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Epigenetic modifications, such as histone modifications, DNA methylation status, 
and non-coding RNAs (ncRNA), all contribute to antibody maturation during somatic 
hypermutation (SHM) and class-switch recombination (CSR). Histone modifications alter 
the chromatin landscape and, together with DNA primary and tertiary structures, they 
help recruit Activation-Induced Cytidine Deaminase (AID) to the immunoglobulin (Ig) 
locus. AID is a potent DNA mutator, which catalyzes cytosine-to-uracil deamination on 
single-stranded DNA to create U:G mismatches. It has been shown that alternate chro-
matin modifications, in concert with ncRNAs and potentially DNA methylation, regulate 
AID recruitment and stabilize DNA repair factors. We, hereby, assess the combination of 
these distinct modifications and discuss how they contribute to initiating differential DNA 
repair pathways at the Ig locus, which ultimately leads to enhanced antibody–antigen 
binding affinity (SHM) or antibody isotype switching (CSR). We will also highlight how 
misregulation of epigenomic regulation during DNA repair can compromise antibody 
development and lead to a number of immunological syndromes and cancer.

Keywords: epigenetic modifications, epigenomics and epigenetics, antibody diversity, cytosine deamination, 
somatic hypermutation, class-switch recombination, B cell maturation

CHROMATiN LANDSCAPe MODULATeS DNA RePAiR  
AND ANTiBODY DiveRSiFiCATiON

B cells experience dramatic fluctuations in their epigenomic landscape throughout hematopoiesis. 
During B  cell development, the genetic rearrangement of germline variable (V), diversity (D), 
and joining (J) gene segments in the Immunoglobulin (Ig) heavy-chain locus (Igh) and V and J 
gene segments in the Ig light chain locus (Igk) creates a diverse B-cell receptor (BCR) repertoire, 
which mediates a primary antibody response upon antigen encounter. To ensure an effective and 
long-lasting antibody response upon binding of antigen to the BCR, in a T-cell dependent response, 
B-cells are triggered to enter the germinal center (GC) microenvironment. Here, the affinity of the 
BCR is increased via a process called somatic hypermutation (SHM) and the class of the constant 
region is switched to increase the effector function in a process called class-switch recombina-
tion (CSR). Subsequently, class switched B-cells expressing a high-affinity BCR will be positively 
selected in the light zone of the GC and will differentiate into long lived plasma cells and memory 
B-cells. It has become increasingly apparent that epigenetic modifications are indispensable for the 
antibody maturation processes during SHM and CSR at antibody producing genes. Both SHM and 
CSR are initiated by the mutator protein, Activation-Induced Cytidine Deaminase (AID), which 
catalyzes cytosine-to-uracil deaminations on single-stranded DNA (ssDNA) at Ig genes, to create 
U:G mismatches, which ultimately leads to immune diversity (1). It is the divergent downstream 
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FigURe 1 | Epigenomic modifications directing antibody-diversification processes somatic hypermutation (SHM) and CSR. Green core histones and associated 
modifications are involved in chromatin de-compaction and enable transcription through the immunoglobulin (Ig) locus. All factors above the locus are important for 
the generation of DSBs while everything below encourages mutagenic repair at the V region, and DSB repair at donor and acceptor S regions (Sμ and Sx, 
respectively). Blue histones and affiliated modifications help recruit or tether AID and other factors that facilitate production of DSBs. Purple DNA and RNA are linked 
with sequences and structures that facilitate AID recruitment or targeting. Red core histones and accessory modifications recruit DNA repair proteins to ensure 
excision of intervening CH region for successful class switching as well as error-prone polymerases to the V region.
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processing of this regulated DNA damage, by DNA repair 
mechanisms, which forms the highly mutated antibody-binding 
variable (V) regions in SHM. This ultimately gives rise to BCRs 
of differing affinities. Furthermore, the double-stranded breaks 
at the Switch (S) regions integral for CSR, give rise to a range of 
BCR constant regions which results in secretion of antibodies 
with varying effector functions (2, 3).

Precursory circulating IgD+ naïve B  cells that have yet to 
undergo antibody diversification have hypermethylated Ig 
loci and minimal histone acetylation signatures, rendering the 
underlying DNA inaccessible to transcriptional machinery and 
AID catalysis. This is in stark contrast to activated GC B cells, 
which accumulate open chromatin marks at the Ig loci that 
correlate with the induction of SHM and CSR, and the onset of 
transcription-coupled AID-dependent mutations (4–6). Specific 
histone modifications are responsible for relaxing local chro-
matin structure (such as H3K4me3 H3K14ac), whereas others 
directly propagate DNA repair pathways (such as H2AK119ub 
and H4K20me2; discussed below). More recently, both histone 
marks and RNA-based structures have been implicated in target-
ing AID to the Ig locus (Figure 1) (6, 7).

The physiological activity of AID is critical to maintain immune 
diversity, while high-fidelity DNA repair factors are important 
to maintain genome integrity. Misregulation of, or mutations 
in, these DNA repair processes can have serious consequences, 

spanning cancerous transformation (8), developmental defects 
(9), autoimmunity (10), and immunodeficiency syndromes (11). 
In this review, we aim to provide a cohesive understanding of 
higher-order epigenomic processes critical for the regulation 
of B cell maturation, manipulation of DNA repair mechanisms, 
and insights into the development of debilitating cancer- and 
immune-based diseases.

