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Antibodies can rapidly evolve in specific response to antigens. Affinity maturation drives 
this evolution through cycles of mutation and selection leading to enhanced antibody 
specificity and affinity. Elucidating the biophysical mechanisms that underlie affinity 
maturation is fundamental to understanding B-cell immunity. An emergent hypoth-
esis is that affinity maturation reduces the conformational flexibility of the antibody’s 
antigen-binding paratope to minimize entropic losses incurred upon binding. In recent 
years, computational and experimental approaches have tested this hypothesis on a 
small number of antibodies, often observing a decrease in the flexibility of the comple-
mentarity determining region (CDR) loops that typically comprise the paratope and in 
particular the CDR-H3 loop, which contributes a plurality of antigen contacts. However, 
there were a few exceptions and previous studies were limited to a small handful of 
cases. Here, we determined the structural flexibility of the CDR-H3 loop for thousands 
of recent homology models of the human peripheral blood cell antibody repertoire using 
rigidity theory. We found no clear delineation in the flexibility of naïve and antigen-expe-
rienced antibodies. To account for possible sources of error, we additionally analyzed 
hundreds of human and mouse antibodies in the Protein Data Bank through both rigidity 
theory and B-factor analysis. By both metrics, we observed only a slight decrease in the 
CDR-H3 loop flexibility when comparing affinity matured antibodies to naïve antibodies, 
and the decrease was not as drastic as previously reported. Further analysis, incorpo-
rating molecular dynamics simulations, revealed a spectrum of changes in flexibility. Our 
results suggest that rigidification may be just one of many biophysical mechanisms for 
increasing affinity.

Keywords: antibody repertoires, affinity maturation, complementarity determining regions, conformational 
flexibility, rigidity theory, pebble game algorithm, rosettaantibody, molecular dynamics simulations
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inTrODUcTiOn

Antibodies are proteins produced by the B cells of jawed verte-
brates that play a central role in the adaptive immune system. 
They recognize a variety of pathogens and induce further immune 
response to protect the organism from external perturbation. 
Molecules that are bound by antibodies are referred to as antigen 
and are recognized by the antibody variable domain (Fv), which 
is comprised of a variable heavy (VH) and light (VL) domain.  
To overcome the challenge of recognizing a vast array of tar-
gets—the number of antigens being far greater than the number 
of antibody germline genes—antibodies rely on combinatoric 
and genetic mechanisms that increase sequence diversity (1–3). 
Starting from a limited array of germline genes, a naïve antibody 
is generated by productive pairing of a randomly recombined 
VH, assembled from V-, D-, and J-genes on the heavy locus, and 
randomly recombined VL, assembled from V- and J-genes on the 
kappa and lambda loci (1). Next, in a process known as affinity 
maturation, iterations of somatic hypermutation are followed by 
selection to evolve the antibody in specific response to a particu-
lar antigen. This evolution results in the gradual accumulation 
of mutations across the entire antibody, with higher mutation 
rates in the six complementarity determining regions (CDRs) 
than in the framework regions (FRs) (4, 5). The CDRs are hyper-
variable loops comprising a binding interface on the Fv domain 
beta-sandwich framework, with three loops contributed by each 
chain; the light chain CDRs are denoted as L1, L2, and L3 and 
the heavy chain CDRs are denoted as H1, H2, and H3. The five 
non-H3 CDRs can be readily classified into a discrete amount 
of canonical structures (6–10) because they possess limited 
diversity in both sequence and structure. The CDR-H3 on the 
other hand is the focal point of V(D)J recombination, resulting 
in exceptional diversity of both structure and sequence. While 
all CDRs contribute to antigen binding, the diverse CDR-H3 is 
often the most important CDR for antigen recognition (11–15). 
Thus, to understand the role of B cells in adaptive immunity and 
how they evolve antibodies capable of binding specific antigens, 
we must first understand the effects of affinity maturation on the 
CDRs, and in particular on the CDR-H3.

Over the past 20 years, the effects of affinity maturation have 
been studied with an assortment of experimental and computa-
tional methods. X-ray crystallography has been used to compare 
antigen-inexperienced (naïve) and antigen-experienced (mature) 
antibodies with both antigen present and absent. Analysis of the 
catalytic antibodies 48G7, AZ-28, 28B4, and 7G12 showed a 1.2 Å 
average increase in Cα root-mean-square deviation (RMSD) 
of the CDR-H3 upon antigen binding in the naïve over that of 
the mature antibody, whereas motion in the other CDRs varied 
(16–20). Beyond structural studies, surface plasmon resonance 
has been used to assess the energetics and association/dissocia-
tion rate constants of antibody–antigen binding. Manivel et  al. 
studied a panel of 14 primary (naïve) and 11 secondary (mature) 
response anti-peptide antibodies, observing that affinity matura-
tion resulted in increases in the association rate and correspond-
ing changes in the entropy of binding (21). Schmidt et  al. saw 
the opposite when studying a broadly neutralizing influenza virus 
antibody, observing that affinity maturation resulted primarily in 

a decrease in the dissociation rate, with little effect on the associa-
tion rate (22). Isothermal calorimetry (ITC) has also been used 
to determine antigen-binding energetic, including the enthalpic 
and entropic contributions. For nine anti-fluorescein antibodies, 
including 4-4-20 and eight anti-MPTS antibodies, ITC results 
revealed diverse effects of affinity maturation: 14 of 17 mature 
antibodies bound antigen in an enthalpically favorable and 
entropically unfavorable manner, yet 3 of 17 showed the oppo-
site, with entropically favorable and enthalpically unfavorable 
binding energetics (23, 24). Three-pulse photon echo peak shift 
(3PEPS) spectroscopy has been used to quantify dynamics of 
chromophore-bound antibodies on short timescales of femto- to 
nanoseconds. 3PEPS spectroscopy results from a panel of 18 
antibodies showed that mature antibodies can possess a range of 
motions from small rearrangements such as side-chain motions 
to large rearrangements such as loop motions (23–25). In a 
specific comparison of naïve vs. mature, for the 4-4-20 antibody, 
the mature antibody was found to have smaller motions, i.e., to 
be more rigid, than naïve (23–28). Antibody dynamics have also 
been studied by hydrogen–deuterium exchange mass spectros-
copy (HDX-MS), which in contrast to 3PEPS probes timescales 
of seconds to hours. Comparison of three naïve and mature 
anti-HIV antibodies showed changes in CDR-L2/H2, but not 
in CDR-H3 dynamics (29). Finally, molecular dynamics (MD) 
simulations have been used to study antibody dynamics on inter-
mediate timescales of nano- to microseconds. MD simulations 
showed rigidification and reduction of CDR-H3 loop motion 
upon maturation for seven studied naïve/mature antibodies, with 
two exceptions, depending on the specific study (22, 28, 30–34). 
In an orthogonal protein design approach to examine the CDR-
H3 loop flexibility, Babor et al. and Willis et al. found that naive 
antibody structures are more optimal for their sequences, when 
considering multiple CDR-H3 loop conformations (35, 36). In 
sum, past studies focusing on the effects of affinity maturation 
on CDRs have found evidence suggesting that mature antibodies 
have more structural rigidity and less conformational diversity 
than their naïve counterparts (16, 18, 19, 23–27).

