, in the family with the highest intestinal 
microbial diversity, the nearest Manhattan distance was shown between the H. pylori-
 infected infant proband and H. pylori-infected mother. The results in this study showed 
that the composition of the intestinal microbiota was very similar between members of 
the same family, and as such, colonization with organisms highly similar to the infected 
parent(s) may be a risk factor for H. pylori infection in children.

Keywords: Helicobacter pylori, intrafamilial infection, intestinal microbiota, mother-to-child transmission, beta-
diversity, Manhattan distance

inTrODUcTiOn

Humans are the natural host for Helicobacter pylori and more than half of the world’s population are 
infected with this microorganism. Long-term infection with H. pylori significantly increases the risk 
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of developing site-specific diseases, such as peptic ulcer disease 
(1), gastric adenocarcinoma (2, 3), and mucosa-associated lym-
phoid tissue lymphoma (3, 4).

Helicobacter pylori is most commonly acquired and colonize 
the human stomach up to the age of 5  years (5), and infec-
tion may persist lifelong if eradication therapy is not applied. 
In the developing countries where H. pylori is endemic in 
the environment, fecal–oral infection through drinking of 
water contaminated by H. pylori-infected patients’ feces is an 
important infection route (6). On the other hand, in the devel-
oped countries where the mode of transmission of H. pylori 
is mainly between family members, the presence of infected 
family members is an important risk factor in children (7–9). 
Recently, H. pylori prevalence in the younger age groups has 
decreased in Japan (10), and mother-to-child transmission has 
become the major infection route detected in Japanese children 
(9, 11–13).

After birth, infants are constantly exposed to person-to-person 
and environmental contact with microbes, and the development 
of the indigenous microbiota begins. Family microbiota are 
shared between parents and infants, which plays an important 
role in the development of the infant microbiome. Current 
research suggests that the disorder of microbiota induces the 
gastrointestinal tract.

In our previous study (8), H. pylori infection in children was 
associated with infection in their mothers or fathers, but not in 
siblings or grandparents. In addition, we reported on intrafamil-
ial infection with H. pylori by mother-to-child or father-to-child 
transmission in three families using multilocus sequencing type 
analysis of fecal specimens (8). In the present study, it was thought 
that the mother- or father-to-child transmission of H. pylori 
was more frequent than sibling-to-sibling transmission in this 
cohort. We focused on the comparison of microbiota between 
index children with H. pylori infection and siblings without  
H. pylori infection. Moreover, we also investigated the diversity of 
the microbiota between the index child and infected mother or 
father and whether this affected the routes of H. pylori infection 
for index children.

MaTerials anD MeThODs

subjects
Our previous Sasayama study from 2010 to 2013 in Sasayama city, 
Hyogo, Japan was undertaken and detailed in previous reports 
(8, 10, 14). For the diagnosis of H. pylori infection, a TestMate 
Pylori Antigen enzyme immunoassay T (Wakamoto Co., Ltd., 
Kanagawa, Japan) and real-time polymerase chain reaction 
detection of H. pylori DNA by the 16S rRNA gene of H. pylori-
targeted primers were used (15, 16).

In this study, we analyzed a total of 18 fecal specimens that 
were collected from 5 H. pylori-infected children and their family 
members.

A modified protocol of the one used in the Sasayama study 
was undertaken in accordance with the Declaration of Helsinki 
with approval from the Ethics Committees of Kyorin University, 
Tokyo.

extraction of Fecal Dna
Fecal specimens were stored at −80°C until use. The DNA from 
the fecal samples was recovered using the QIAamp DNA Stool kit 
(Qiagen, Germantown, MD, USA) according to the manufacturer’s 
instructions with some modification (10). Two hundred milligrams 
of the fecal specimens was weighed in a 2 ml microcentrifuge tube 
containing 0.3 g glass beads, and 180 µl of ATL lysis buffer solution 
was added (Qiagen). The suspension was mixed using a vortex 
mixer followed by bead beating three times for 30 s at a setting 
of 4,200 rpm using a bead beater (Yasui Kikai, Tokyo, Japan). In 
addition, 20 µl of proteinase K was added to the mixture. After 
heating at 56°C for 30 min, the bacterial cells in the samples were 
treated by bead beating in the same manner. After destruction of 
bacterial cells, total DNA was collected using a Qiagen column 
and purified according to the manufacturer’s instructions. The 
DNA was extracted in 200 µl of AE buffer (Qiagen) with 400 µl 
of ethanol and 20 µl of 3 M sodium acetate and kept at −20°C 
for 14–16 h for ethanol precipitation. The precipitated DNA was 
collected by centrifugation for 20 min at 20,000 × g.