ePigeNOMiC FACTORS TARgeT AiD  
TO v RegiONS FOR SHM

Somatic hypermutation enhances antibody affinity through the 
accumulation of point mutations at the antigen-binding V region 
(12). Histone marks help target AID to key sites of the Ig locus. 
AID preferentially deaminates cytosines in WRC motifs. These 
AID “hotspots” are present in Ig genes undergoing SHM (IgH, 
Igκ, Igλ) and CSR (IgH), which are mutated in high abundance. 
However, these hotspots are also prevalent at non-Ig genes, but 
carry significantly less mutational load (13), indicating that the 
presence of these hotspots alone is insufficient to recruit AID. 
Rather, higher-order mechanisms must be in place to regulate 
AID activity and targeting. RNA structures, specifically coding 
messenger RNAs (mRNA), non-coding RNAs (ncRNAs), and 
defined histone signatures, represent additional mechanisms for 
AID targeting.
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Role of mRNA and ncRNA in SHM
Sense mRNA transcripts have been detected at Cμ regions, which 
seem refractory for AID-induced mutations, while both sense 
and antisense transcripts have been observed at the neighboring 
V and S regions (7). Interestingly, V and S regions are susceptible 
to AID deaminations, but not C regions. Whether this is due to 
efficient error-free repair or lack of AID targeting remains to 
be addressed (14–16). The sense and antisense transcripts are 
thought to be free to bind to complementary regions on both 
stands of the transcription bubble during SHM and CSR. This 
forms an R-loop, a three-stranded DNA:RNA hybrid and the 
associated non-template ssDNA that can provide a ready target 
for AID. This should be reflected in the mutation profile observed 
at the V region, which should be equally prolific along the V 
region. Instead, most mutations take place within the first few 
hundred base pairs, before tapering off as distance from the TSS 
increases. Antisense transcripts originating from downstream 
of the recombined VDJ region should compensate for this, and 
AID should be equally able to access this downstream DNA.  
As there is no clearly defined antisense TSS, it is possible that 
there is reduced antisense transcription relative to sense. It is also 
possible that antisense transcripts suffer shorter half-lives (17). 
Regardless, this offers further proof that RNA transcripts support 
SHM and CSR, despite the imbalance in mutation frequency 
along the V region.

v Region Histone Modifications Stabilize 
AiD Substrates and Recruit DNA Repair 
Proteins to Support SHM
Various histone modifications have been implicated in SHM. 
Many of these are generally associated with open chromatin and 
active transcription, while others appear to have more defined 
roles in actively supporting antibody maturation (Figure  1) 
(18). A significant histone mark enriched at sites of SHM and 
CSR is H3K4me3. Transcription elongation factor Spt5 helps 
to introduce H3K4 tri-methylation through the trans-histone 
modification pathway (19), alongside the facilitates chromatin 
transcription (FACT) complex, to support transcription elonga-
tion. Spt5 has an additional role as an adapter protein to link AID 
and RNA polymerase II (20).

H3K4me3, SMARCA4, and FACT complex components are 
equally important for recruitment of Topoisomerase I (Top1) 
(21). Top1 typically acts to correct transcription-induced negative 
supercoiling caused by RNA polymerase II by nicking one strand 
of the DNA helix, passing the other strand through the break, 
and re-ligating the nicked end. Reduction of Top1 increases SHM 
mutagenesis, whereas overexpression of Top1 downregulates 
SHM. Interestingly, treatment with the Top1 catalytic inhibitor, 
camptothecin, suppresses SHM. These results indicate that the 
cleavage activity of Top1 is required for SHM and not its ligation 
activity (22).

The H3.3 histone variant is another feature associated with 
SHM and is enriched at the VDJ region in chicken DT40 cells 
(20). H3.3 appears to be responsible for stabilizing the ssDNA 
substrate for AID activity. R-loops are often cited as a predomi-
nant AID substrate in C regions, although treatment with RNase 

H to remove these R-loops from the V region of wild-type and 
H3.3-null DT40 cells identified that loss of these structures does 
not impede accumulation of AID-induced point mutations. 
H3.3 may instead be responsible for mediating RNA polymerase 
II pausing, prolonging exposure of the transcription bubble, and 
promoting AID targeting (23, 24). Other structures have been 
proposed to facilitate ssDNA exposure, such as the formation 
of negative supercoils upon activation of RNA polymerase II 
transcription. It appears that topoisomerase is unable to repair 
this topological strain at the same rate that RNA polymerase 
II progresses (25), and this creates localized denaturation bub-
bles that are ideal substrates for AID (26). Unfortunately, the 
mechanism by which H3.3 stabilizes ssDNA substrates remains 
elusive.

Ubiquitination of proteins is an essential modification to 
propagate repair of mutated regions in SHM; histones and pro-
liferating cell nuclear antigen (PCNA) are well-known targets. 
Ubiquitinated (Ub) H2AK119 and H2BK120 are specifically 
associated with V regions, but not with constant region exons 
(CH) (Figure 1). These histones co-localize with translesion DNA 
polymerase η, which possesses a ubiquitin-binding domain that 
binds to mono-ubiquitinated PCNA at lysine 164. DNA poly-
merase η introduces all the A:T mutations in SHM, but limited 
mutations in CSR, indicating polymerase η of mismatch repair 
(MMR) is the dominant repair polymerase only in SHM (27, 28).  
It is not known whether PCNA is Ub before or after being 
recruited to V regions (29). Surprisingly, the E3 ubiquitin ligase 
RNF8 is known to ubiquitinate PCNA, yet has only been shown 
to support CSR (30–32). It is, therefore, possible that although 
mono-ubiquitinated PCNA enhances the mutation profile for 
SHM, its downstream repair effects in CSR are selected against, 
as large regions of DNA containing these mutations are disposed 
of following recombination at S regions.