With recent growth in the number of antibody structures 
deposited in the Protein Data Bank (PDB) and development of 
homology models from high-throughput sequencing of paired 
VH–VL genes in B cells, we now have the datasets necessary to 
test the rigidity hypothesis on a large scale. Prior studies, usually 
focused on a few antibodies at time, generally support the hypoth-
esis that affinity maturation rigidifies the CDR-H3 loop. Thus, we 
hypothesize that this effect should be observable in a repertoire-
scale study of thousands of antibodies. We first analyzed thou-
sands of recently determined RosettaAntibody homology models 
of the most common antibody sequences found in the human 
peripheral blood cell repertoire (37). We estimated the structural 
flexibility of the CDR-H3 loop by applying graph theoretical 
techniques based on mathematical rigidity theory, namely the 
Floppy Inclusions and Rigid Substructure Topography (FIRST) 
and extensions of the Pebble Game (PG) algorithms to determine 
backbone degrees of freedom (DOFs). Surprisingly, we found no 
difference in the CDR-H3 loop flexibility of the naïve and mature 
antibody repertoires. We considered alternative explanations 
for our results, which were incongruent with past studies, by 
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expanding our analysis to a large set of antibody crystal struc-
tures, including several previously characterized antibodies, and 
extending our methods to include other measures of flexibility, 
such as B-factors and MD simulations. By all analysis methods, 
we found mixed results: some antibodies’ CDR-H3 loops were 
more flexible after affinity maturation whereas others’ became 
less flexible. In summary, we find that while affinity maturation 
can modulate antibody binding activity by reducing CDR-H3 
structural flexibility, it does not necessarily do so.

MaTerials anD MeThODs

immunomic repertoire Modeling
Briefly, RosettaAntibody is an antibody modeling approach that 
assembles homologous structural regions into a rough model and 
then refines the model through gradient-based energy minimiza-
tion, side-chain repacking, rigid-body docking, and de novo loop 
modeling of the CDR-H3. The approach is fully detailed in Ref. 
(38, 39). In a typical simulation, ~1,000 models are generated 
and the 10 lowest-energy models are retained. The immunomic 
repertoire we analyzed is from DeKosky et al. (37). In that study, 
models were generated for each of the ~1,000 most frequently 
occurring naïve and mature antibody sequences from two donors 
(a total of ~20,000 models representing the ~2,000 most frequent 
antibodies).

structural rigidity Determination
The flexibility or rigidity of the CDR-H3 loop backbone was 
determined by using several extensions of the PG algorithm 
(40–43), initially developed in Ref. (40), and method FIRST 
(44); we refer to here as FIRST-PG. This approach can determine 
flexible and rigid regions in a protein and quantify the internal 
conformational DOFs from a single protein conformational 
snapshot. FIRST generates a molecular constraint network 
(i.e., a graph) consisting of vertices (nodes) representing atoms 
and edges (interactions representing covalent bonds, hydrogen 
bonds, hydrophobic interactions, etc.). Each potential hydrogen 
bond is assigned with energy in kcal/mol which is dependent on 
donor-hydrogen acceptor geometry. FIRST is run with a selected 
hydrogen-bonding energy cutoff, where all bonds weaker than 
this cutoff are ignored in the network. On the resulting network, 
the well-developed mathematical and structural engineering 
concepts (45) of flexibility and rigidity of molecular frameworks 
and the PG algorithm are then used to identify rigid clusters, 
flexible regions, and overall available conformational DOFs. For 
a given antibody structure, DOFs for the protein backbone of the 
CDR-H3 loop were calculated at every hydrogen-bonding energy 
cutoff value between 0 and −7  kcal/mol in increment steps of 
0.01 kcal/mol. This calculation was repeated for every member 
of that antibody ensemble (i.e., 10 lowest-energy models of the 
ensemble) and finally, at each energy cutoff, the DOF count was 
averaged over the entire ensemble.

For a given energy cutoff and a given member of the ensemble, 
the DOF count for the CDR-H3 loop (residues 95–102) was 
obtained using a special PG operation which calculates the maxi-
mum number of pebbles that can be gathered on the backbone 

atoms (Cα, C, N) of the CDR-H3 loop (40). The PG algorithm 
starts with the constrained molecular graph and generates a 
directed multigraph, where available free pebbles are absorbed 
one by one by independent edges (constraints). Each pebble 
represents one of six DOF associated with an atom. After PG 
completion, the remaining free pebbles can be collected on the 
CDR-H3 backbone (i.e., a subgraph in the constrained network) 
represent its conformational DOF count.

DOF scaling
To compare flexibility across CDR-H3 loops of different lengths, 
the DOF metric computed above is scaled by a theoretical maxi-
mum DOF. We define sDOF =

+
DOF
2 6L

, where, 2L (the loop length 

in residues) represents the backbone DOFs (torsion angles: ϕ, ψ), 
and 6 represents the trivial, but ever-present rigid-body DOFs 
(i.e., combination of rotations and translations in 3D).

area under curve (aUc) calculation
The AUC is approximated by simple numerical integral (akin to 
trapezoidal integration), where the first term defines a rectangle 
and the second term defines a triangle:

 
AUC ≡ ( ) ⋅ ( )( − ).∑ − + −− − − −x x y x x y yi i i i i i i1 1 1 1

1
2  

crystallographic Dataset
On June 27th, 2017, a summary file was generated from the 
Structural Antibody Database (SAbDab) (46), using the “non-
redundant search” option to search for antibodies with maximum 
99% sequence identity, paired heavy and light chains, and a 
resolution cutoff of 3.0  Å. The summary file, containing 1,021 
antibodies, was used as input to a SAbDab download script 
which yielded corresponding sequences, Chothia-numbered 
PDBs, and IMGT data (on occasion this had to be updated to 
match the reported germline in the IMGT 3Dstructure-DB) (47). 
The structures were further pruned: structures were omitted if 
there were unresolved CDR-H3 residues, as this would preclude 
flexibility calculations, or if the antibody was neither human nor 
mouse, as this would prevent alignment to germline. Prior to 
analysis, structures were truncated to the Fv region (removing 
all residues, but light chain residues numbered 1–108 and heavy 
chain residues numbered 1–112, in Chothia numbering) and 
duplicate and non-antibody (for example, bound antigen) chains 
were removed. A total of 922 antibody crystal structures were 
analyzed. The following CDR definitions were used throughout 
this paper, in conjunction with the Chothia numbering scheme: 
L1 spans light chain residue numbers 24–34, L2 spans 50–56, L3 
spans 89–97, H1 spans heavy chain residue numbers 26–35, H2 
spans 50–56, and H3 spans 95–102.

alignment to germline
The germline of each antibody was determined by IMGT lookup 
(47). Then, BLASTP (version 2.2.29+) with the BLOSUM50 
scoring matrix was used to align the antibody variable region 
heavy and light sequences to corresponding germline sequences 
(IGHV, IGKV, and IGLV loci only, downloaded from IMGT). 
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The number of mismatches according to BLAST was considered 
as the number of amino acid mutations from germline. Table S1 
in Supplementary Material details the PDB ID, CDR-H3 length, 
number of heavy chain mutations, number of light chain muta-
tions, heavy germline gene, and light germline gene data for each 
structure in the dataset.

B-Factor z-score calculation
Temperature factors (B-factors) were extracted for all Cα atoms 
in the variable region of the antibody heavy chain (VH, Chothia 
numbering 1–112). The arithmetic mean and sample SD values 
were calculated for the B-factors. For each Cα atom in the CDR-
H3 region, residue numbers spanning 95–102 under the Chothia 
numbering convention (11), the z-score was calculated as ( )x −µ

σ
, 

where x is the B-factor of the current Cα atom and μ and σ are the 
mean and SD of B-factors for all Cα atoms in the VH, respectively. 
PDB IDs 2NR6 and 3HAE were excluded from B-factor analysis 
because all reported B-factors were identical and so the z-scores 
were 0 by definition.