16s Metagenomic analysis
Each DNA specimen was amplified using the Ion 16S™ 
Metagenomics Kit (Thermo Fisher Scientific, Bremen, Germany). 
The amplicons were purified and prepared for the sequencing 
library by using the Ion Plus Fragment Library Kit (Thermo 
Fisher Scientific) according to the manufacturer’s instructions. 
The library was sequenced by using the Ion PGM system (Thermo 
Fisher Scientific) and the Ion PGM Hi-Q sequencing kit following 
the protocol of the kit (17, 18).

The operational taxonomic unit of each sequence was deter-
mined by the Ion torrent server with the Greengenes database 
(19). The minimum alignment value calculated for each aligned 
read in the analysis was 90.0% for the coverage between hit and 
query. The number of unique reads needed for the read to be 
valid was 10. To make a genus ID, a percentage identity value of 
97.0% was used, and to identify a species ID, 99.0% was used. If 
more than one species or genus were found within 0.2% differ-
ence from each other, they were each reported as a “slash ID”. The 
server system was equipped with QIIME (20) for the analysis of 
microbiota and Emperor (21) for the visualized beta diversities 
among sequenced samples.

statistical analysis
Statistical analysis was performed using the software KaleidaGraph 
(Hulinks Inc., Tokyo, Japan). Mean values were compared among 
subjects using the Kruskal–Wallis test between all groups. For 
comparing categorical data, the χ2 test was performed. A prob-
ability value (p value) less than 0.05 was considered statistically 
significant.

resUlTs

Helicobacter pylori infection of Family 
Members
The 18 fecal specimens from 5 H. pylori-infected children and 
their family members were tested for microbiota analysis. The 
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Table 1 | Helicobacter pylori infection-positive children and their families.

H. pylori infection positive H. pylori infection negative

Family 1 Index child and father Mother and sibling
Family 2 Index child and mother Sibling
Family 3 Index child and mother Father and sibling
Family 4 Index child, father, and mother
Family 5 Index child, father, and mother Sibling

FigUre 1 | Relative abundance at the phylum level (97% similarity) of intestinal microbiota of each family member.
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details are shown in Table 1. In total, five families, containing four 
H. pylori-infected mothers and three H. pylori-infected fathers, 
four H. pylori-uninfected siblings, and one each uninfected father 
and mother, as well as five index children were tested. All five 
H. pylori-infected index children had a H. pylori-infected mother 
and/or father but no H. pylori-infected sibling.

relative abundance of Phyla in intestinal 
Microbiota of subjects Depending on  
H. pylori status and age
The relative abundance of phyla in the feces of each family member 
is shown in Figure 1. The dominant phyla of the fecal microbiota 
were Bacteroidetes (12/18 cases) and Firmicutes (6/18 cases). 

For the comparative study of intestinal microbiota concerning  
H. pylori infection and age, the subjects were divided into H. pylori 
infected and non-infected, and the subgroups were also divided 
into parent and child groups. In these four groups of subjects, 
the abundance of Bacteroidetes or Firmicutes and the ratios of 
Firmicutes/Bacteroidetes were compared (Figure 2). There were 
no significant differences in the abundance of both phyla by the 
Kruskal–Wallis test.

Differences in relative abundances of 
bacterial Families, genera, and species in 
the intestinal Microbiota of subjects
The average relative abundance of each bacterial family, genus, 
and species was compared among the four groups. At the fam-
ily level, abundances of Erysipelotrichaceae, Clostridiaceae, and 
Ruminococcaceae were higher in the H. pylori-negative groups 
than those in the H. pylori positive groups (Figures 3A–C). At 
the genus level, a significantly higher abundance of Parasutterella 
was detected in H. pylori-positive children (Figure 3D). Higher 
abundances of Ruminococcus and Faecalibacterium were also 
detected in H. pylori-negative parents (Figures  3E,F). At the 
species level, significantly higher abundance of Parasutterella 
excrementihominis was detected in H. pylori-positive children 
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FigUre 2 | Relative abundances of Bacteroidetes and Firmicutes, and the relative ratio of Firmicutes/Bacteroidetes in microbiota of parents and children in five 
families with or without Helicobacter pylori infection. (+) and (−) indicate H. pylori infection positive and negative, respectively. The middle line in the box plot 
represents the median value, and the box is drawn from 25 to 75% quartiles. Whiskers show minimum and maximum values, and the ends of the whiskers 
represent the non-outlier range.
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(Figure 3G). Higher abundances of Faecalibacterium prausnitzii 
were detected in the microbiota of H. pylori-negative parents 
(Figure 3H), and Clostridium spiroforme was seen in abundance 
in both H. pylori-negative parents and children (Figure  3I). 
Turicibacter sanguinis was detected only in the microbiota of  
H. pylori-negative parents (two cases). H. pylori was not detected 
in H. pylori-negative and -positive subjects at all from fecal 
microbiota.

