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Human immunodeficiency virus (HIV) establishes life-long latency in infected individuals. 
Although highly active antiretroviral therapy (HAART) has had a significant impact on the 
course of HIV infection leading to a better long-term outcome, the pool of latent reservoir 
remains substantial even under HAART. Numerous approaches have been under devel-
opment with the goal of eradicating the latent HIV reservoir though with limited success. 
Approaches that combine immune-mediated control of HIV to activate both the innate 
and the adaptive immune system under suppressive therapy along with “shock and
kill” drugs may lead to a better control of the reactivated virus. Interferon-α (IFN-α) is 
an innate cytokine that has been shown to activate intracellular defenses capable of 
restricting and controlling HIV. IFN-α, however, harbors numerous functional subtypes 
that have been reported to display different binding affinities and potency. Recent studies 
have suggested that certain subtypes such as IFN-α8 and IFN-α14 have potent anti-HIV 
activity with little or no immune activation, whereas other subtypes such as IFN-α4, 
IFN-α5, and IFN-α14 activate NK cells. Could these subtypes be used in combination 
with other strategies to reduce the latent viral reservoir? Here, we review the role of
IFN-α subtypes in HIV infection and discuss the possibility that certain subtypes could 
be potential adjuncts to a “shock and kill” or therapeutic vaccination strategy leading to 
better control of the latent reservoir and subsequent functional cure.
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inTRODUCTiOn

Human immunodeficiency virus (HIV) infections are characterized by severe immunodeficiency 
and onset of opportunistic infections. Currently, there are over 36 million people worldwide who are 
living with HIV. Onset of highly active antiretroviral therapy (HAART) has led to better viral control 
and long-term outcome in HIV-infected patients. As access to therapy becomes more readily avail-
able around the world, the number of new infections and transmission are expected to dramatically 
decrease, raising the hope that the HIV epidemic can be controlled and managed. Encouraging stud-
ies (1) showing the efficacy of neutralizing antibodies to control viral rebound and the development 
of long-lasting drugs are likely to have a major impact on the epidemiology of the disease. As major 
efforts to control the HIV epidemic gets underway, focus has shifted to finding cure for patients who 
are already infected with HIV.
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Human immunodeficiency virus is a retrovirus that integrates 
into the host genome. As such, an HIV-infected individual 
is infected for life. The primary target cell for HIV is the CD4 
T cell, with HIV establishing latency in these cells, and this latent 
reservoir continues to persist during HAART. Except in the case 
of Timothy Brown who is the only known case of HIV to have 
been completely cured, complete eradication of HIV reservoir 
has proven to be challenging not only due to the integration of 
HIV into the host genome but also due to the large size of the 
latent persistent reservoir. As such focus has recently shifted to 
the development of functional cure strategies, where the objective 
is to obtain complete remission in the absence of antiretroviral 
drugs.

Evidence for functional cure came rather serendipitously when 
an infant born to an HIV-infected mother was treated continu-
ously for over 2 years within hours after birth. The child remained 
free of HIV for about 2 years after withdrawal of therapy raising 
the prospect that early HAART could potentially achieve full 
remission in HIV-infected subjects. However, the excitement was 
short lived as HIV rebounded suggesting the latent reservoir was 
not eradicated with early therapy and reactivated in the absence 
of long-term HAART. A number of novel approaches such as 
“shock and kill” using latency reversing agents (LRA) although 
somewhat successful in reactivating latent HIV (1), their impact 
on the viral reservoir has been rather limited, suggesting that LRA 
would need to be combined with other approaches such as vacci-
nation against HIV that can simultaneously activate the immune 
system to recognize viral antigens expressed on the surface of 
latently infected cells following reactivation with LRA. A number 
of studies are currently underway to explore this strategy.

Other strategies have focused on activating intracellular 
defense mechanisms using interferon α (IFN-α) in combination 
with LRA or other immune mediators with some promising data 
from non-human primate models. Here, we review the progress 
that has been made to date in understanding the role IFN-α plays 
in HIV infection and explore the potential for harnessing IFN-α 
and its subtype as a strategy toward functional cure.