Resolution of mismatched bases is heavily dependent on 
“corrupted” repair mechanisms. However, there are conflicting 
reports over the relative involvement of MMR and base excision 
repair (BER) components. DNA uracil glycosylase (UNG) rec-
ognizes and cleaves uracil bases from the genome in BER, while  
MutSα recognizes mismatched bases and recruits several down-
stream effectors during antibody diversification, e.g., exonuclease 
I (Exo1) in MMR (33). MSH6 likely promotes SHM and CSR 
following recruitment by mono-, di-, and tri-methylated 
H3K36 through its PWWP motif. Many other proteins involved 
in DNA damage responses and histone modifications also 
carry this PWWP motif to promote chromatin interactions 
(34), including PCNA. Indeed, MMR has been implicated as 
the principle repair pathway in SHM, following observations 
that the absence of UNG of the BER pathway has very little 
impact on the accumulation of A:T mutations, and loss of MSH2, 
MSH6, and Exo1 lose 80–90% of A:T mutations independently 
(35). Interestingly, PCNA also interacts with MSH6, which  
may account for its targeting to appropriate regions during 
antibody maturation (29, 36). However, it is worth noting that 
these latter chromatin modifications are not specific to antibody 
genes and could happen genome-wide. Though it is possible 
that they acquire added importance by being combined with 
antibody gene-specific chromatin valencies (37).
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One histone modification without a clear role in SHM is 
H2BS14ph (38). While it serves as a marker for SHM in B1-8 
GC B  cells, the implications of losing this modification are 
unknown. H2BS14ph is not present at VJλ1, VH, or Sμ in naïve 
B cells, or B cells 14 days post-activation, but was reproducibly 
detected at day 10. Consistent with these observations, the 
only known H2B kinase, Mst1, is present at these sites only 
at day 10 (38). It is possible that this histone mark is linked 
to a distinct DSB repair response at V regions around day 10, 
whereas γH2AX is associated with DSB repair at S regions 
(38, 39). The strict temporal restriction of the occurrence of 
this histone mark at day 10 may signify that AID-dependent 
lesions occur at earlier stages of the GC response, or it may 
only be required at earlier stages, perhaps for recruitment of 
downstream proteins (38).

DNA AND RNA STRUCTUReS TARgeT 
AiD TO S RegiONS FOR CSR

Class-switch recombination is achieved through the generation 
of DNA DSBs and subsequent ligation of two distal S regions 
(12). Transcription alone cannot determine deamination targets 
for AID, as many genes transcribed in activated B cells are not 
targeted by AID (40). Instead, S regions encode unusually high 
densities of the overlapping AID hotspot WGCW sequences that 
place two WRC motifs in on opposite strands of the dsDNA helix. 
AID preferentially deaminates the underlined cytosines and, in 
the event of parallel deaminations, the resulting nicks on each 
strand (following UNG and APE1 activity) would inevitably 
produce a DSB. CGC is yet another hotspot, although it rarely 
appears within S regions. Indeed, WGCW density correlates 
strongly with CSR efficiency, much better than when WRC alone 
was considered to predict S region quality (41).

DNA Secondary Structures Affect 
Mutation Targeting Preference
Recent work has shown how AID preferentially binds guanine-
rich DNA quadruplex structures compared to linear DNA 
of the same sequence (42). Through dissection of the core 
quadruplex unit, it was determined that AID binds to the 
adjacent ssDNA strands at a stoichiometry of AID2/DNA (42). 
It requires a binding site of at least five nucleotides (42). By 
studying the distance of the deoxycytidine (dC) in hotspot 
(AGCT) and cold spot (TTCT) motifs from the quadruplex, it 
became clear that peak deamination occurs when dC is at third 
position and is independent of the sequence, suggesting that 
the quadruplex structure overrides sequence motif preferences 
(42). However, as the dC is shifted further from the quadruplex, 
this preference for AGCT is approximately double that of the 
TTCT, recapitulating hotspot preference seen in a multitude of 
in vitro and in vivo assays (43, 44). Interestingly, in S regions, 
a dC is often present at precisely the third position from the 
G-repeat (42). This binding preference is also observed in RNA 
quadruplexes (42). Accordingly, AID has two DNA-binding 
faces: the substrate binding channel and the “assistant patch” 
(42). In such a model, the assistant patch enhances AID affinity 

for the substrate, and increases its deamination activity. This 
bifurcate binding structure is unique to AID, and is not seen 
in AID homologs, explaining why this bifurcate binding phe-
nomenon and cooperativity is not observed in APOBEC3A or 
APOBEC3G (42).

This preferential binding to quadruplex DNA has previously 
been observed, whereby AID targets proto-oncogenes to intro-
duce translocations at c-MYC and BCL-6, among others (40). 
Lymphomas in which these proto-oncogenes are unstable derive 
from GC B cells. For example, a hallmark of Burkitt’s lymphoma 
is c-MYC recombination with S regions, promoting deregulated 
expression of this crucial gene (45). In addition, c-MYC, PAX5, 
and BCL-6 translocations are associated with progression 
from follicular lymphoma to the more aggressive diffuse large 
B cell lymphoma (46), and PAX5/IgH translocations have been 
identified in a subset of non-Hodgkin’s lymphomas (47). This 
genomic instability does not correlate with WRC sequence, but 
instead correlates with G-rich regions (40). Furthermore, this 
G-richness does not characterize translocation breakpoints in 
AID-null B and T  cell malignancies (40). Most translocations 
associated with leukemias in AID-null cells results from a 
mechanism that is independent of G-rich content, yet the data 
suggest that in GC B cells in which AID is highly expressed, AID 
preferentially targets transcribed G-rich regions, and therefore, 
its stringent targeting to the Ig region is essential to maintain 
genomic stability.

RNA Secondary Structures Also 
Contributes to Mutation Targeting
Transcription through S regions has been associated with AID 
targeting to the IgH locus through the formation of R-loops 
and the interaction between AID and RNA polymerase II (24). 
While germline transcripts through IH–SH–CH regions have been 
implicated in antibody diversification, their mechanistic func-
tion has only recently been demonstrated. AID binds directly to 
sense germline transcripts as well as to telomere RNA (48). These 
transcripts are also G-rich and form G-quadruplex structures. 
Ablating the G-quadruplex structure through G-to-C mutations, 
or inhibiting the splicing machinery that supports formation of 
these secondary structures, disrupts AID interaction with the 
transcripts and concomitantly reduces CSR (48). Amino acids 
130–138 in AID show homology to the RNA-binding domain of 
RHAU, a known binder of G-quadruplex RNAs. Mutations in this 
binding region also perturb AID:RNA-binding capacity, consist-
ent with hyper-IgM patients possessing a G133V mutation (48). 
Whether this mutation impedes AID:DNA binding is unknown, 
though it may be involved in the transfer of AID from its RNA 
guide to the DNA substrate. This also suggests that some RNA 
splicing proteins such as PTBP2 and CTNNBL1 may also play an 
indirect role in CSR by shaping the ncRNA architecture (48–50).