The diversity indices were calculated for the entire sample set 
according to the H. pylori status and age groups. As shown in 
Figure 4, Simpson’s indices were significantly higher in samples 
from H. pylori-negative parents than in those from H. pylori-
positive parents. These results remained significant even when 
the comparisons were performed at family and genus levels 
(Figure 4).

Principal-coordinate analysis (PCoA) of Manhattan distances 
highlighting similarities between fecal specimens of the 16 family 
members is shown in Figure 5 and Table 2.

PC1 and PC2 represent the first two highest discriminating 
axes. At both levels of species and family, family 2 was divided 
and separated from other families (Figure  5). PCoA plots of 
other families showed with very near Manhattan distances with 
exceptional family 1 members, and the beta diversities of the fecal 
microbiota in families 3, 4, and 5 were close to each other. These 
results showed that fecal microbiota were similar not only between 
members of the same family but also between other families.

Manhattan distances at the bacterial family level between fam-
ily members in each family are shown in Table 2. The Manhattan 
distances between the index child and other family members show 
the similarity between the microbiota. Four mothers (underlined 
in Table  2) and one father (underlined in Table  2) show the 
highest similarities to the Helicobacter positive index children in 
the five families. However, one (family 1) of four mothers was 
H. pylori negative, and the other four members were H. pylori 
positive.

In comparing distances from H. pylori-positive parent to 
children in family 1, the distance between the H. pylori-positive 

parent to the index child (underlined in Table  2) is shorter 
than that between mother and sibling (double underlined in 
Table 2).

DiscUssiOn

Many factors affect the composition of intestinal microbiota (22), 
and the influence of diet, lifestyle, age, gender, and geography is 
well known. In this study, it was thought that the background of 
all subjects was close, since they all lived in the same location 
(Sasayama city, Japan) and had a similar lifestyle.

The normal human intestinal microbiota comprises two major 
phyla, the Gram-negative Bacteroidetes and the Gram-positive 
Firmicutes. In this study, Bacteroidetes existed dominantly 
in 12 subjects and Firmicutes existed dominantly in other 6 
subjects. There were no significant differences in the abundance 
of dominant phyla between H. pylori-positive and -negative 
groups in children. It is well known that the ratio of Firmicutes/
Bacteroidetes is related to obesity and the body mass index (BMI) 
of human and animal subjects and that the eradication of H. pylori 
infection induces an increase in BMI (23, 24). There have been 
no previous reports into the ratio of Firmicutes/Bacteroidetes in 
H. pylori-infected patients. In this study, we compared the ratio 
between the four groups comprising infected and non-infected 
children and parents. There was no significant difference in the 
abovementioned ratio between the four groups. However, in 
the parents, we only had two H. pylori infection-negative sub-
jects. Therefore, the higher ratio of Firmicutes/Bacteroidetes in  
H. pylori-negative parents compared to H. pylori-positive parents 
shown was not significant due to sample size. As a limitation 
in our study, we were limited by the small sample size, and the 
number of subjects was very small especially in some subgroups. 
Additional study using much more samples need to be done in 
the future.

The average relative abundance numbers for each bacte-
rial family, genus, and species was compared among the four 
groups. A higher abundance of F. prausnitzii was detected in 
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the microbiota of H. pylori-negative parents. F. prausnitzii has 
been reported to be one of the bacterial species possessing anti-
inflammatory properties (25, 26), and higher abundances of this 
species were detected preferentially in Japanese subjects with lean 
body mass (27).

Parasutterella excrementihominis, a member of family 
Alcaligenaceae, was only detected from the microbiota of  
H. pylori-positive children. P. excrementihominis was first isolated 

from the feces of a healthy Japanese male by Nagai et al (28), and 
they reported that this new species showed more than 98% 16S 
rRNA gene sequence similarity to some of the human intestinal 
uncultured clones reported by several groups in the US and 
other countries. This indicates that these bacteria are likely 
to be common members of the human intestinal microbiota. 
However, we cannot shed more light on why it was detected only 
in H. pylori-positive children in this study, and further studies 