TYPe i iFn AnD Hiv inFeCTiOn

Since its initial discovery in 1957 as factors that inhibit viral 
replication (2), the role of innate IFN in viral infections has been 
extensively studied. The primary source of IFN-α is the plasma-
cytoid DC (pDC), whereas IFN-β is produced by most cell types 
(3, 4). pDC plays a major role in regulating the immune system 
and are the earliest cells recruited to the sites of virus entry. In 
response to viral pathogen-associated molecular patterns, pDCs 
have been shown to produce ~1,000-fold more IFN-α/β than 
other cell types (5).

Plasmacytoid DC express a variety of pathogen recognition 
receptors (PRRs) such a Toll-like receptor (TLR) 3, TLR7, TLR8, 
and TLR9 that can sense viral nucleic acids leading to the secre-
tion of IFN-α (6–8). Recent studies have demonstrated that the 
cytoplasmic DNA sensor cGAS plays an important role in the 
secretion of IFN-α during both HIV and SIV infections (9). 
Lahaye et al. (10) showed that DC’s sense viral cDNA in the cyto-
plasm that was mediated by cGAS and blocking cGAS or reverse 

transcription inhibited these responses (11). Likewise, Herzner 
et  al. (12) showed that single-stranded HIV-1 DNA activates 
cGAS and HIV-1 reverse transcripts was the predominant viral 
DNA found in the cytoplasm during early infection. George et al. 
(3) showed that treatment with reverse transcriptase inhibitors 
immediately after infection completely blocked plasma IFN-α in 
SIV-infected rhesus macaques. Taken together these studies show 
that numerous innate sensing PRR contribute to the induction of 
IFN-α responses during HIV infection.

Although the production of IFN-α during HIV infection has 
been clearly demonstrated, the exact role these IFN play during 
infection has been less clear. Blockade of IFN-αR with anti-IFN-
αR antibody was associated with higher HIV replication, whereas 
HIV replicated at lower levels in pDC-depleted cultures treated 
with IFN-α (13). IFN-α was found to limit HIV-1 replication by 
decreasing the formation of late reverse transcriptase products in 
infected cells (14), and treatment of newly infected CD4 T cells 
with IFN-α for short period time was associated with significant 
inactivation of HIV during the early stages of replication (15). 
IFN-α was shown to slow HIV disease progression in randomized, 
placebo-controlled trials (16), and Asmuth et  al. (17) reported 
that the treatment with pegylated IFN-α2a had a statistically 
significant anti-HIV effect. Others have shown that IFN-α treat-
ment inhibited HIV and SIV replication in CD4 T-cell lines (18), 
monocytes (19), and macrophages (20). IFN-α has been reported 
to affect late stages of HIV-1 replication in chronically infected 
cells, by inhibiting virus assembly and release and reducing the 
infectivity of virions (21). Other studies have shown the IFN-α 
induced IFN-stimulated genes (ISGs) that effectively suppressed 
HIV replication (22–24).

Interferon α has been shown to induce numerous ISG that are 
capable of restricting HIV replication namely, apolipoprotein 
B mRNA-editing (APOBEC3) family of cytidine deaminases, 
TRIM5α, tetherin (BST-2), SAMHD1, MX2, etc. (25–27). 
Studies have reported high levels of ISG expression in CD4 
T cells very early during infection (28), and increased levels of 
APOBEC3G was found to correlate with lower levels of infection 
in macrophages during SIV infection (29). Others have reported 
that ISG were significantly upregulated during SIV infection 
(30–33). In addition to the induction of ISG, IFN-α has been 
shown to prime adaptive immune responses by cross-presenting 
viral antigens to CD8+ T cells (34–36). Interestingly, Boasso et al. 
demonstrated that IFN-α-induced indoleamine 2,3-dioxygenase 
(IDO) from pDC inhibited CD4+ T-cell proliferation during 
HIV infection (37), and blockade of gp120/CD4 interactions 
was found to inhibit HIV-mediated induction of IDO and IFN-α 
(38, 39).