Although this provides a detailed explanation of the mecha-
nism behind AID targeting to S regions for CSR, it fails to explain 
AID targeting to V regions. More research is needed to determine 
if this RNA-binding capability is indeed distinct for CSR, as it 
may be responsible for deviance in processes downstream of 
AID-induced mutation in SHM and CSR. As previous reports 
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have shown that the C-terminal amino acids 189–198 are vital 
only for CSR (51, 52), it is unlikely that the RNA-binding region 
explains this whole process.

Studies suggest that the RNA exosome complex is recruited 
to S regions in an AID-dependent manner, and makes the tran-
scribed strand accessible to AID deaminations by degrading the 
complementary-bound nascent RNA strand (53). Knockdown 
of the RNA exosome reduces CSR by 30–50% compared to 
controls. The RNA exosome also promotes quality control on 
the antisense transcription of ncRNA from TSSs, which have 
the ability to both recruit AID and generate ssDNA substrates 
for its catalytic activity (54). By degrading superfluous antisense 
RNAs, which increases the formation of RNA:DNA hybrid 
structures and heighten risk of premature transcription ter-
mination and genomic instability, the RNA exosome protects 
genomic integrity (54). In addition, the RNA exosome appears 
to control a long ncRNA expressed from a divergent enhancer 
element, which directly regulates the 3’RR of the IgH locus by 
enhancing the looping activity known to promote CSR activity 
(55, 56) (Figure 1). Unexpectedly, although histone acetylation 
and deposition of H3K4me3 coincides with B cell development 
stages along the Igh locus, major epigenetic alternations have not 
been detected at the 3’RR upon splenic B cell activation (57, 58).

miRNA Control of Antibody Production  
by Regulation of SHM and CSR
It has been well-documented that miRNAs can regulate SHM 
and CSR in B cells, chiefly through modulating AID and Blimp-1 
expression (56, 59–62). miRNAs such as miR-155, miR-181b, 
and miR-361 can silence AID expression (59, 61, 63, 64), whereas 
miR-30a and miR-125b can silence Blimp-1 expression (65–67), 
which is required for plasma cell differentiation and antibody 
production. These miRNAs bind to evolutionary conserved 
target sites in the 3′UTR of Aicda and Prdm1 mRNAs. More 
recently, histone deacetylase inhibitors have been reported to 
repress the expression of AID and Blimp-1 by upregulation of 
these miRNAs (68).

In particular, the more prominent role of miR-155 in regu-
lating activated B-cells and the GC response is becoming more 
established. MiR-155 is directly repressed by BCL-6, the master 
regulator of GC formation, which is upregulated in the dark 
zone, repressing genes involved in cell cycle arrest, DNA damage 
response and plasma cell differentiation and thus allowing SHM 
to take place. miR-155 deficiency in B-cells has been shown to 
decrease the number of IgG1+ plasma cells and memory B cells 
and abolish the production of high affinity IgG1+ antibodies 
indicating that miR-155 plays a key role in affinity maturation and 
CSR. More recently, miR-155 has been reported to be involved in 
the survival of positively selected GC B-cells (69–73).

What is now beginning to emerge, however, is the notion that 
miRNA can be transferred from one immune cell to another 
through understudied “epigenetic shuttles” called exosomes that 
can transport RNA and protein factors (74). Exosome “shuttling” 
of miRNAs and antigen between B and T cells occurs following 
construction of the immune synapse (75–77). This may indirectly 
support CSR by potentiating a feedback loop between T helper 

cells and activated B cells. B cells persistently stimulate T helper 
cells to secrete cytokines that promote CSR, such as TGFβ1, 
IL-2, and IL-4 (78). 12% of B cell-internalized antigen is spared 
destruction and is instead secreted on exosomes that are received 
by the bound T helper cells to encourage cytokine production 
(79). A specific role for miRNAs in directing this targeted 
approach toward antibody maturation has yet to be elucidated 
and further research in the regulatory potential of this process 
is required.

Histone Modifications Decorate the  
Donor and Recipient S Regions to  
Recruit AiD in CSR
Specific cytokine stimuli act on activated B cells to drive recom-
bination between donor and desired recipient S regions to select 
for a particular Ig isotype. The Sμ region is always primed for class 
switching as histone modifications that are generally associated 
with an open chromatin state (including H2BK5ac, H3K9ac, 
H3K14ac, H3K27ac, H4K8ac, H3K4me3, and H3K36me3) 
are enriched at this site prior to antigen-engagement. As such, 
Iμ–Sμ–Cμ transcripts are also constitutively expressed (5, 80–86). 
The remainder of the chromatin modifications could be broadly 
categorized into two general pools, targeting modifications 
upstream of AID recruitment and downstream modifications 
mostly associated with the general DNA damage response 
(Figure 1). Indeed, acetylated H3 and H4 fall broadly within these 
two categories as H3ac correlates with germline transcription in 
unstimulated splenic B cells, while H4 acetylation is observed fol-
lowing B cell activation, likely in response to AID-induced DSBs 
(80). This is observed in the 1. B4.B6 B cell line. These B cells 
undergo CSR to γ3 upon treatment with LPS + CD40, and CSR to 
γ1 and ε1 following treatment with LPS + CD40 + IL-4. Following 
LPS + CD40 treatment, γ3 GLTs are induced, while γ1 and ε1 
GLTs are repressed. Correspondingly, H4ac levels at Sμ, Iγ3, and 
Sγ3 are increased, whereas S regions and promoters for γ1 and 
ε1 loci are marginally affected. The reciprocal is observed upon 
LPS + CD40 + IL-4 treatment for GLT expression and H4ac. This 
suggests that regions of chromatin are specifically remodeled to 
identify the S region for AID mutation (80).