FigUre 3 | Significant differences (p values < 0.05) in relative abundances of Erysipelotrichaceae (a), Ruminococcaceae (b), Clostridiaceae (c), Parasutterella (D), 
Ruminococcus (e), Faecalibacterium (F), Parasutterella excrementihominis (g), Faecalibacterium prausnitzii (h), and Clostridium spiroforme (i) composing fecal 
microbiota. The abundances of the bacteria in bacterial family (a–c), genus (D–F), and species (g–i) were used to determine the statistical significance of 
differences between groups by the Kruskal–Wallis test.
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FigUre 4 | Alpha diversity plots of Simpson index measures at species level (a), genus level (b), and family level (c) for the 18 subjects grouped by positive (+) or 
negative (−) Helicobacter pylori status and by the parent or child in the family. The middle line in the box plot represents the median value, and the box is drawn from 
25 to 75% quartiles. Whiskers show minimum and maximum values, and the ends of the whiskers represent the non-outlier range. p-Values of 0.05 (*) by the 
Kruskal–Wallis test were used to determine the statistical significance of differences between groups.

are needed to clarify the differences in microbiota between  
H. pylori-positive and -negative children using a larger subject 
population.

The average Simpson index values of the four groups were also 
compared by the Kruskal–Wallis test. Higher average values of 
Simpson index in the H. pylori-negative groups were detected 
by comparison at the bacterial genus and family level. These 

results showed that the microbiota of H. pylori-positive children 
and adults showed a lower bacterial genus and family diversity 
than that of H. pylori-negative children and parents. In animal 
studies, H. pylori influenced the gastrointestinal microbiota and 
host immune responses not only locally in the stomach but also 
distantly as well, affecting important target organs (29). This is 

FigUre 5 | Principal-coordinate analysis of Manhattan distances highlighting 
differences in intestinal microbiota of family members at the species level. 
PC1 and PC2 represent the first two highest discriminating axes. The 
percentage variation explained by each PC axis is indicated. Differently 
colored symbols represent each family.

Table 2 | Similarity of microbiota between index child and each family member 
using Manhattan distance.

Family H. pylori 
infection

Manhattan distance of each family 
member at bacterial family level

Family 1 index child Father Mother sibling

Index child + 0
Father + 308758 0
Mother (−) 127072 288172 0
Sibling (−) 1207218 1496290 1303190 0

Family 2 index child Mother sibling
Index child + 0
Mother + 213363 0
Sibling (−) 204327 107814 0

Family 3 index child Father Mother sibling
Index child + 0
Father (−) 178915 0
Mother + 69034 201923 0
Sibling (−) 291835 306308 322567 0

Family 4 index child Father Mother
Index child + 0
Father + 51403 0
Mother + 24078 60805 0

Family 5 index child Father Mother sibling
Index child + 0
Father + 36008 0
Mother + 92170 93518 0
Sibling (−) 84593 76961 49063 0
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the first report that gastric infection with H. pylori affects the 
composition of intestinal microbiota in a human host.

Indigenous intestinal microbiota have an ability to protect 
host organisms against infection by exogenous pathogens (30). 
However, the role of endogenous intestinal microbiota in the 
transmission of H. pylori is as yet unknown. The origin of H. pylori 
in children is thought to originate from other family members, 
especially parents. If both the original infected family member 
and index child are found to have similar microbiota, it is possible 
that the protective effect by intestinal microbiota on the infection 
of H. pylori may be weak. Microbiota in the intestinal tract of a 
H. pylori-positive person may not have considerable amounts of 
bacteria that inhibit H. pylori. For example, bifidobacteria (31) 
and lactobacilli differ among individuals, and children inherit 
it from mother absolutely. Bifidobacteria and lactobacilli are 
dominant bacteria in infant (32) especially before weaning. It was 
also reported that Lactobacillus strains have an inhibitory effect 
against H. pylori (15, 33, 34).

In this study, we also focused on the similarity of the index child 
and other family members, especially H. pylori-positive members 
and H. pylori-negative siblings. In family 1, the microbiota of the 
index child was similar to that of the H. pylori negative mother; 
however, in the other four families, lowest Manhattan distances 
(most similar) were shown between index and H. pylori-infected 
mothers (three cases) and father (only one case). These data 
showed that the similarity of microbiota was related to transmis-
sion of H. pylori infection.

The Manhattan distances between H. pylori-negative siblings 
and H. pylori-positive parents were compared to those between 
index children and H. pylori-positive parents and shown to be 
shorter with the exception of family 2, where all three family mem-
bers were similar to each other. In family 5, the H. pylori-positive 

index child was similar to the H. pylori-positive father, and the  
H. pylori-negative sibling showed a similar microbiome to that of 
the infected mother implying father-to-child transmission.

In conclusion, our data support the idea that the intestinal 
microbiota may contribute to intrafamilial transmission of H. pylori 
and that similarity of microbiota could be considered a risk fac-
tor. However, it is possible that the similarity in microbiota is 
also an effect of H. pylori infection. This possibility is worthy of 
further exploration.
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