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Psoriasis is a common skin disease that presents with well-demarcated patches of 
inflammation. Recurrent disease in fixed areas of the skin indicates a localized disease 
memory that is preserved in resolved lesions. In line with such concept, the involve-
ment of tissue-resident immune cells in psoriasis pathology is increasingly appreciated. 
Langerhans cells (LCs) are perfectly placed to steer resident T  cells and local tissue 
responses in psoriasis. Here, we present an overview of the current knowledge of LCs 
in human psoriasis, including findings that highlight pro-inflammatory features of LCs in 
psoriasis lesions. We also review the literature on conflicting data regarding LC localiza-
tion and functionality in psoriasis. Our review highlights that further studies are needed 
to elucidate the molecular mechanisms that drive LCs functionality in inflammatory 
diseases.

Keywords: Langerhans cells, human, psoriasis, microenvironment, inflammation, Langerhans cell function, 
Langerhans cell localization

SeLF-RenewinG LCs FORM A CeLLULAR neTwORK in 
HeALTHY ePiDeRMiS

The human skin forms a sophisticated barrier in which resident immune cells orchestrate immune 
responses against foreign antigens, while maintaining tolerance to commensals (1). In focal inflam-
matory skin diseases, tissue homeostasis is unevenly disturbed, and patches of intense inflammation 
are surrounded by apparently normal skin. Local alterations of resident immune cells are increas-
ingly appreciated in these diseases. Langerhans cells (LCs) form a stable pool of professional antigen-
presenting cells resident in healthy epidermis with distinct ontogeny and phenotypes compared 
to dermal dendritic cells (DCs) (2, 3). The CFS-1 receptor ligand IL-34, abundantly produced by 
keratinocytes, is crucial for LC development within the skin (4), whereas LC residency is strongly 
dependent on the constitutive expression of TGF-β (5). In contrast, replenishment of dermal 
subsets of DCs is dependent on the differentiation of circulating precursors and is driven by the 
tyrosine kinase FLT3 ligand (6, 7). LCs predominately self-renew within murine (8) and human 
skin, with donor-derived LCs detected up to 10  years after human hand transplantation (9, 10). 
However, in murine models of inflammation and infection, short-lived and bone marrow-derived 
CCR2-expressing myeloid precursors fill up the epidermal niche following LC depletion, indicating 
heterogeneity within the pool of LCs in resolved skin lesions (8, 11). Human LCs form a network 
capable of sensing the entire skin surface (12) and comprise 2–4% of epidermal cells with a surface 
density of 500–1,000 cells per mm2 (13, 14). Apart from their ability to sense danger and present 
antigens, the function of human LCs remains debated after more than a century of studies in healthy 
and diseased conditions.
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Functional studies in murine models have provided funda-
mental insights into LC biology in different settings of tissue 
immunity and inflammation. However, profound anatomical and 
immunological differences are obvious when comparing murine 
and human skin. Human epidermis comprises several layers of 
keratinocytes (14) and is dominated by interfollicular epithelium, 
whereas murine epidermis comprises 2–3 cell layers and is cov-
ered by dense hair follicles (1). Although many aspects of LC biol-
ogy and functionality are comparable between mouse and man 
(15), epidermal lymphocyte populations differ, with αβ T  cells 
populating human epidermis and dendritic epidermal T cells and 
γδ T cells dominating the murine epidermis (16). Finally, albeit 
inflammatory models have provided valuable information on LC 
biology, the full complexity of human inflammatory skin diseases 
cannot be captured in murine models (17).