Permissive transcriptional histone marks are abundant in 
S regions, including H3K4me1/2/3. NHEJ-compliant protein 
PTIP typically facilitates distribution of these marks through 
its interaction with MLL3/MLL4 to support DNA repair and 
transcription. Unexpectedly, the interaction between PTIP and 
MLL3/MLL4 is dispensable for Igh germline transcription, and is 
mostly responsible for H3K4me1/2 production. Recently, a sub-
complex made up of PTIP-PA1 appears to promote H3K4me3 
formation through other unidentified histone methyltrans-
ferases. The function of this complex facilitates the transcription 
preceding AID deaminations, promoting CSR to IgG isotypes, 
and appears to have very little influence on DNA repair (87, 88).  
Nevertheless, MLL4 is important for maintaining effective CSR; 
it is frequently mutated in diffuse large B  cell lymphoma and 
follicular lymphoma (89), and hypogammaglobulinaemia is 
common in the heritable Kabuki syndrome, often attributed to 
MLL4 mutations (90).
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Specific chromatin modifications have been implicated as 
markers for the donor and recipient, and thus as possible recruit-
ers of AID and/or other components of the CSR machinery. 
Tri-methylation of H3K4 is facilitated by the FACT complex. 
Knockdown of FACT components SSRP1 and SPT16 in the CH12 
B cell lines results in a significant decrease in IgA switching (85) 
and corresponds with an overall decrease in H3 methylation in 
the Sμ region and a specific reduction of H3K4me3 in the Sα 
region. The components acting downstream of the H3K4me3 
marker that lead to CSR remain elusive, although DNA cleavage 
assays have shown that breaks in the Sμ and Sα regions are sig-
nificantly reduced in SSRP1 and SPT16 knockdown cells (85, 91).

H3K4me3, SMARCA4, and FACT help mediate CSR through 
recruitment of Top1, as they do for SHM (21, 85). Reduced levels 
of Top1 renders it unable to keep pace with RNA polymerase 
II, accumulating negative DNA supercoiling at the rear. Repeat 
sequences and palindrome-rich regions are prone to this non-B 
DNA structure and are prevalent in S regions (92). In addition, 
there is an interesting relationship between AID expression and 
Top1 levels. AID overexpression coincides with abated Top1 
mRNA translation, the mechanisms of which have not been 
thoroughly explored (92).

AID has recently been shown to interact with Suv4-20H 
H4K20me methyltransferases, though whether this is a direct 
interaction, or mediated through other proteins or RNA 
structures, is not known (93). Without AID, Suv4-20H is not 
recruited to S regions, and the level of H4K20me3 is reduced at 
these sites (93). Concordantly, Suv4-20h double-null mice are 
defective in CSR (94). It has been proposed that H4K16ac and 
Suv4-20H-mediated H4K20me3 play antagonistic roles in RNA 
pol II pausing. H4K16ac promotes release from pausing, while 
H4K20me3 prolongs RNA pol II pausing (95). AID-induced 
mutations are long-understood to be reliant on RNA pol II 
pausing, so it is possible that AID reinforces this pausing step 
through Suv4-H20 recruitment (24). However, this has not been 
confirmed.

Histones H3K9me3 and H3K9ac decorate S regions that 
undergo recombination (5, 84). These modifications are depen-
dent on cytokine stimulation but are independent of AID 
expression. It has, therefore, been suggested that the two histone 
marks precede AID-induced mutations and recombination and 
perhaps even function in the recruitment of AID to the appro-
priate sites (84). H3K9me3 has been shown to be essential for 
general DSB repair through its direct interaction with the lysine 
acetyltransferase Kat5 and loss of H3K9me3 results in defective 
DSB repair (96, 97). The link between DSB recognition and H3K9 
methylation is currently unknown; however, it is understood that 
it participates in NHEJ, indicative of a role in CSR, but not SHM 
or the preceding V(D)J recombination. H3K9 is methylated by 
its methyltransferase, Suv39h1, which exists in a complex with 
kap-1 and HP1. HP1 possesses a chromodomain, which binds to 
the newly tri-methylated histone and retains the complex at the 
S region site.

There is specific evidence supporting a role for H3K9me in 
CSR. The kap-1 and HP1 complex functions as the structure that 
tethers AID to Sμ (6). Similar to the G-rich quadruplexes men-
tioned previously, the binding of AID to kap-1 is not reliant on its 

C-terminal domain and, as such, it is unlikely that this association 
explains the requisite of the C-terminus for CSR (6).

H3K9ac phosphorylated at serine 10 (S10ph) is another 
histone modification that has been implicated as a marker of 
donor and recipient S regions. This mark has been found to be 
enriched at the donor Sμ region and, after B cell activation, in 
the cytokine-selected recipient S region (98). 14-3-3 adapters 
interact directly with H3S10ph and the affinity of this interaction 
is increased with the addition of an acetyl group on lysine 9 of 
the same histone (99, 100). ChIP assays have shown that, upon 
lipopolysaccharide stimulation, 14-3-3 is recruited specifically to 
the S regions enriched in H3K9acS10ph (98). Upregulation of the 
14-3-3 complex coincides with CSR. The complex directly binds 
AID and associates specifically with 5′-AGCT-3′ motifs that 
occur frequently in S regions and are particularly common within 
the V region. Reduced 14-3-3 activity correlates with a decrease 
in AID at active S regions (101). This implies that 14-3-3 is an 
important factor for recruiting AID and associated proteins to 
recombination sites for CSR. It seems H3K9acS10ph recruits and/
or stabilizes 14-3-3, which in turn recruits AID to the appropriate 
S region.

Chromatin Modifications Recruit DSB 
Repair Proteins in CSR
Chromatin markers participate in the recruitment of the required 
repair proteins. 53BP1 is one protein confirmed to hold an 
essential role in DSB repair and promotes NHEJ for CSR by 
bridging the broken ends (102–108). Recruitment of 53BP1 to 
DSBs is dependent on various chromatin modification pathways 
(Figure 2). It is a bivalent chromatin reader and interacts directly 
with the histone marker H4K20me2 through its tudor domain, 
which recognizes methylated histones (109, 110). Independent 
of its role in S region DSB repair, 53BP1 exerts a secondary influ-
ence on CSR by enforcing the temporal separation of Sμ and Sγ 
breaks and ensures that subsequent ligation of the broken ends 
results in a deletion event (111). It does this by orchestrating the 
preferential breaking of the upstream switch region Sμ. 53bp1−/− 
B cells lose the ability to ensure Sμ breaks first, which introduces 
inversional rearrangements that negatively impact CSR efficiency 
(111). 53BP1 recognizes H4K20me1 in vitro, but it is its specific 
recognition of di- and tri-methylated H4K20 made accessible to 
53BP1 during the DNA damage response that may regulate break 
order in CSR (109).