In contrast to the protective effects of IFN-α during HIV 
infection, increased production of IFN-α was accompanied by 
an increase in HIV loads (40). Mandl et al. (41) argued that the 
generalized immune activation and progressive CD4 T cell deple-
tion observed in pathogenic SIV infection was likely due to an 
aberrant activation of the innate immune system and increased 
IFN-α production in contrast to natural hosts such as sooty 
mangabeys. Martinson et al. (42) reported that TLR stimulation 
and IFN-α secretion by pDC contribute to immune activation 
during HIV infection. Others have shown that rapid progression 
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of HIV was associated with continuous production of IFN-α, 
likely through enhanced T cell differentiation and activation (43). 
Parrish et al (44) demonstrated that transmitted founder viruses 
replicate and spread more efficiently in CD4 T cells in the pres-
ence of IFN-α. Fraietta et al. (45) showed that IFNα/β upregulated 
the expression of Bak, a pro-apoptotic protein that correlated 
with increased T cell apoptosis, low CD4+ T cell counts and high 
viral loads in HIV-infected patients. Patients who progressed to 
disease were found to have lower levels of pDC but displayed 
higher levels of IFN-α and MxA compared to healthy individuals 
(46). Other studies have reported that IFN-α promoted chronic 
immune activation, apoptosis, and immune dysfunction during 
HIV-1 infection (47–51). Likewise IFN-α was found to regulate 
CD4+ T-cell apoptosis induced by noninfectious HIV-1 by upreg-
ulating the expression of TNF-related apoptosis-inducing ligand 
(TRAIL) (38). Cha et al. (52) reported that IFN-α significantly 
enhanced activation-induced proliferation but not homeostatic 
proliferation, suggesting that the IFN-α likely promotes the loss of 
CD4 T cells by accelerating cell turnover and activation-induced 
cell death. On the other hand, Dondi et  al. found that IFN-α 
displays contrasting proliferation-inducing and proapoptotic 
properties (53). Chronic IFN-α signaling has been implicated in 
other persistent viral infections such as LCMV (54, 55).

TYPe i iFn SUBTYPeS AnD Hiv 
inFeCTiOn

Since its initial discovery, numerous isoforms of type I IFN have 
been identified. These isoforms, encoded by single exon genes 
include IFN-α (which harbors 13 different subtypes namely, 
IFN-α1, α2, α4, α5, α6, α7, α8, α10, α13, α14, α16, α17, and α21), 
IFN-β, IFN-ε, IFN-κ, and IFN-ω (56). All the type I IFN subtypes 
signal through a common receptor complex consisting of IFN-
αR1 and IFN-αR2 subunits. In humans, IFN-α subtypes share 
~70–99% amino acid sequence identity with each other and a 
~35% identity with IFN-β (57).

The evolutionary advantage of having multiple isoforms of the 
same gene that bind to a common receptor complex is not clear. 
However, there is evidence that the different subtypes display 
variable binding affinities for the common receptors (58–60), 
which in turn appears to influence their efficacy and potency 
(summarized in Table 1). Subtypes such as IFNα-10 binds to the 
IFN-αR1/2 receptor complex at affinities that is 10- to 100-fold 
greater than IFNα-1 (61). Interestingly, IFNα-10 was found to 
be highly effective against Semliki forest virus and Vesicular 
stomatitis virus, whereas IFN-α1 was the least effective among 
the nine different subtypes tested (61). Cull et al. (62) examined 
the expression of IFN-α1, α2, α4, α5, α6, and α9 and IFN-β in 
murine cytomegalovirus-induced myocarditis and observed that 
IFN-α6 reduced viral replication and inflammation in contrast to 
IFN-α2 and α5 that increased replication.