PSORiASiS OCCURS in FiXeD PATCHeS 
OF THe SKin

Psoriasis is one example of a focal inflammatory skin disease where 
disturbance of LC biology has been reported. Psoriasis affects 2–3% 
of the human population and typically presents with macroscopic 
well-demarcated, red, and scaly plaques. Genetic predisposition 
increases the risk of psoriasis (18), and several psoriasis-associated 
genes are linked to the immune system. In particular, HLA-Cw6 is 
strongly associated with psoriasis and genome-wide association 
studies link psoriasis to polymorphisms of genes belonging to 
MHC class I pathway (ERAP1), IL-23 signaling pathway (IL12B, 
IL23A, and IL23R), cytokines pathways and Th17 polarization 
(STAT3), or NF-kB pathway (CARD14) (19). Epidermal hyperpla-
sia, focal immune cell infiltration, and vascular changes dominate 
the microscopic disturbances in affected sites, whereas non-
lesional and resolved skin at large appears normal. Contemporary 
immunological findings support the idea that psoriasis plaques 
are maintained by interactions between aberrantly differentiated 
keratinocytes and immune cells, both resident and recruited. 
Myeloid and lymphoid immune cells including T  cells, innate 
lymphoid cells, inflammatory DCs, and neutrophils accumulate 
in psoriasis lesions and produce disease-driving effector molecules 
such as IL-23, TNF, IL-17, IL-22, granzyme A, and IFN-γ in situ 
(20–34). Both genetic and therapeutic studies imply that cytokines 
originating from DCs are involved in psoriasis pathogenesis. The 
influx of several subsets of inflammatory DCs into psoriasis lesions 
is discussed in several recent reviews (35, 36). In contrast, few 
studies have characterized LCs in psoriasis. Nevertheless, these few 
studies have shed some light on the complexity and plasticity of 
human LCs. As of yet, less can be concluded regarding pathologic 
consequences of such LC alterations.

MiCROenviROnMenTAL ALTeRATiOnS 
ASSOCiATeD wiTH PSORiASiFORM 
inFLAMMATiOn iMPACT On LC 
FUnCTiOnALiTY

LCs sense the external environment and the microbiota covering 
the human body through dendrites protruding all the way to the 

apical part of epidermis (12). Compared to dermal DCs, LCs 
express fewer Toll-like receptors (TLRs) (37–39), which indicates 
impaired capacity to respond to TLR signaling (39). It is plausible 
that LCs maintain tolerance to commensals during homeostatic 
conditions (40). Within psoriasis lesions, LCs are exposed to a 
complex plethora of inflammatory signals that might affect the 
expression pattern and the activation threshold of TLRs. In con-
trast to atopic dermatitis, the few available reports on the psoriasis 
microbiome have not been able to highlight striking alterations 
from healthy skin (41–45). Higher resolution analysis using shot-
gun metagenomics, ideally combined with genetic and transcrip-
tomic analysis, may shed light on psoriasis–dysbiosis. It would 
be of particular interest to investigate the fungal microbiome in 
psoriasis, taken that IL-17 is associated with fungal responses 
(46). Another source of external influence on LCs functionality 
is systemic medication. Angiotensin II inhibitors, a common 
treatment for hypertension, dampen TGF-β signaling and reduce 
the density of LCs in human skin (5). In a number of case reports, 
losartan is implicated as a triggering factor for psoriasis (47, 48), 
and it would be interesting to investigate the activation status and 
functionality of LCs in such patients.

Activated keratinocytes represent another LC-trigger in 
the skin milieu (49, 50). Both keratinocytes and T cells secrete 
the psoriasis triggering cytokine granulocyte–macrophage 
colony-stimulating factor (GM-CSF) (51). GM-CSF induces 
LC maturation and exacerbates their stimulatory capacity (52). 
It is plausible that activated keratinocytes interact with LCs in 
evolving psoriasis lesions. In psoriasis plaques, keratinocytes 
upregulate the antimicrobial peptide LL-37 (53) that theoretically 
should activate LCs (54). Activated LCs could potentially present 
antigens in  situ to T cells infiltrating the skin. IL-22 and IL-17 
produced by T cells in psoriasis plaques amplify the production 
of the antimicrobial peptide LL-37 in keratinocytes (55), thereby 
perpetuating this potential inflammatory loop (Figure 1).

ALTeReD LOCALiZATiOn OF LCs wiTHin 
PSORiASiS LeSiOn

Conflicting data regarding the density of LCs in psoriasis have 
been debated since the seventies with reports detecting increased 
(57, 59, 60), decreased (61–63), or stable (22, 31, 64–66) densities 
of LCs in psoriasis-afflicted epidermis. Interindividual variation 
in LC density is considerable in healthy and psoriasis-affected 
subjects, and thus, the variable results may be a consequence of 
underpowered studies. In addition, local redistribution of LCs 
and shared surface markers with inflammatory DCs complicate 
the assessment of LC density within psoriasis plaques. In active 
psoriasis, LCs co-localize with T  cells and inflammatory DCs 
in epidermal aggregates and relocate within epidermis to the 
basement membrane and to the apical part of the dedifferenti-
ated epidermis (Figures  2A–C) (67). To add a further layer of 
complexity, increased density of LCs in perilesional skin, close to 
the border of active psoriasis lesions, has been reported (60, 68, 
69), and the conflicting results obtained by different investigators 
might be affected by the location within the psoriatic lesion that 
was sampled. Increased (60, 64, 68) or similar (70) numbers of 
LCs in non-involved psoriasis skin in comparison to healthy skin 
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FiGURe 1 | Langerhans cells (LCs) cross-talk with keratinocytes and T cells within psoriasis plaques. Environmental triggers such as altered microbiota, necrotic 
cells or antimicrobial peptides (AMPs) activate LCs to produce IL-15, IL-23 (31, 56), CXCL9, CXCL10, and CCL20 (57). IL-15 and IL-23 induce T cell activation of 
IL-22 and IL-17. CXCL9, CXCL10, and CCL20 are chemotactic molecules important for further lymphocyte recruitment.
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have been described. In resolved psoriasis lesions, the LC number 
is reduced after PUVA treatment (64, 71, 72) and increased dur-
ing anti-TNF treatment (69, 73, 74). Despite the experimental 
challenges in enumerating LCs, the wealth of conflicting studies 
suggests dynamics in the survival or migrational patterns of LCs 
in psoriasis.