Depleting cells of SUV4-20H1/H2, the predominant 
methyltransferases producing H4K20me2, slows the rate of 
53BP1 accumulation at break sites and reduces CSR efficiency 
by 50%; however, the absence of the H4K20me2 mark has no 
impact on S region break order (112). This may be due to the 
activity of another H4K20me1 methyltransferase called MMSET 
that had not been considered by Rocha et  al. Indeed, loss of 
MMSET hampers H4K20me2 enrichment, significantly reduces 
53BP1 binding, and leads to inefficient CSR (113). MMSET 
specifically methylates H4K20me1 and H4K20me1/2/3 are all 
locally increased at DSBs (Figure  2) (114). This may explain 
why the loss of SUV4-20H1/H2 only slows 53BP1 recruitment 
and does not completely abolish it. Additionally, MMSET, and 
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not SUV4-20H1/H2, is uniquely overexpressed in GC B  cells, 
possibly ascribing MMSET as the dominant methyltransferase in 
antibody diversification (115). MMSET is activated and recruited 
after ATM-mediated phosphorylation during typical DNA repair, 
allowing it to complex with MDC1. MDC1 binds γH2AX, a mark 
only introduced once DNA repair signaling has been initiated 
(114). MDC1 is important for enlisting ubiquitin ligases RNF8 
and RNF168, which lay a polyubiquitin motif also recognized by 
53BP1 (31) (Figure 2).

Unfortunately, it is impossible to study the impact of 
H4K20me1 knockdown on CSR efficiency as it is a global his-
tone mark implicit in proliferation and cellular viability (116); 
however, introducing a single point mutation in the 53BP1 Tudor 
domain, preventing it from recognizing H4K20me1/2, disrupts 
S region break order. Taken together with the aforementioned 
findings that the absence of H4K20me1 has no impact on S break 
order, these suggest that the dimethyl mark is dispensable and 
that it is the H4K20me1 mark that determines break order (111).

Ubiquitin ligases are proving to be pervasive in DNA repair, 
including CSR. RNF168 monoubiquitinates H2A on 13 and 15 
lysine residues (117, 118). Knockdown of either RNF8 or RNF168 
results in a decrease in 53BP1 accumulation at AID-induced DNA 
breaks and a corresponding reduction in CSR is observed (31). 
Furthermore, expression of a ubiquitin-H2AX fusion protein can 
rescue 53BP1 recruitment to DSBs in RNF8- or RNF168-deficient 
cells (119). In the absence of DNA damage, Polycomb group 
protein L3MBTL1 and demethylase JMJD2A mask H4K20me2. 
RNF8 and RNF168 are responsible for ubiquitinating these pro-
teins, removing them from the damage site to expose H4K20me2 
(120, 121). This secondary role of the ubiquitinases has not been 
explored in the context of CSR. The bivalent binding by 53BP1 to 
H4K20me2 and ubiquitin marks could serve to correctly orien-
tate 53BP1 for it to bridge across a DSB. Delayed accumulation 
of these histones marks might prevent 53BP1 from orientating 
correctly, which would thus lead to increased CSR inversion 
events. Methyl and ubiquitin modifications appear to have dif-
ferent influences on 53BP1. H4K20me2 more likely serves as a 
signal to recruit 53BP1 to the DSB, while ubiquitination H2A/
H2AX serves as an anchor to 53BP1, maintaining it at the site of 
the DSB, such that 53BP1 can bridge the gap between donor and 
recipient S regions for isotype switching.

Upstream in the signaling cascade, a deubiquitination event 
also promotes DNA repair and CSR. Ubiquitination of H2BK120 
is associated with an open chromatin and interferes with chromatin 
compaction. DSB repair cannot occur until histone H2BK120ub is 
deubiquitinated to allow access to NHEJ factors (122). A genome-
wide loss-of-function RNAi screen identified several components 
of the SAGA deubiquitinase module required for CSR and DSB 

repair, including Usp22, Eny2, and Atxn7. Knockdown of any of 
these components using shRNAs or CRISPR/Cas9 reduces CSR 
(123). Knockdown did not impair AID function indicating that 
the defect lies somewhere downstream. Interestingly, Eny2 knock-
down also interferes with ATM and/or DNAPK activity, and thus 
indirectly limits γH2AX formation, which further reduces CSR 
(123, 124).

BET family member Brd4 interacts with acetylated histones 
via its two bromodomains (125). Studies have shown that, upon 
induction of AID, occupancy of Brd4 at Sμ and Sα regions 
increases. ChIP and immunoprecipitation assays have con-
firmed an interaction between Brd4, the modified histones H4 
and γH2AX, as well as between Brd4, 53BP1, and UNG (126). 
Treatment with the Brd4 inhibitor JQ1 or siBrd4 knockdown 
significantly reduces CSR frequency. The levels of both 53BP1 
and UNG are reduced, without affecting the levels of H4ac. 
Brd4 is, therefore, thought to function as a chromatin-bound 
platform that recruits 53BP1 and UNG to DSBs (126) (Figure 2). 
Finally, the chromatin remodeling complex INO80 has also been 
implicated as a regulator of CSR (127). Knockdown of INO80 in 
various mammalian cell lines has been shown to inhibit 53BP1 
accumulation at DSBs (128). More recently, MEFs from mino80 
knockout mice contradict this observation. Rather, INO80 is 
suggested to participate early on during DSB repair, where it 
first binds γH2AX, and then exposes H4K20me2 for 53BP1 
recruitment. Paradoxically, INO80 is involved in 5′–3′ DNA 
end resection to support repair by homologous recombination 
(HR) (129). How it then functions to support NHEJ in CSR is yet 
another mystery.