Sperber et al showed that IFNα-2 induced chemotaxis genes 
and was most effective against HIV-1 (72) whereas IFN-α8 
induced ISG’s that were protective against HCV replication (65). 
Foster et  al  (64) showed that IFN-α8 has very high antiviral 
potency compared to some of the other subtypes. On the other 
hand, Scagnolari et al. (69) reported that IFN-α5, 6, 8, and 10 had 

high potency against human metapneumovirus, whereas IFN-α2, 
17, and 21 were the least potent. Others have shown significant 
differences in the in vitro antiviral and antiproliferative effects of 
various subtypes (73–75). Hibbert and Foster (76) examined the 
effect of various subtypes on human B cells and showed that IFN-
α8 induced proliferation at very low concentrations compared 
to other subtypes with IFN-α1 being largely inactive. Likewise, 
Hilkens et al. (77) examined the signaling though Janus kinase/
STAT and transcriptional responses to selected IFN-α subtypes in 
human T cells and dendritic cells and reported differences in the 
potency of various subtypes to induce ISG.

Numerous studies have examined the expression of IFN 
subtypes during both HIV and SIV infections. Zaritsky et  al. 
(78) evaluated the expression of both total IFNα mRNA and the 
pattern of IFN-α subtype mRNA expression in macaques during 
acute SIV infection and found that all 13 subtypes were expressed 
in the spleen with IFN-α4, 17, and 21 being the least abundant as 
compared to high levels of IFN-α2, 8, and 13. In contrast, only 
subtypes IFN-α2, 6, and 13 were expressed in the brain, whereas 
subtypes IFN-α6 and 13 were upregulated in the lung suggest-
ing to tissue-specific differences in the expression of various 
subtypes. Lehman et al. (46) reported that IFN-α2 and IFN-α6 
were significantly upregulated in HIV-infected patients. On the 
other hand, Li et al. (79) showed that IFN-α2 and 16 were upregu-
lated during chronic HIV infection. George et al. (3) examined 
the expression of both type I and III IFN subtypes in peripheral 
blood, jejunal mucosa, and lymph nodes (LNs) of SIV-infected 
rhesus macaques and reported that all subtypes (IFN-α01/13, 02, 
06, 08, 14, 16, 23, 24, 25, 27, 28, and 29, IFN-β, IFN-ω, and IFN-
λ1) were significantly elevated in the LNs at day 10 postinfection 
compared to a restricted expression in PBMC (IFN-α01/13 and 
IFN-λ1) and jejunal mucosa (IFN-α1, 6, 8, 14, and 23, IFN-ω, and 
IFN-λ). Harper et al. (80) evaluated the expression of different 
IFN-α subtypes and their potency in HIV-1-exposed pDC using 
the lamina propria aggregate ex vivo culture model and reported 
that HIV infection induced numerous IFN-α subtypes with IFN-
α6, IFN-α8, and IFN-α14 being the most potent at inhibiting 
HIV infection. Earlier studies (72) have shown that IFN-α2 was 
effective at suppressing HIV-1 replication although more recent 
studies (70) have demonstrated that IFN-α14 displayed signifi-
cantly higher antiviral activity than IFN-α2 against HIV infection 
in humanized mouse models.

iFn-α SUBTYPeS AnD POTenTiAL FOR 
FUnCTiOnAL CURe

Given the potential for IFN-α to induce immune activation dur-
ing HIV infection, there is a potential concern regarding its use 
in functional cure strategies although there is anecdotal evidence 
that IFN-α could suppress viral replication during antiretroviral 
therapy.

Treatment of HIV-infected subjects under HAART with 
pegylated-IFN-α2a was associated with the suppression of HIV 
RNA loads (81). Likewise, Sun et al. (82) demonstrated that the 
treatment of HIV/HCV co-infected patients with IFN-α/ribavirin 
during HAART led to a moderate but significant and sustained 
decline in cell-associated HIV DNA. Recent reports using IFN-α 
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TABLe 1 | Antiviral activity of IFN-α subtypes.

iFn subtype(s) viral infection effect Reference

IFN-α1, 4, and 9 MCMV IFN-α1 transgene showed better antiviral activity than IFN-α4 or IFN-α9 Yeow et al. (63)

IFN-α1, 2, 4, 5, 6, and 9 and IFN-β MCMV IFN-α6 transgene reduced MCMV replication, whereas IFN-α5  
increased viral replication

Cull et al. (62)