B-Factor z-score Distribution 
randomization Testing
To test whether two observed B-factor distributions arose from 
the same underlying distribution, we turned to randomization 
testing. First, we computed the difference of the observed distribu-
tion means. Next, we pooled the data from the two distributions 
(e.g., CDR-H3 loop B-factor z-scores) and randomly sampled 
the pooled data to create two simulated distributions (e.g., ran-
domly assigning z-scores to either the naïve or mature category). 
Finally, we computed the simulated difference of the randomized 
distribution means. This process was repeated 10,000 times, so we 
could identify the fraction of random distributions with differ-
ences greater than the observed. Since, this process is stochastic 
and does not exhaustively sample all permutations of the data, it 
was further repeated 10 times to acquire a SD.

rosetta relaxation and ensemble 
generation
Antibody structural ensembles with 10 members were gener-
ated using either the Rosetta FastRelax (48, 49) or Rosetta KIC 
protocol (50), and Rosetta version 2017.26-dev59567 was used 
for all simulations (corresponding to weekly release version 
2017.26). The Rosetta FastRelax protocol consists of five cycles 
of side-chain repacking and gradient-based energy minimiza-
tion in the REF2015 version of the Rosetta energy function (51). 
Thus, FastRelax ensembles explore the local energy minimum of 
the crystal structure. KIC ensembles are more diverse and repre-
sentative of RosettaAntibody homology models: each ensemble 
member was generated by running the CDR-H3 refinement step 
of the RosettaAntibody protocol, consisting of VH–VL docking, 
CDR-H3 loop remodeling, and all-CDR loop minimization  
(38, 39). Sample command lines are given in Supplementary 
Material. The structural ensembles produced by both FastRelax 
and KIC were used for rigidity analysis. For technical reasons, 
6 targets could not be analyzed from the FastRelax ensemble, 
and 177 targets from the KIC ensemble were omitted due to 

non-trivial incompatibilities between the input structure 
numbering and Rosetta’s internal antibody numbering scheme 
and a computing cluster time limitation. The excluded targets 
were randomly distributed and likely would not affect the 
conclusions.

MD simulations
The Fv regions were retrieved from the original PDB files. The 
MD simulations were performed using the NAMD 2.12 package 
(52) with the CHARMM36m force field and the CMAP backbone 
energy correction (53). The truncated Fv structures were solvated 
with TIP3P water in a rectangular box such that the minimum 
distance to the edge of the box was 12 Å under periodic boundary 
conditions. Na or Cl ions were added to neutralize the protein 
charge, then further ions were added corresponding to a salt 
solution of concentration 0.14 M. The time step was set to two 
Fs throughout the simulations. A cutoff distance of 10  Å for 
Coulomb and van der Waals interactions was used. Long-range 
electrostatics was evaluated through the Particle Mesh Ewald 
method (54).

The initial structures were energy minimized by the conjugate 
gradient method (10,000 steps), and heated from 50 to 300  K 
during 100 ps, and the simulations were continued by 1 ns with 
NVT ensemble, where protein atoms were initially held fixed 
whereas non-protein atoms freely moved, gradually releasing 
the whole system to facilitate a stable simulation over the 1 ns. 
Further simulations were performed with NPT ensemble at 300 K 
for 200 ns without any restraints other than the SHAKE algorithm 
to constrain bonds involving hydrogen atoms. The last 180 ns of 
each trajectory were used for the subsequent clustering analyses. 
Similar to a previous work (55), a total of 2,000 evenly spaced 
frames from each trajectory were clustered based on RMSD of 
the Cα and Cβ atoms using the K-means clustering algorithm 
implemented in the KCLUST module in the MMTSB tool set 
(56). The cluster radius was adjusted to maintain 20 clusters 
in each trajectory. The structure closest to the center of each 
cluster was chosen as a representative structure of each cluster. 
The 10 representative structures were chosen from the top 10 
largest clusters and these representative structures were energy 
minimized by the conjugate gradient method (10,000 steps) in 
a rectangular water box. The minimized antibody Fv structures 
were used as the inputs for the rigidity analysis.

Root-mean-square quantities of the MD trajectories were cal-
culated based on the past 180 ns trajectories. After superposing 
Cα atoms of the FR of the heavy chain (FRH) of each snapshot 
onto Cα atoms of FRH of the reference structures (i.e., crystal 
structures), Cα-RMSD of the CDR-H3 loop was calculated as the 
time average. Similarly, after superposing Cα atoms of entire Fv 
domains of each snapshot onto those of the reference structures, 
the root-mean-square fluctuation (RMSF) of a residue i was 
defined as the time average:

 
RMSFi i ix x= −( )2

 

where xi is the distance between the Cα atom of the snapshots at 
a given time and the Cα atom of the ith residue of the reference 
structures (57).
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FigUre 1 | CDR-H3 loop flexibility analysis of the immunomic antibody set reveals that no difference in naïve (blue) and mature (red) antibodies. Floppy inclusions 
and rigid substructure topography-Pebble Game was used to determine the degrees of freedoms (DOFs) as a function of hydrogen-bonding energy cutoff in 
RosettaAntibody models of the 1,911 most frequent public antibodies. Results were split, depending on whether the antibody was naïve or mature, as determined 
by B-cell surface receptors, and the mean DOFs were calculated along with the SD, shown in a lighter shade of the respective color. Subplots, below each main 
plot, show the p-value computed by a two-sample Kolmogorov–Smirnov (KS) test comparison of the naïve and mature DOFs distributions for each hydrogen-
bonding energy cutoff, with null hypothesis being that the distributions are the same. A dashed line indicates a p-value of 0.05. (a) To permit comparison across 
loops of multiple lengths, the DOFs were scaled to a theoretical maximum for each length (a value of 1 indicates all DOFs are available, whereas a value of  
0 indicates no DOFs are available). We found the scaled DOFs to be similar for both naïve and mature antibodies, quantified by the KS test p-values and area  
under the curve (AUC) ± SD: −5.21 ± 0.44 and −5.23 ± 0.44, respectively. (B) To exclude length effects on flexibility calculations, we compared DOFs for  
the most popular length (12 residues). We found the naïve AUC ± SD at −158.15 ± 11.98 and mature AUC ± SD at −156.97 ± 11.56 to be similar.  
The distributions appear similar at cutoffs between 0 and −5.0 kcal/mol, according to the KS test p-values.
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resUlTs

immunomic repertoire reveals no 
Difference in Flexibility between  
naïve and Mature cDr-h3 loops
We initially asked whether CDR-H3 loop rigidification, hav-
ing been observed in many past studies, was present in a large 
set of antibodies derived from human peripheral blood cells. 
Previously, DeKosky et al. used RosettaAntibody to model the 
structures of 1,911 common antibodies found in the peripheral 
blood cells of two human donors (37). Paired VH–VL sequences 
were derived from either CD3−CD19+CD20+CD27− naïve 
B  cells or CD3−CD19+CD20+CD27+ antigen-experienced 
B  cells (mature) isolated from peripheral mononuclear cells. 
RosettaAntibody structural models were created by identify-
ing homologous templates for the CDRs, VH–VL orientation, 
and FRs; assembling the templates into one model; de novo 
modeling the CDR-H3 loop; rigid-body docking the VH–VL 
interface; side-chain packing; and minimizing in the Rosetta 
energy function (38). Since de novo modeling of long loops is 
challenging, DeKosky et  al. limited their antibody set to the 
more tractable subset of antibodies with CDR-H3 loop lengths 
under 16 residues. They compared their models for seven 
human germline antibodies with solved crystal structures and 

found models had under 1.4 Å backbone RMSD for the FR and 
under 2.4 Å backbone RMSD for the CDR-H3 loop.