More than 10  years ago, elegant studies from the Griffith 
laboratory identified migrational impairment in LCs in response 
to IL-1β and TNF injection in non-lesional psoriasis skin (70). 
Reduction in the number of epidermal LCs was measured 
2–4 h after injection, and follow-up studies further stratified LC 
responses to the time of onset of psoriasis (58, 70, 76). Reduced 
migration of LCs toward inflammatory cytokines is attributed 
to the IL-17-induced keratinocyte secretome (77). A possible 
consequence of this migrational impairment is the accumula-
tion of LCs in the dermis (67, 78–82), where they form dermal 
aggregates with T cells outside lymphatic vessels (Figures 2A–C). 
The localization of LCs in dermis and basal epidermis, adjacent to 
the basement membrane in areas where dermal immune cells are 
entering the epidermis, raises questions on the nature of interac-
tions between LCs and other inflammatory cells, questions that 
at large remain to be answered.

FUnCTiOnAL PROFiLinG ReveALS 
inFLAMMATORY PROPeRTieS OF LCs in 
PSORiASiS PLAQUeS

Functional studies on human LCs in psoriasis lesions are scarce 
in comparison to the wealth of studies that have investigated the 
properties of blood-derived lesional immune cells. In line with 
the pro-inflammatory microenvironment within the psoriasis 
lesions (83), and despite the tolerogenic potential of LCs in 
healthy skin (40), LCs seem to play an active role in sustaining the 
inflammation in psoriasis. Transcriptional profiling of LCs sorted 
from lesional psoriasis revealed expression of several immune 
cell attracting chemokines including CXCL1 and CXCL10 and 
inflammatory chemokines such as CCL18 and CCL20 (57). 

In contrast, LCs derived from atopic dermatitis preferentially 
expressed CCL17 and CCL20, underlying the disease specificity 
of LC function. In a recent publication, a subset of myeloid cells 
expressing CD5 promoting induction of IL-22, IFNγ, TNF, and 
granzyme B in mixed lymphocyte reaction assays was enriched 
in psoriasis epidermis (84). We and others have directly shown 
that that LCs from psoriatic lesions produce IL-23 following TLR 
activation (31, 56), thereby directly linking LCs to the pathogenic 
IL-23/IL-17 axis. Conversely, lesional LCs also display increased 
mRNA levels for several tolerogenic factors, including IDO-1, 
PD-L1, and PD-L2 (31), which complicates interpretations of 
their role in chronic psoriasis plaque. New techniques are needed 
to fully understand the overall role of LCs in psoriasis, but cur-
rent data point toward an active participation in shaping the local 
inflammatory milieu (Figure 1).