Potential Role for Other Repair Proteins  
in CSR
The histone modifications and DNA damage repair proteins 
important for CSR (Figure 2) have parallel roles in NHEJ. This 
is particularly interesting because a multitude of proteins, modi-
fiers, and readers involved in NHEJ have not yet been implicated 
in CSR. These include the E2 ubiquitin-conjugating enzyme 
Ubc13, which functions in complex with RNF8 and RNF168. 
Ubc13 and its γH2AX independent recruitment through the 
Kat5 complex (130–133) are potential important factors in CSR. 
Indeed, H2AX-deficient mice experience reduced CSR (39), 
while a link with SHM fails to be seen (38). A SUMOylation 
pathway, initiated by PIAS4 (134, 135) and further expanded by 
STUbL RNF4 (136), provides a potential role of SUMO-ubiquitin 
cross talk in CSR. The importance of this pathway in general DNA 
damage repair is exemplified by Ataxin-3, which counteracts the 
RNF4-mediated ubiquitination. As a result, Ataxin-3 promotes 
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prolonged retention of MDC1, resulting in reduced recruitment 
of 53BP1 and BRCA1 (112).

The possible impact of NHEJ regulatory factors specifically 
should be considered on antibody diversification. The recently 
discovered tudor interacting repair regulator (TIRR) stabilizes 
53BP1 in the nuclear fraction, but blocks NHEJ-directed repair 
by binding the tudor domain and guarding against H4K20me2 
binding upon DNA damage (137). As such, it may act to hinder 
CSR when either over- or under-expressed, and would determine 
whether the turnover rate or instability of 5BP1 will compensate 
for more favorable H4K20me2 binding. Equally, the contribution 
of RIF1 in suppressing DNA resection for NHEJ and separating 
the 53BP1–TIRR complex may similarly serve to deregulate 
CSR at differential expression levels (138). The HR pathway also 
represents a potential research avenue as it may provide inhibitory 
effects on CSR efficiency. Knockdown of BRCA1, a key HR factor, 
has been shown to increase isotype switching (139). Similar effects 
are observed from downregulation of other inhibitory modifi-
cations, such as the H2AXK15ac by the Kat5 complex, which 
inhibits the RNF8 mediated ubiquitination of H2AXK15 (140).

iNFLUeNCe OF AiD AND TeT ACTiviTY 
ON THe DNA MeTHYLOMe DURiNg  
B CeLL DeveLOPMeNT

Role of AiD in DNA Demethylation via 
Deamination
Aside from its mutagenic activity, AID has been associated with 
coordinating DNA demethylation during zebrafish development 
(141), stem cell reprogramming (142), and primordial germ cell 
formation (143). The combined results of these studies support 
the notion that AID could function as a genome-wide epigenetic 
regulator by deaminating 5-methylcytosine (5mC) to 5-methy-
luracil; thereby replacing a 5mC base with an unmethylated C 
or a thymine (T) via BER. GC B cells have more heterogeneous 
DNA methylation patterns than naïve B  cells (4), and this has 
established a potential role for AID during this maturation step.

Several studies have debated whether AID is responsible for 
DNA demethylation or activated gene expression in B cells (144). 
The methylation status of CpG motifs at VDλ1 is unchanged 
between naïve and day 14 GC B cells (38), AID does not induce 
demethylation at either Sμ or Cμ (93), and 5mC is a poor substrate 
for AID, although it does not prevent its activity on neighboring 
cytosines (145, 146). In contrast, fewer studies have found that 
DNA demethylation events can be attributed to AID. CpGs have 
been observed to have increased methylation pattern variation 
in wild-type tissues, compared to AID-null tissues. Interestingly, 
90% of the methylome alterations seen in naïve to GC transition 
were lost in AID-null mice (147). SHM targets are also suggested 
to be enriched with AID-dependent hypomethylation, and the 
significant reduction of both demethylation and SHM ex vivo 
(such as in the contribution by Fritz et al.) is due to these two 
events being coupled in vivo (147). Furthermore, a recent study 
suggested that cytosine demethylation is over-represented 
in WRCG/CGYW motifs in follicular lymphomas, which 
overlays the WRC AID hotspot motif and the methylated CpG 

dinucleotide. This contrasts SHM of Ig genes whereby cytosine 
demethylation is under-represented at WRCG/CGYW motifs. 
Thus, this mutational process appears distinct from conventional 
SHM, and is solely applied to the CpG methylation/demethyla-
tion process (148).

Role of TeT Protein in DNA Demethylation 
via Hydroxylation
As the involvement of AID in DNA demethylation remains to be 
fully established, the regulation of DNA methylation by another 
family of proteins is now being explored. Ten-eleven translocases 
(TET1, TET2, and TET3) oxidize 5mC to 5-hydroxymethylcy-
tosine (5hmC) and further oxidizes 5hmC to 5-formylcytosine 
(5fC) and 5-carboxycytosine (5caC) (149, 150). TET proteins 
predominantly support demethylation via dilution through 
successive rounds of replication (149). Nevertheless, it is possi-
ble that TET enzymes support active (replication-independent) 
demethylation. TET enzymes often accompany transcription-
associated H3K36me3 histone modifications, and possibly 
RNA polymerase II, depositing 5hmC and generating a more 
accessible DNA substrate for subsequent cycles of transcription 
(151). TET enzymes are involved in iterative rounds of 5mC 
oxidation to 5fC and 5caC (150). Demethylation could then be 
achieved either (i) indirectly via thymidine DNA glycosylase 
which recognizes and excises 5fC an 5caC (152) or (ii) directly 
by yet unidentified decarboxylases (153, 154).

TET proteins appear to be important for programming B cell 
methylation throughout development. 5hmC is enriched in 
lineage-specific transcription factors, such as Bcl6, EBF1, and 
IRF4, which are important for GC transition (155, 156). The 
methylation status of follicular B  cells from conditional Tet2−/
Tet3− double knockout mice were partially hypermethylated when 
compared to wild-type cohorts. Single knockout mice failed to 
show such noticeable effects on methylation levels (155). Of the 
sequences that are specifically demethylated in wild-type B cells 
during differentiation into GC B cells, 95% are prevented in Tet2−/
Tet3− mice, providing some evidence that TET proteins may be 
responsible for most DNA demethylation that occurs at this 
stage (155). In addition, the Igκ locus is known to undergo DNA  
demethylation during antibody diversification, and this demeth-
ylation step is not observed in Tet2−/Tet3− knockout mice (155).