We used the FIRST-PG method (40, 44) to estimate flexibility 
from the RosettaAntibody homology models, determining 
the number of backbone DOFs for the CDR-H3 loop as each 
hydrogen bond is broken in order from weakest to strongest. 
FIRST models the antibody as a molecular graph where nodes 
represent atoms and edges represent atomic interactions. An 
extension of the PG algorithm uses this molecular graph to 
compute the DOFs of the CDR-H3 loop. To mitigate the effects 
of homology modeling, inaccuracies on the FIRST-PG analysis, 
we used an ensemble of 10 lowest-energy RosettaAntibody 
models. FIRST-PG analysis on structural ensembles has been 
shown to predict hydrogen–deuterium exchange and protein 
flexibility (51). To account for varying CDR-H3 loop lengths, we 
scaled the calculated DOFs by a theoretical maximum value (see 
Materials and Methods). Figure 1A shows a curve of the scaled 
DOFs averaged over all naïve or mature antibodies as a function 
of the hydrogen-bonding energy cutoff used in the FIRST-PG 
analysis. At a cutoff of 0 kcal/mol, all hydrogen bonds are intact 
and the average CDR-H3 loop-scaled DOFs are about 20% of 
the theoretical maximum. Moving from right to left on the plot 
increases the minimum energy cutoff for including interactions 
in the FIRST graph; effectively hydrogen bonds of increasing 
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strength are “broken” and the available DOFs rise from 20 to 
above 90% of the maximum theoretical flexibility, while the loop 
becomes unstructured (unfolded) in FIRST.

We compared the DOFs distributions for naïve and mature 
antibodies at every hydrogen-bonding energy cutoff by two-
sample Kolmogorov–Smirnov (KS) testing, with null hypothesis 
being that the two distributions are identical (Figure 1A). There 
is no difference in the average, scaled DOFs. To further quantify 
this comparison, we computed the average AUC plus-or-minus 
one SD for both antibody sets. The average AUC values are 
identical for the naïve (−5.21  ±  0.44) and mature antibody 
repertoires (−5.23  ±  0.44). This lack of difference persists 
(AUC − 158.15 ± 11.98 [naïve] vs. −156.97 ± 11.56 [mature]) 
when accounting for CDR-H3 loop length, by comparing loops 
of only length 12, the most popular length (Figure 1B), and so 
the observed similarity of DOFs in naïve and mature antibodies is 
not due to averaging over loops of different lengths. Thus, on the 
immunomic repertoire scale, we do not observe the difference in 
flexibility between naïve and mature antibodies predicted by the 
paratope rigidification hypothesis.

Before amending the rigidification hypothesis in light of 
these results, we considered several alternative explanations for 
our observations. First, we addressed whether the use of homo-
logy models for flexibility analysis introduced inaccuracies by 
analyzing a large set of antibody crystal structures and Rosetta-
generated models from that set with varying quality, ranging from 
models with sub-angstrom backbone RSMD to models that may 
be several angstroms off (and more representative of an average 
homology model). Next, we addressed whether backbone DOFs, 
as calculated by FIRST-PG, were a good measure of flexibility, by 
assessing flexibility through two alternative measures: B-factors 
and MD simulations. Additionally, we addressed whether aver-
aging flexibilities and comparing across many germlines affected 
results, by detailed flexibility analysis of previously studied 
naïve–mature antibody pairs and RosettaAntibody-modeled 
pairs.

Only small Flexibility Differences are 
Observed between naïve and Mature 
antibodies in the crystallographic set
Preparation of an Antibody Crystal Structure Dataset
Of course, the strongest critique of the immunomic antibody set 
is that these models are only approximating the actual antibody 
structure. Thus, we applied FIRST-PG analysis to a large set 
of antibody crystal structures. We curated the set of all non-
redundant mouse and human antibody crystal structures from 
SAbDab (46). To be consistent with the models produced by 
RosettaAntibody, we truncated the structure of each antibody to 
only the Fv domain, excluding other antibody regions or anti-
gen. Then, we used IMGT/3Dstructure-DB (58) to identify the 
variable domain genes and determined the number of somatic 
mutations by aligning the sequence derived from the crystal 
structure to the IMGT-determined V-gene. We defined mature 
antibodies as those possessing at least one somatic mutation in 
either V-gene. Our full dataset has 922 antibodies of which 23 
are naïve. CDR-H3 loop lengths and germline assignments are 

summarized in Table S1 in Supplementary Material. Summary 
statistics are plotted in Figures S1–S3 in Supplementary Material.

FIRST-PG Analysis of Crystal Structures
From the crystal structures, we created two sets of structural 
ensembles and assessed flexibility by FIRST-PG. Flexibility 
analysis has previously been shown to be more accurate on 
ensembles in comparison to analysis using single (snapshot) 
conformers (41, 59). Ensembles of 10 representative structures 
were generated from the initial crystal structure by using either 
Rosetta FastRelax (48) or refinement step of RosettaAntibody 
(38, 39), which we term KIC ensembles after the loop modeling 
algorithm used in refinement (50). Rosetta FastRelax samples 
structures around the crystallographic, local energy minimum, 
with typically <1  Å backbone RMSD, whereas the refinement 
step of RosettaAntibody samples a more diverse set of low-energy 
CDR-H3 loop conformations and VH–VL orientations. Thus, 
FastRelax ensembles are representative of the crystal structures, 
whereas KIC ensembles are representative of RosettaAntibody 
homology models. By comparative FIRST-PG analysis of the 
two sets, we can assess the effects of modeling inaccuracies on 
flexibility analysis.

The scaled DOFs as calculated by FIRST-PG for FastRelax 
ensembles of antibody crystal structures are shown in Figure 2A. 
There are only minor differences between the naïve and mature 
flexibility curves, two-sample KS testing reveals insignificant 
p-values (⟫0.05) for all hydrogen-bonding energy cutoffs, 
and the AUC is similar for both sets (−4.70 ± 0.46 [naïve] vs. 
−4.70 ± 0.48 [mature]). Again, we considered the possibility that 
different distributions of loop lengths in the two sets obscures 
the affinity maturation contributions to flexibility. Therefore, 
we analyzed loops of length 10 (Figure  2B), the single most 
common length in the crystallographic set. When loops of a 
single length were compared, there was a separation between 
the naïve and mature sets, with the naïve antibody set average 
DOFs being consistently greater than the mature set, but not 
significantly so, except for some energy cutoffs below −5 kcal/
mol, according to KS testing. As expected, the AUC values dif-
fer, but are within a SD (−128.2 ± 9.0 [naïve] vs. −121.9 ± 10.1 
[mature]). We repeated FIRST-PG analysis for KIC ensembles 
of antibody crystal structures and observed similar results 
(Figure S4 in Supplementary Material): for scaled DOFs, the 
AUC was −5.91 ± 0.20 (naïve) vs. −5.81 ± 0.26 (mature) and, 
for loops of length 10 only, the AUC was −154.10 ± 4.80 (naïve) 
vs. −150.44 ± 7.73 (mature). Thus, there does not appear to be 
a large, consistent CDR-H3 loop flexibility difference across all 
antibody crystal structures analyzed.