IFN-α1, 2, 5, 8, 10, 14, 17, and 21 and 
IFN-β

MEV IFN-α 5, 8, 10, 14, and 17 were highly effective, whereas IFN-α2  
had a moderate effect and IFN-α1 was least effective

Foster et al. (64)

IFN-α1, 2, 5, and 8 and 10 HCV IFN-α8 was effective in suppressing HCV replication, whereas  
IFN-α1 is least effective

Koyama et al. (65)

IFN-α2, 6, 8, and 14 and IFN-β HIV Plasmids encoding IFN-α2, 6, 8, and 14 and IFN-β showed  
IFN-α14 and IFN-β were more protective than other subtypes in humanized mice

Abraham et al. (66)

IFNα4 and IFNα5 HBV Both proteins and plasmid encoding IFN-α4 and 5 showed anti-HBV activity Song et al. (67)

IFN-α1, 2b, and 4b Influenza A virus IFN-α2b showed strong antiviral activity as compared to IFN-α1 or 4b Moll et al. (68)

IFN-α1, 2, 5, 6, 7, 8, 10, 14, 17, and 21 hMPV IFN-α5, 6, 8, and 10 had higher antiviral activity Scagnolari et al. (69)

IFN-α2 and 14 HIV (humanized 
mice)

IFN-α14 suppressed HIV replication, induced tetherin, MX2,  
APOBEC3G, and increased numbers of TRAIL + NK cells compared to IFN-α2

Lavender et al. (70)

IFN-α1, 2, 4, 6, 8, 14, 17, and 21 MuV IFN-α6 showed higher antiviral activity Markusic et al. (71)

IFN α-01/13, 2, 6, 8, 14, 16, 23, 24, 25, 
26, 27, 28, and 29, IFN-β, IFN-ω, and 
IFN-λ1

SIV IFN-α01/13, 2, 6, 8, 14, 16, 23, 24, 25, 26, 27, 28, 29, IFN-β, IFN-ω,  
and IFN-λ1 were significantly increased in lymph nodes at day 10  
postinfection compared to restricted expression in PBMC (IFN-α01/13  
and IFN-λ1) and jejunum (IFN-α1, 6, 8, 14, and 23, IFN-ω, and IFN-λ1). Primary 
source of all subtypes were dendritic cells (DC)

George et al. (3)

Pegylated IFN-α HIV Treatment with pegIFN-α and ribavirin reduced HIV DNA and  
increased frequencies of NK cells in HIV-1/HCV-infected patients

Hua et al. (90)

HIV, human immunodeficiency virus; hMPV, human metapneumovirus; IFN, interferon; MEV, murine encephalomyelitis virus; MuV, mumps virus; TRAIL, TNF-related apoptosis-
inducing ligand.
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in combination with other factors appear promising. Micci et al. 
(83) reported that a combination of recombinant IL-21 and 
pegylated-IFN-α2a limited residual inflammation and viral 
persistence in SIV-infected rhesus macaques and significantly 
delayed viral rebound after withdrawal of antiretroviral therapy. 
Others (84) have shown that pretreatment of CD4 T cells with 
IFN-α and IFN-β reversed HIV latency in T-cells both in vitro 
and ex vivo and was associated with a reduction in the number 
of latently infected cells. Azzoni et  al. (81) demonstrated that 
pegylated-IFN-α2 monotherapy successfully suppressed HIV-1 
replication and reduced cell-associated HIV DNA.

Recent studies by Lavender et  al. (70) showed that IFN-α14 
when delivered at the same clinical dose as IFN-α2 to humanized 
mice significantly suppressed HIV replication and proviral loads 
and reduced immune activation that was accompanied by induc-
tion of high levels of APOBEC3G, MX2, and tetherin that have 
been shown to interfere with HIV replication (85–88). Abraham 
et al. (66) showed that gene therapy with plasmids encoding IFN-β 
and IFN-α14 significantly suppressed HIV-1 replication in mice 
for longer periods of time compared to other commonly used 
subtypes such as IFN-α2. Interestingly, all treated mice rebounded 
after cessation of IFN-α14 treatment. Additional studies are war-
ranted to determine if the protective efficacy of IFN-α14 activated 
specific innate defenses during antiretroviral therapy that were 
different from those induced by other subtypes tested. These 
studies, however, raise the possibility that IFN subtypes such as 
IFN-α14 could be a potent adjunct to current approaches explor-
ing functional cure strategies in HIV-infected subjects.