LOCAL AnTiGen PReSenTATiOn in 
PSORiASiS LeSiOnS

Systemic administration of T  cell-depleting antibodies tempo-
rarily normalizes psoriasis pathology in human patients (85). 
Epidermal T cells accumulate (86, 87) and co-localize with both 
LCs and inflammatory DCs within psoriasis lesions (Figure 2B) 
(31). The impressive inflammatory profile of epidermal T  cells 
(30, 33, 34, 88) could result from in  situ stimulation by epi-
dermal LCs and DCs. Indeed, several studies have shown that 
DCs derived from psoriasis lesions sustain the inflammation 
by producing TNF, iNOS, and IL-23 (20, 22–24, 26, 29, 35, 75). 
Furthermore, lesional DCs are capable of activating allogenic 
T  cells and induce production of IL-17, IL-22, and IFN-γ (29, 
57, 80, 89). Intriguingly, LCs from psoriasis skin show similar 
ability to stimulate allogenic T cells compared to LCs sorted from 
atopic dermatitis-affected skin (57). Several autoantigens are pro-
posed to be important to maintain psoriasis (53, 90–92), but the 
polyclonal pool of pro-inflammatory T cells in psoriasis plaques 
complicates the concept of psoriasis as a purely autoimmune 
disease (92, 93). Lipid antigens are presented by CD1a, highly 
expressed on LCs and on inflammatory DCs. The presence of 
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FiGURe 2 | Langerhans cells (LCs) relocate within psoriatic lesions and translocate into dermis. (A) Confocal image of healthy skin (left) and active psoriasis (right). 
LCs are visualized by Langerin (red) and T cells by CD3 (green) with mixed cellular aggregates present in both epidermis and dermis of psoriasis skin. (B) 
Transmission electron microscopy images depicting an example of LCs–T cell interaction in psoriasis epidermis. (C) Schematic highlighting localization of LCs (red) in 
active psoriasis skin, in relation to T cells (green) and blood vessels (dark red). Illustrations from the Eidsmo laboratory of previously published data (31, 75).
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CD1a-restricted T cells polarized to IL-17 and IL-22 production 
in lesional psoriasis (91) is indicative of in situ antigen presenta-
tion of LCs to T cells, but formal proof of such events remains to 
be shown in human settings.

LCs in ReSOLveD SKin SHOw 
POTenTiAL TO MAinTAin PATHOGeniC 
ReSiDenT T CeLLS

Therapies for psoriasis range from topical treatments to UV 
therapy and systemic immunomodulatory treatments. Biologics 
targeting cell-to-cell signaling through TNF or the IL-23/IL-17 
pathway have revolutionized the clinical management of severe 
psoriasis. This range of different treatment strategies offers a pos-
sibility to investigate LC biology in different settings of resolved 
psoriasis (94, 95). UV light induces LC migration from the 
epidermis, and a reduction in the number of LCs in the skin has 
been noted after UV treatment (59, 72). TNF inhibitors alter the 
balance of resident and infiltrating DCs in both epidermis and 
dermis (69, 73, 74). Despite complete resolution of macroscopic 
disease, the local transcriptome remains dysregulated following 
both UVB and anti-TNF treatment (96, 97), and resident T cells 

poised to produce IL-17A and IL-22 accumulate in resolved 
lesions (30, 88). LCs sorted from resolved lesions after successful 
treatment with UVB therapy retain elevated IL15 expression, 
whereas LCs from anti-TNF-treated lesions display residual 
IL23 expression. Furthermore, LCs sorted from resolved lesions 
during TNF treatment, unlike healthy LCs, are able to respond 
to TLR stimulation with IL-23 production (31). These findings, 
together with their placement in close contact with T cells within 
active lesions (Figure 2B), put LCs both in the right place and 
perfectly equipped to induce IL-17 and IL-22 production in 
IL-23R-positive epidermal resident T cells (88).

LeSSOnS LeARnT FROM LC BiOLOGY in 
MURine MODeLS OF PSORiASiS

Psoriasis is restricted to the human species; nevertheless, several 
murine models have been developed to mimic psoriasiform 
inflammation (17). These models provide an attractive tool to 
further explore findings from human studies in an in vivo setting 
(Table 1). Several mouse models support the idea that LCs have 
a pathogenic role in acute disease. In early studies using the flaky 
skin mouse, where mice develop scaling and vessel abnormalities 
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TABLe 1 | Alteration of LCs in human psoriasis and in mouse models.

LCs Observed effect Observation in humans Observation in murine models Mouse model

Phenotype Epidermal density of LCs Increase Baker et al. (59), Komine et al. (60),  
Fujita et al. (57)

Sundberg et al. (98), Schön et al. (99),  
Singh et al. (105), Xiao et al. (101)

Flaky skin mouse, 
IL-23 injection, IMQ

Decrease Lisi (63), Bos et al. (61), Glitzner et al. (62) Suzuki et al. (100), Glitzner et al. (62) IMQ

Stable Gommans et al. (65), Czernielewski et al. (64), 
Gunther et al. (66), Martini et al. (31)

– –

IL-23 and inflammatory chemokines 
production

Fujita et al. (57), Sweeney et al. (56), Martini 
et al. (31)

Yoshiki et al. (102), Sweeney et al. (56),  
Xiao et al. (101)