B-Factor Analysis of Crystal Structures
However, we have not accounted for the possibility that backbone 
DOFs as calculated by FIRST-PG may not capture the effects of 
affinity maturation on CDR-H3 loop flexibility. Thus, we assessed 
loop flexibility as determined by atomic temperature factors or 
B-factors. In protein crystal structures, B-factors measure the 
heterogeneity of atoms in the crystal lattice. Thus, rigid regions 
have lower B-factors as they are more homogenous throughout 
the crystal, whereas flexible regions have higher B-factors as they 
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FigUre 2 | When accounting for length, CDR-H3 loop flexibility analysis of the crystallographic antibody set reveals naïve (blue) antibodies to be slightly more 
flexible than mature (red). Floppy Inclusions and Rigid Substructure Topography-Pebble Game was used to determine the degrees of freedoms (DOFs) as a function 
of hydrogen-bonding energy cutoffs in crystal structure ensembles created by Rosetta FastRelax. Results were split, depending on whether the antibody was naïve 
or mature, as determined by BLAST alignment to its germline V-genes, and the mean DOFs were calculated along with the SD, shown in a lighter shade of the 
respective color. Subplots, below each main plot, show the p-value computed by a Kolmogorov–Smirnov (KS) test comparison of the naïve and mature DOF 
distributions for each hydrogen-bonding energy cutoff, with null hypothesis being that the distributions are the same. A dashed line indicates a p-value of 0.05.  
(a) To permit comparison across loops of multiple lengths, the DOFs were scaled to a theoretical maximum for each length (a value of 1 indicates all DOFs are 
available whereas a value of 0 indicates not DOFs are available). We found the scaled DOFs to be similar for both naïve and mature antibodies, quantified by KS  
test p-values and the areas under the curve (AUCs) ± SD: −4.70 ± 0.46 and −4.70 ± 0.48, respectively. (B) To exclude length effects on flexibility calculations,  
we compared DOFs for the most popular length (10 residues). We found the naïve AUC ± SD at −128.82 ± 8.99 was greater than the mature AUC ± SD at 
−121.85 ± 10.09, but still within a SD. The distributions appear similar at cutoffs between 0 and −6.0 kcal/mol, according to the KS test p-values.
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are less homogenous throughout the crystal. B-factors are also 
affected by crystal resolution, so we cannot compare raw values 
across structures of varying resolution. Instead, we computed a 
normalized B-factor z-score, which has 0 mean and unit SD for 
each antibody chain. Finally, to account for different CDR-H3 
loop lengths, we averaged the B-factor z-scores for the CDR-H3 
loop residues.

Figure 3A shows the distributions of B-factor z-scores averaged 
over the CDR-H3 loop residues of naïve and mature antibodies. 
Both distributions span a similar range and overlap significantly, 
with the naïve curve peak shifted toward higher values than the 
mature. The majority of the naïve CDR-H3 loop B-factor z-score 
averages were positive (65%), whereas the majority of the mature 
CDR-H3 loop B-factor z-score averages were negative (64%). 
To address the question whether these distributions arose from 
the same underlying distribution we turned to randomization 
testing, as described in Section “Materials and Methods.” The 
observed difference in distribution means is matched by only 
0.066  ±  0.026% of simulated differences (Figure  3B), indicat-
ing that naïve and mature distributions are likely distinct. 
Furthermore, a two-sample KS test confirms the distributions to 
be distinct, with a maximum vertical deviation, D, of 0.36 and a 
p-value of 0.006.

However, we were concerned that the mixing of bound 
and unbound crystal structures would influence results, as we 

previously observed bound structures to have lower average 
B-factors (60). Furthermore, in the PDB-derived dataset, naïve 
antibodies were mostly crystallized in the unbound state (19 of 
23), whereas mature antibodies were mostly co-crystallized with 
their cognate antigen (544 of 899). In conjunction, these two 
observations suggested that the high number of antigen-bound 
mature antibody crystal structures was the primary driver of the 
difference between naïve and mature B-factor z-scores. Thus, 
we compared the B-factor averages of unbound structures only 
and found that while the distributions appear to be distinct 
(Figure 4A), when the difference in distribution means is com-
pared to a randomized set, 3.4  ±  0.2% of random differences 
are greater than or equal to the observed differences, and the 
distributions fail a two-sample KS test (D = 0.27, p = 0.15). Thus, 
the difference between naïve and mature antigen-free crystal 
structures does not appear significant.

As we conjectured, a significant difference was found between 
the bound and unbound distributions (Figure  5), with a two-
sample KS test confirming the difference between the distribu-
tions (D =  0.31, p <  2.16E−16) and randomized testing never 
showing a difference in means as large as the observed difference. 
Additionally, we considered other possible origins of difference 
between the naïve and mature distributions that are not related to 
affinity maturation, including comparison across species, crystal 
structure resolutions, CDR-H3 loop lengths, and whether the 
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FigUre 4 | When considering only antigen-free crystal structures (to control for rigidification upon antigen biding), the difference between naïve and mature average 
CDR-H3 loop B-factor z-score distributions is small. (a) The distributions of CDR-H3 loop average B-factors are less distinct between the mature (orange) and naïve 
(blue) sets. Bars show binned counts in intervals of 0.25. Both the bars and smoothed densities are normalized so the maximum value is 1. A two-sample 
Kolmogorov–Smirnov test results in a p-value of 0.15 and D of 0.27, indicating that the null hypothesis of indistinguishable underlying distributions cannot be 
discarded. (B) The observed difference in distribution means (red line, dashed) is occasionally replicated in random resampling (white bars). When average CDR-H3 
loop B-factor z-scores are pooled and randomly assigned to either a naïve or mature set, in the observed numbers (Nmature = 355 and Nnaive = 18), the observed 
difference in means is matched or surpassed in 340 ± 20 out of 10,000 simulated differences.

FigUre 3 | Comparison of the distribution of average CDR-H3 loop B-factor z-scores in antibody crystal structures suggests that naïve are more flexible than 
mature. (a) Distributions of average CDR-H3 loop B-factors for the crystallographic set of antibodies are distinct for the mature (orange) and naïve (blue) sets. The 
mature antibody CDR-H3 loops have lower B-factors than the naïve, corresponding to more rigidity. Bars show binned counts in intervals of 0.25. Both the bars and 
smoothed densities are normalized so the maximum value is 1. A two-sample Kolmogorov–Smirnov test confirms different underlying distributions with a p-value of 
0.006 and maximum vertical deviation, D, of 0.36. (B) The observed difference in distribution means is difficult to replicate by random chance, occurring only 
6.6 ± 2.6 times out of 10,000 simulations. Comparing the observed difference in means (red line, dashed) to simulated differences (white bars) acquired by randomly 
assigning B-factor values from the original distributions to either a naïve or mature set, in the observed numbers (Nmature = 897 and Nnaive = 23), before computing the 
difference in means.