Cooperation between AiD and TeT 
Proteins during epigenomic Regulation
In addition to regulating B cell development, TET proteins are 
essential tumor suppressors in B cells. Of all patients diagnosed 
with diffuse large B cell lymphoma, 5.7% carry a Tet2 deletion or 
loss-of-function mutation (157). In mouse genetic studies, Tet1-
deficient B cell progenitors developed B cells lymphomas (158); 
in analogous human studies, the Tet1 promoter was found to be 
hypermethylated with concomitant reduction in Tet1 expression 
in patients with non-Hodgkin lymphoma (158). In additional 
studies, mice with a combined Tet2- and Tet3-deficiency in 
developing B cells developed B cell lymphoma and succumbed 
to disease within 5–6  months of age, much earlier than the 
15–20 months observed in Tet1/Tet2-deficient mice (159, 160).
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It has been proposed that the product of TET protein-depend-
ent 5mC oxidation may be a target for AID. Few studies have 
addressed the cooperative activities of TET proteins and AID. 
Some have concluded that it is unlikely that AID deaminates 5mC 
or 5hmC: 5mC is deaminated only at 10% the rate of cytosine 
due to the steric hindrance of the methyl group (146). 5hmC is 
an even poorer substrate for AID (161). Deamination of 5hmC 
in vitro has not been observed, and in vivo studies overexpressing 
AID have also failed to generate 5hmU (146). As 5hmU is not yet 
detected in genomic DNA, AID targeting 5hmC as a target for 
deamination was claimed unlikely, and further supports a role for 
TET enzymes in B cell developmental demethylation (146). On 
the contrary, a study in 2011 found that AID quite significantly 
promotes 5hmC demethylation in HEK293 cells and in mouse 
brain. While overexpression of AID had little effect on the dem-
ethylation of a strand of 5mC-GFP DNA, it led to a significant 
decrease of 5hmC levels induced by TET1 and significant increase 
of 5hmU (162). This is significant because there was no detectable 
endogenous 5hmU in HEK293 cells. Additionally, the pattern of 
5hmC demethylation events were broadly distributed along the 
5mC-GFP DNA, 5hmC was also selectively demethylated at 
WCR “hotspot” motifs, and demethylation showed strand bias in 
the same manner as AID deamination (162). Taken together, this 
could indicate that AID and TET may act in tandem to promote 
DNA demethylation. Whether this is replicated in the context of 
antibody diversification is yet to be seen.

ePigeNOMiC ROLe OF iMMUNe 
DiveRSiFiCATiON iN DiSeASe 
DeveLOPMeNT

AID defects are associated with hyper-IgM syndrome, causing 
severe immunodeficiency (163). The epigenetic effect of AID on 
health, however, particularly lymphomas, is poorly understood. 
DNA methylation’s role in gene silencing makes it essential in 
regulating normal development, with epigenetic mutations 
allowing cells to grow and reproduce uncontrollably, leading 
to tumorigenesis. DNA methylation can have malignant effects 
through two main alterations: hypermethylation of tumor sup-
pressor genes and hypomethylation of oncogenes. It has come 
to light in recent years that such mutations are a common cause 
of B  cell lymphomas, with hypomethylation in GCB-derived 
lymphomas correlating with AID expression (164). Off-target 
effects of AID are also seen in non-B cell cancers, for example, 
T cell malignancy (86), and also in non-lymphatic cancers, such 
as stomach cancer (165), lung cancer (166), breast cancer (167), 
and liver cancer (168).

From this observation, it could be hypothesized that ectopic 
AID expression plays a critical role in lymphomagenesis. Increased 
epigenetic heterogeneity in lymphomas reflects diverse tumor cell 
populations, which increases risk of resistance to cytotoxic drugs 
(164). Understanding AID, and its role in lymphomas, could 
provide guidance in the development of new epigenetic drugs. 
Currently the main epigenetic cancer therapy drugs are azacy-
tidine and decitabine which function as DNA methyltransferase 
inhibitors, combating DNA hypermethylation. These drugs have 
shown substantial potency in reactivating epigenetically silenced 

tumor suppressor genes in  vitro (169). Reducing levels of AID 
could be used in a similar way against hypomethylation or the 
resistance caused by epigenetic heterogeneity in lymphomas. The 
protein HSP90 is important in the protection of AID from protea-
somal degradation, with inhibition by the drug 17-AAG, leading 
to polyubiquitination and degradation of AID (170). 17-AAG is 
currently in clinical trials for the treatment of other cancer types, 
due to its role in inhibiting the degradation of proteins involved 
in tumor cell proliferation and survival (171). The above obser-
vations suggest a possibility of using 17-AAG in the treatment 
of hypomethylated lymphomas (Figure  1). In a recent study 
17-DMAG, a derivative of 17-AAG, has been found to reduce 
CSR and SHM in mice, while B-cell survival and proliferation 
remain unaffected (172).

CONCLUDiNg ReMARKS

The epigenome is made up of several critical components that 
must work together to promote antibody maturation and diver-
sification in B cells. This is an intricate process; each component 
simultaneously functions both independently and dependently 
on the others, and disruption at any step can have catastrophic 
downstream affects. For example, histone modifications relax 
the chromatin, allowing for AID transcription. Simultaneously, 
multiple different ncRNAs regulate transcription and target AID 
to mutate Ig region genes. Next, different histone modifications 
recruit DNA repair proteins which then multiple different ncR-
NAs target. The entire process is further complicated depending 
on which histone modifications are used and which ncRNAs are 
present whether a B cell is returned to the status quo, undergoes 
CSR, or undergoes SHM. It is a tremendously complicated 
process and abrogation at any step can result in various forms 
of cancer and/or immunodeficiencies. Despite advancements of 
our knowledge of this field, several important questions remain 
unanswered. These include the mechanisms controlling AID 
transcription and the mechanisms that direct AID to target 
neutral, CSR, or SHM region genes. Furthermore, we have yet to 
determine how ssDNA is stabilized for AID activity.
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