IMQ

IL-10 and PD-L1 expression – Glitzner et al. (62) DKO*

Function Migratory capacity Increased – Suzuki et al. (100), Glitzner et al. (62),  
Xiao et al. (101)

IMQ, DKO*

Impaired Cumberbatch et al. (70), Shaw et al. (76) – –

Enhanced T cell stimulatory ability Fujita et al. (57) Yoshiki et al. (102), Xiao et al. (101) IMQ

dDCs Observed effect Observation in humans Observation in murine models Mouse model

Phenotype Density of dDCs Increase Summarized by Haniffa et al. (6), Jariwala (35), 
Kim et al. (36)

Glitzner et al. (62), van der Fits (107),  
Terhorst et al. (81), Singh et al. (105)

DKO*, IMQ, IL-23 
injection

Pro-inflammatory cytokine profile 
(production of IL-23, TNF, iNOS)

Wohn et al. (106), Massot et al. (103),  
Singh et al. (105)

IMQ, IL-23 injection

Function Enhanced T cell stimulatory ability Wohn et al. (106), Massot et al. (103) IMQ

LC, Langerhans cell.
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as a consequence of an autosomal recessive mutation of the Ttc7 
gene, the number of LCs increases in acute disease (98) and is 
reduced after administration of an IL-1β-neutralizing antibody 
(99). In the IMQ model, the density of epidermal LCs is reduced 
and coupled with enhanced LC emigration to the skin-draining 
lymph nodes (100). More strikingly, data from IMQ-induced pso-
riasiform inflammation show that LCs produce pro-inflammatory 
cytokines necessary to activate pathogenic T cells (56, 101, 102), 
whereas other studies focus on the role of dermal DCs in driving 
psoriasiform inflammation (103–106). Conversely, recent work 
attribute LCs a protective role with elevated levels of IL-10 mRNA 
and upregulation of PD-L1 in the Junf/f JunBf/f K5creER (DKO*) 
mouse (62). Moreover, after long-term application of IMQ, LCs 
are important to control the influx of neutrophils into the epi-
dermis (81), indicating that LCs relocated to the border between 
epidermis and dermis may act as gate keepers that influence on 
epidermal tissue homeostasis. Collectively, it appears that the lack 
of clarity on LCs in human psoriasis is mirrored in the mouse 
models.

CHALLenGeS in PHenOTYPiC AnD 
FUnCTiOnAL STUDieS OF LC in 
PSORiASiS PATHOGeneSiS

Characterization of LCs in psoriasis lesions was initially 
performed by immunohistochemistry using markers such as 
HLA-DR, CD1a, and s100 proteins (59, 61, 108, 109). However, 
inflammatory epidermal DCs share many of the cellular markers 
previously used to define LCs (22, 31, 57). In humans, in both 
healthy skin and inflamed skin, the most reliable markers for epi-
dermal LCs are Birbeck granules and Langerin. Langerin has an 

extracellular domain and an intracellular domain located within 
the Birbeck granules (110), therefore choosing the right antibody 
is essential to optimize cell sorting. Although low expression 
of CD1a is detected on inflammatory DCs, flow cytometry can 
separate CD1a-bright LCs and CD1a-dim inflammatory DCs. 
Despite reliable protocols to sort LCs ex vivo (111), functional 
studies require substantial numbers of viable cells which com-
plicates the analysis of clinical material. Decreased LC viability 
following tissue isolation procedures or even short-term culture 
(112–114) further impedes the study of human LC functionality. 
Instead, LC-like cells differentiated from blood CD34+ precursors 
have been used. Although these cells share some properties with 
primary LCs, they display a mature phenotype (115) with pro-
found differential transcriptomic profiles (116). It is important to 
bear these methodologic challenges in mind when assessing the 
wealth of sometimes conflicting reports on LC biology.

COnCLUSiOn AnD FUTURe 
PeRSPeCTiveS

In psoriasis lesions, LCs relocate both within the epidermis and 
to the dermis. Their localization in close contact with lesional 
T  cells indicates that LCs may participate in focal immunopa-
thology. Indeed, LCs are poised to produce IL-23 in active and 
resolved psoriasis lesions. However, despite considerable efforts 
in a multitude of models and settings, the role of LCs in psoriasis 
pathogenesis remains to be shown. With the current speed of 
development of experimental techniques combined with the 
wealth of novel immunotherapies, ample opportunities to fully 
elucidate the involvement of LCs in psoriasiform inflammation 
should present themselves over the years to come.
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