8

Jeliazkov et al. Repertoire Analysis of Rigidity

Frontiers in Immunology | www.frontiersin.org March 2018 | Volume 9 | Article 413

CDR-H3 loop was at a crystal contact or not. We found none of 
these to have as clear of an effect on the distribution of B-factor 
averages as whether or not antigen was bound (Figures S5 and 

S6 in Supplementary Material). In summary, the distributions 
of B-factor z-score averages (Figures 3–5) suggest that both the 
naïve and mature antibody sets possess CDR-H3 loops of varying 
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FigUre 5 | Antigen-bound and antigen-free distributions of B-factor z-scores are distinct. (a) Distributions of CDR-H3 loop average B-factors for the 
crystallographic set of antibodies are distinct for the antigen-bound (red) and antigen-free (purple) sets. Bound antibody CDR-H3 loops have lower B-factors than 
unbound, corresponding to more rigidity. Bars show binned counts in intervals of 0.25. Both the bars and smoothed densities are normalized so the maximum value 
is 1. Distributions appear distinct according to a two-sample Kolmogorov–Smirnov test with a p-value of 2.2E-16 and D of 0.31. (B) The observed difference in 
distribution means (red line, dashed) is never replicated in 10,000 attempts at random resampling (white bars). Simulated differences were acquired by randomly 
assigning values from both sets to either a naïve or mature set, in the observed numbers (Nbound = 546 and Nnaive = 374), before computing the difference means.
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flexibility and that neither set is significantly more flexible or rigid 
than the other.

comparison of Mature to naïve-reverted 
Models reveals Varying rigidification 
across Matched Pairs
Having not observed consistent rigidification of the CDR-H3 
loop in two large sets of antibodies, we postulated that rigidifi-
cation was not a repertoire-wide phenomenon (i.e., all mature 
antibodies are not more rigid than all naïve antibodies), but it 
could still be plausible that matched pairs of naïve and mature 
antibodies would reveal rigidification.

To investigate this hypothesis, we selected 10 mature anti-
bodies from our SAbDab set with CDR-H3 loops of length 
10, a length for which loop modeling performs well (50, 61). 
We identified antibodies that had at least 5 (~97% sequence 
identity), but no more than 25 (~85% sequence identity), muta-
tions when compared to the germline V-genes. To control for 
species, half of the selected antibodies were human and half 
were mouse. We reverted the mature antibody sequences to 
naïve using the germline sequences from the aligned V-genes, 
as described in the methods, and using germline J-genes from 
sequence alignments from IMGT/DomainGapAlign (47). The 
reverted sequences are reported in Section “Sequences Used to 
Model Naïve-Reverted Antibodies” in Supplemental Material. 
We then used RosettaAntibody to generate homology models 
for the naïve-reverted sequences. We analyzed the ensembles 
of the 10 lowest-energy homology models using FIRST-PG. 
To ensure fair comparison, we also used FIRST-PG to analyze 
homology model ensembles of the mature sequences. To provide 
an estimate for the accuracy of RosettaAntibody homology 

models, we computed RMSDs for the mature models using the 
known crystal structures and found all had sub-2-Å CDR-H3 
loop backbone RMSD, calculated after alignment of the heavy 
chain FR, with 7 of 10 antibodies having sub-Å RMSD (Figures 
S7–S9 in Supplementary Material).

Of the 10 naïve/mature antibody pairs we analyzed, 6 showed 
a decrease in flexibility and 4 showed an increase in flexibility 
upon affinity maturation (Figure 6). These 10 antibodies dem-
onstrated the breadth of possible affinity maturation effects, from 
an expected flexibility decrease in antibody 2AGJ, with AUC 
decreasing by 9.34%, to the unexpected flexibility increase in 
antibody 1RZ7, with AUC increasing by 10.65%.

analysis of 48g7 antibody
Having analyzed 1,911 models, 922 crystal structures, and 10 
paired-reverted models, we had yet to observe a consistent dif-
ference in CDR-H3 loop flexibility between naïve and mature 
antibodies, as previously reported in literature. Thus, we turned 
to three previously studied antibodies with known crystal struc-
tures and measured CDR-H3 loop flexibility. These are (1) the 
esterolytic antibody 48G7 (16, 32, 33, 35), (2) the anti-fluorescein 
antibody 4-4-20 (23, 26–28, 31, 33), and (3) a broadly neutralizing 
influenza virus antibody (22). For all three antibodies, the effects 
of affinity maturation on CDR-H3 loop flexibility have been 
previously studied by both experiment and simulation, allowing 
comparison with our results. For brevity, we presently discuss the 
48G7 antibody here and full results for all antibodies are available 
in the Supplementary Material.

The 48G7 antibody was first studied through crystallography, 
with structures capturing the bound (holo) and unbound (apo) 
states of both the naïve and mature antibody (16). Comparison 
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FigUre 6 | Floppy Inclusions and Rigid Substructure Topography-Pebble Game analysis of 10 RosettaAntibody-modeled mature/naïve-reverted antibody pairs 
(CDR-H3 loop length of 10 residues) shows that affinity maturation does not always result in CDR-H3 loop rigidification. Naïve values are colored blue, while mature 
values are color red. The difference between mature and naïve area under the curves (AUCs) is reported in the bottom left of each sub-figure, with a positive value 
indicate a more flexible naïve antibody. 4 out of the 10 cases have mature antibodies with AUC greater than their naïve counterparts. Subplots, below each main 
plot, show the p-value computed by a Kolmogorov–Smirnov test comparison of the naïve and mature degrees of freedom distributions for each hydrogen-bonding 
energy cutoff, with null hypothesis being that the distributions are the same and a dashed line indicating a p-value of 0.05.
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between the naïve and mature CDR loop motions from the free 
to the bound state revealed minor changes, with the mature CDR-
H3 loop being slightly more rigid and moving an Angstrom less 
than the naïve upon antigen binding (Figures S10 and S11 in 
Supplementary Material). For each of the four crystal structures, 
we extracted B-factors and computed B-factor z-scores for the 
CDR-H3 loop, measuring the distance from the B-factor mean 
in SDs. B-factor z-scores for the CDR-H3 loop of apo-48G7 are 
shown in Figure 7A. The mature antibody has lower B-factors 
than the naïve antibody throughout the entire CDR-H3 loop. 
This observation also holds for the holo-48G7 antibody struc-
tures as well (Figure S12 in Supplementary Material). Table S2 in 
Supplementary Material summarizes B-factors, averaged over the 
whole CDR-H3 loop. These B-factor results agree with the prior 
crystallographic observations.

Follow-up studies on 48G7 used MD simulations to assess 
flexibility. Briefly, 500 ps short MD simulations of the naïve and 
mature antibodies in the presence of antigen with an explicit 
solvent model (TIP3P) found the CDR-H3 loop to be more flex-
ible in the naïve than in the mature antibody by comparison of 
RMSFs (30), but 15 ns MD simulations of the naïve and mature 
antibodies in the absence of antigen with an implicit solvent 
model (GB/SA) found no difference between the two, again by 
comparison of RMSFs (32). Another study based on an elastic 

network model also suggested that, in the absence of antigen, 
the fluctuations of the naïve and mature 48G7 were similar, but 
their binding mechanisms could differ depending on response to 
antigen binding; the naïve antibody shows a discrete conforma-
tional change induced by antigen, whereas the mature antibody 
shows lock-and-key binding (62). Due to the contentious nature 
of these results, we ran 200  ns MD simulations for the 48G7 
naïve and mature antibodies in the absence of antigen with an 
explicit solvent model (TIP3P). We measured both RMSDs and 
RMSFs for the Cα atoms along the CDR-H3 loop and computed 
the difference between the naïve and mature antibodies (Table S2 
in Supplementary Material). Figure 7B shows that the CDR-H3 
loop RMSFs are consistently greater for the mature than the naïve 
48G7 antibody.