Other studies have shown that specific IFN subtypes were 
more potent at activating NK  cells that could be harnessed to 

eradiate latently infected cells after reactivation. Gibbert et  al. 
(89) demonstrated that IFN-α11-activated NK cells that enabled 
cytolytic killing of Friend retrovirus-infected cells compared 
to other subtypes such as IFN-α2 and IFN-α5. Hua et  al. (90) 
recently reported that the treatment of HIV-1/HCV co-infected 
subjects on HAART with pegylated-IFN-α induced activation 
of CD56brightCD16− and CD56brightCD16+ NK  cells expressing 
NKG2D an NKp30 that significantly correlated with a decrease 
in level of HIV-1 viral reservoir in CD4 T cells. Song et al. (67) 
examined that the effect of IFN-α subtypes on HBV infection 
and found that IFN-α4 and IFN-α5 correlated with expansion of 
effector NK cells in both liver and spleen that was associated with 
better control of HBV replication. Treatment of HIV-infected 
humanized mice with IFN-α14 was found to increase the expres-
sion of cytotoxic molecule TRAIL in NK cells, whereas Stegmann 
et al. (91) showed that induction of TRAIL on NK cells by IFN-α 
was associated with better control of hepatitis C infection. 
NK cells play an important role in the control of HIV infections 
(92) and strategies that can enhance NK  cell activity could be 
beneficial in eradicating latently infected cells.

The studies described above suggest that a subset of IFN 
subtypes may be more effective at controlling infection than 
the others although there is a significant gap in our knowledge 
regarding the timing of administering these subtypes in the con-
text of suppressive HAART that could potentially impact their 
efficacy. Sandler et al. (32) treated SIV-infected rhesus macaques 
with IFN-α2 during the acute phase of infection and reported 
that IFN-α2 initially upregulated the expression of antiviral 
genes, whereas continuous treatment was accompanied by desen-
sitization and an increase in the viral reservoir size. Although 
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the effect of initiating IFN therapy early in infection appears to 
be apparent, it is not clear if subjects under suppressive HAART 
regimens when treated would be unresponsive to treatment with 
various IFN subtypes.

Two exciting new studies (93, 94) using the humanized mouse 
model have reported that that blocking IFN signaling and reduc-
ing IFN-induced activation by treating with an antibody to the 
IFN receptor could reduce the size the HIV reservoir and delay 
viral rebound after cessation of HAART. These studies appear to 
be in contrast to what has been reported earlier using non-human 
primate models where blockade of IFN-αR was found to have the 
opposite effect (32). Audige et al. reported that treatment with 
anti-IFN-αR antibody was associated with increased HIV replica-
tion (13). On the other hand, blockade of chronic IFN signaling 
was shown to decrease immune activation and clear persistent 
LCMV infection in mice (55). Additional studies are needed to 
better clarify and confirm these findings in HIV infected subjects.

COnCLUSiOn

Functional cure strategies that can eradicate the viral reservoir 
are urgently needed. A number of approaches are being cur-
rently explored to achieve this goal. Although IFN-α therapy 
has been attempted in the field, there is new evidence suggesting 

that specific subtypes such as IFN-α8 and 14 may display more 
potent efficacy against HIV infection than the subtypes such as 
IFN-α2 that have been used in the past. Whether these subtypes 
can enhance innate immune defense during suppressive HAART 
and if these innate defenses would be sufficient to eradicate the 
reactivated latent reservoir remains to be seen. Studies that use a 
combination of approaches such as specific IFN-α subtypes along 
with therapeutic immunization to activate both the innate and 
adaptive immune responses during suppressive HAART are likely 
to be more effective at achieving full remission of HIV.
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