Finally, as we have done through this study, we used FIRST-PG 
to measure CDR-H3 loop flexibility. To limit the effects of crystal 
structure artifacts on FIRST-PG analysis, we used an ensemble 
of 10 representative structures, derived by clustering trajectory 
frames and selecting 10 structurally distinct cluster medians from 
the MD simulations, similar to a previous flexibility study for 
this antibody (33). The CDR-H3 loop flexibility of apo-48G7, as 
determined by FIRST-PG analysis of MD ensembles is shown in 
Figure 8. The FIRST-PG analysis showed no significant difference 
between the mature and naïve antibodies.
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FigUre 7 | Analysis of catalytic antibody 48G7 by CDR-H3 loop B-factors and root-mean-square fluctuations (RMSFs) shows conflicting results. (a) Comparison  
of normalized B-factor values for the CDR-H3 loop of the 48G7 antibody in crystal structures of the unbound naïve (dark blue) and mature (dark orange) antibodies 
reveals a more rigidity in the mature antibody. The dashed line indicates the average value and is outlined by a box defined by the average plus-or-minus the SD.  
(B) Comparison of CDR-H3 loop RMSFs for the molecular dynamics simulations of the naïve and mature 48G7 antibodies shows the opposite.
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In addition to using MD simulations to generate ensembles, 
we used ensembles generated by RosettaAntibody and Rosetta 
FastRelax, permitting direct comparison. The CDR-H3 loop 
flexibility of apo-48G7, determined by FIRST-PG analysis of 
FastRelax and RosettaAntibody ensembles, is shown in Figure 8. 
The curves from FastRelax and the MD simulation are similar 
for low-energy cutoffs (e.g., in the range of 0.0 to −3.0 kcal/mol), 
with the naïve and mature DOFs being the same. These curves 
diverge at higher energy cutoffs, where the FastRelax curve shows 
a more flexible naïve antibody and the MD curve does not. The 
curve from RosettaAntibody ensembles differs from the two and 
shows a more flexible mature antibody at low-energy cutoffs 
and a more flexible naïve at high-energy cutoffs. For less visual 
and more quantitative comparisons, we computed the AUC of 
the DOF vs. hydrogen-bonding energy cutoff plots (Table S2 
in Supplementary Material). We find the AUC is only slightly 
greater for naïve than mature antibodies in the FastRelax and 
RosettaAntibody ensembles, with the naïve AUC reducing by 
only 3.9 and 0.2%, respectively, upon maturation. MD ensembles 
show the opposite outcome, with the mature antibody having 
1.3% greater AUC than the naïve.

Further validation was carried out on two other previously 
studied antibodies and reported in the Table S2 and Figures S12 
and S13 in Supplementary Material. For the 4-4-20 antibody, 
antigen-bound structures were compared and the average mature 
B-factors were within a SD of the naïve. For the influenza antibody, 
average B-factors were compared between an unbound naïve and 
a bound mature crystal structure, showing significant rigidifica-
tion. However, results are conflated due to the lack of unbound 
crystal structures, as in bound structures antibody–antigen con-
tacts artificially increase rigidity of the CDR-H3 loop. In contrast 
to B-factor analyses, FIRST-PG analyses yielded mixed results for 
these two antibodies. The 4-4-20 antibody was found to become 

more flexible upon maturation by FIRST-PG analysis of all, but 
Rosetta KIC ensembles. The influenza antibody was found to 
become more rigid upon mature by FIRST-PG analysis of all, but 
Rosetta FastRelax ensembles. Finally, we analyzed RMSDs and 
RMSFs from MD simulations and found that the mature 4-4-20 
antibody has higher CDR-H3 loop RMSD, but lower RMSF, 
values than the naïve while the mature influenza antibody was 
found to have lower values for both (Table S2 in Supplementary 
Material). As with our repertoire analysis, we do not see consist-
ent rigidification in previously studied antibodies. We consider 
the significance of this result and compare our analysis in detail 
to past analyses of flexibility in Section “Discussion.”

DiscUssiOn

The Varying effects of affinity Maturation 
on cDr-h3 Flexibility
Affinity maturation, through a series of somatic hypermutation 
events and selection processes, can evolve a low-affinity, naïve 
antibody to bind an antigen with both high affinity and specificity 
(63). Elucidating the affinity maturation process is desirable to 
understand molecular evolution, develop antibody engineering 
methods, and guide vaccine development (64). Past studies have 
suggested that, with few exceptions (29, 65, 66), naïve antibodies 
are highly flexible and maturation leads to improved affinity and 
specificity through the optimization and rigidification of the 
antibody paratope, and in particular the CDR-H3 loop (22, 27,  
28, 31–33). However, these studies have been limited, often 
focusing on a single antibody and assessing flexibility indirectly. 
We sought to test the generalizability of the rigidification-upon-
maturation hypothesis. We were enabled by the large number of 
antibody structures in the PDB, homology models generated from 
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FigUre 8 | Floppy inclusions and rigid substructure topography-Pebble 
Game (FIRST-PG) analysis of naïve (dark blue) and mature (dark orange) 
48G7 antibodies using either Rosetta FastRelax-, RosettaAntibody-, or 
molecular dynamics (MD)-generated 10-member ensembles does not show 
a difference between the naïve and mature antibodies. FIRST-PG analysis 
calculates the degrees of freedom (DOFs) of CDR-H3 loop as a function of 
hydrogen-bonding energy cutoff. Subplots, below each main plot, show the 
p-value computed by a Kolmogorov–Smirnov test comparison of the naïve 
and mature DOF distributions for each hydrogen-bonding energy cutoff, with 
null hypothesis being that the distributions are the same and a dashed line 
indicating a p-value of 0.05. While the FastRelax ensembles appear distinct in 
the range of −6 to −3 kcal/mol, the naïve and mature are indistinguishable for 
both the RosettaAntibody and MD ensembles.
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Unexpectedly, in a comparison of flexibility of repertoires, our 
data show little difference between naïve and mature antibodies: 
FIRST-PG calculations showed no difference for RosettaAntibody 
homology model ensembles of the most common naïve and 
mature antibodies in human peripheral blood cells. The same cal-
culations showed no difference in CDR-H3 loop DOFs of crystal 
structures under two different refinement schemes (FastRelax 
and KIC). After accounting for the presence/absence of antigen, 
CDR-H3 loop B-factor distributions were similar for both mature 
and naïve antibody crystal structures. These results indicate that 
rigidification of the CDR-H3 loop does not always occur upon 
affinity maturation.

Since our observations did not indicate clear rigidification 
over two sets of antibodies, we considered the following pos-
sibilities: (1) comparison of different length CDR-H3 loops 
was unfair because longer loops are inherently more flexible,  
(2) comparison of different antibodies was unfair because differ-
ent combinations of gene segments and VH–VL pairs will result in 
different flexibilities, (3) mutations within CDR-H3 loop, which 
we could not identify for the PDB set because of the difficulty in 
D/J-gene alignments, may have modulated flexibilities of CDR-
H3, (4) inaccuracies in the computational methods could pre-
clude observation of rigidification, and (5) FIRST-PG-measured 
backbone DOFs are not a good measure of flexibility. To address 
the first concern, we analyzed loops of consistent length via 
B-factor and FIRST-PG (Figures 1B and 2B; Figures S4 and S5 
in Supplementary Material). We found that, according to KS test-
ing and when accounting for the presence/absence of antigen, 
B-factor distributions were not distinct for naïve and mature sets 
of antibodies with same length CDR-H3 loops (length 10 for the 
crystallographic set and 12 for the repertoire model set). We also 
found that FIRST-PG DOFs AUC values of the naïve and mature 
sets of antibodies with the same length CDR-H3 loops were 
within a SD for RosettaAntibody, FastRelax, and KIC ensembles. 
So, even when accounting for length, mature antibodies are not 
significantly more rigid than naïve ones.

To address the concern that comparison of sets of antibod-
ies originating from different VH and VL genes is unfair, we 
analyzed mature/naïve antibody pairs that had been previously 
studied and mature/naïve-reverted pairs that we generated with 
RosettaAntibody and analyzed by FIRST-PG (Figures  6–8; 
Table S2 in Supplementary Material). We found that CDR-H3 
loop B-factors did not always indicate rigidification upon matu-
ration and for the 7G12 antibody we observed the reverse effect 
(Figure S14 in Supplementary Material). We also found that 
mature antibodies did not always become more flexible upon 
naïve reversion, but instead displayed a breadth of behaviors 
(Figure 6). So, when analyzing matched naïve/mature pairs, we 
do not see consistent rigidification upon maturation.

Our analysis of previously studied naïve/mature antibody 
pairs coupled with the earlier repertoire analysis should alleviate 
concerns that our flexibility results for the PDB set were strongly 
affected by our inability to align D/J-gene segments, and thus 
consider mutations in the CDR-H3 loop. The previously studied 
pairs included CDR-H3 mutations and the repertoire set had 
antibody sequences determined by Illumina MiSeq sequencing 
with naïve/mature status assigned by the absence/presence of the 

high-throughput repertoire sequencing data, and the FIRST-PG 
method for rapid structural flexibility calculation to ask whether 
affinity maturation leads to CDR-H3 loop rigidification.
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CD27 cell-surface receptor. In both cases, the naïve and mature 
sequences were determined through the entire Fv, and flexibility 
analysis still revealed mixed results.

Finally, to address the concern that RosettaAntibody models 
may not be accurate enough to be useful for FIRST-PG calcu-
lations, we tested FIRST-PG on a range of structural ensembles 
with varying deviation from the crystal structure. We found no 
difference in the naïve vs. mature antibody CDR-H3 loop AUC 
of the FIRST-PG results, regardless of the ensemble generation 
method used (compare Figure 2; Figure S4 in Supplementary 
Material). We also determined flexibility through alternative 
measures, such as crystal structure B-factors and RMSFs in 
MD simulations. For both, affinity maturation was not found 
to have a consistent, rigidifying effect. Thus, even if model 
inaccuracies confound analysis, other data support the same 
hypothesis.

comparison with Prior results
Our analysis included several antibodies that have been the sub-
ject of previous flexibility studies, permitting a direct comparison 
(Table S4 in Supplementary Material summarizes past studies). 
One of the most studied antibodies is the anti-fluorescein 
antibody, 4-4-20. Spectroscopic experiments measuring the 
response of a fluorescent probe (fluorescein) and MD simula-
tions measuring Cα atom fluctuations suggested that somatic 
mutations restrict conformational fluctuations in the mature 
antibody (26, 28, 31). Our analysis of 4-4-20 was not as clear: we 
observed no significant difference in naïve vs. mature CDR-H3 
loop crystallographic B-factors (Figure S12 in Supplementary 
Material) and found the mature antibody to be more rigid in 
FIRST-PG calculations only in the −2.0 to –0.0 kcal/mol range of 
hydrogen-bonding energy cutoffs (Figure S13 in Supplementary 
Material). Similar mixed results were observed by Li et  al.  
(33) who used a Distance Constraint Model (DCM) to analyze 
flexibility in an ensemble of 4-4-20 conformations drawn from 
MD simulations. They found increases in structural rigidity of 
the CDR-H3 loop, as determined by the DCM, occurred upon 
affinity maturation, but these increases did not correspond to 
decreases in dynamic conformational fluctuations, as deter-
mined by RMSFs from MD simulations. Further studies 
artificially matured 4-4-20 by directed evolution, resulting in a 
femtomolar-affinity antibody, 4M5.3 (67), but the crystal struc-
tures of 4M5.3 and 4-4-20 were almost identical (the reported 
backbone RMSD is 0.60 Å) and thermodynamic measurements 
suggested that the affinity improvement was achieved primarily 
through the enthalpic interactions with subtle conformational 
changes (68). This observation was contradicted by Fukunishi 
et al. (69), who performed steered MD simulations to analyze the 
effects of the mutations on the flexibility of 4-4-20 and 4M5.3. By 
applying external pulling forces between the antibodies and the 
antigen along a reaction coordinate, they quantified the interac-
tions and showed that, during the simulations, fluctuations of 
the antibody, especially the CDR-H3 loop, and of the antigen 
were indeed larger in 4-4-20 than in the more matured antibody, 
4M5.3 (69). Thus, there is some variation not only in our results, 
but also in the literature as to the effects of affinity maturation 
on 4-4-20.

Another set of well-studied antibodies are the four catalytic 
antibodies: 48G7, 7G12, 28B4, and AZ-28. In fact, the first 
crystallography studies to suggest rigidification of the CDR-H3 
loop as a consequence of affinity maturation were performed 
on 48G7. Wedemayer et  al. observed larger structural rear-
rangements upon antigen binding in the CDR-H3 loop for the 
naïve antibody than the mature antibody (Figures S10 and S11 
in Supplementary Material) (16). Crystallization of the naïve 
unbound, naïve bound, mature unbound, and mature bound 
states for 7G12, 28B4, and AZ-28 revealed similar results 
(18, 19). Additionally, MD simulations of the four catalytic 
antibodies in implicit solvent were used to calculate CDR Cα 
atom B-factors (32). Wong et al. showed a decrease in mature 
CDR-H3 loop B-factors in three cases (7G12, 28B4, and AZ-28), 
whereas no significant difference was observed for 48G7 (see 
Figure 2 in Wong et al.). Furthermore, for 48G7, Li et al. used 
MD simulation to generate structural ensembles and DCM 
analysis to determine flexibility. They found that the mature 
CDR-H3 loop is more rigid than the naïve, according to DCM, 
but used an unusual loop definition that included five additional 
flanking residues (see Figure 1 in Li et al.), making comparison 
challenging (longer loops will be inherently more flexible), and 
they observed increases in the mature CDR-H3 loop RMSFs 
(see Figure 8 in Li et  al.) (33). Our analysis of CDR-H3 loop 
B-factors showed rigidification upon maturation for some of 
the 48G7 and 28B4 crystal structures (Figure 7; Figure S14 in 
Supplementary Material), but not for 7G12 and AZ-28 structures 
(Figures S14 and S15 in Supplementary Material). FIRST-PG 
analysis of FastRelax, RosettaAntibody, and MD ensembles for 
48G7 showed slight to no rigidification (Figure 8). Additionally, 
RMSFs from MD simulations for 48G7 showed higher values for 
the mature loop, contrary to the expectation that it is more rigid. 
Our mixed results for the effects of affinity maturation on 48G7 
are consistent with literature, but there is variation between our 
results and the literature as to the effects of affinity maturation 
on the other catalytic antibodies.

Finally, Schmidt et  al. used X-ray crystallography, MD 
simulations, and thermodynamics measurements to investigate 
how somatic mutations affected the binding mechanism of 
anti-influenza antibodies (22). They identified three mature 
antibodies, their unmutated common ancestor (UCA), and a 
common intermediate, all derived from a subject immunized 
with an influenza vaccine. The affinities of the mature antibodies 
were about 200-fold better than the UCA. MD simulations of 
the UCA and the mature antibodies showed that CDR-H3 loop 
of the UCA could sample more diverse conformations than the 
mature antibodies, whose CDR-H3 loop sampled only conforma-
tions optimal for antigen binding, supporting the hypothesis that 
somatic mutations rigidify antibody structures. In another study 
by the same group (70), further MD simulations were performed 
on the same systems, showing that, although many somatic muta-
tions typically accumulate in broadly neutralizing antibodies dur-
ing maturation, only a handful of mutations substantially stabilize 
CDR-H3 loop and hence enhance the affinity of the antibodies 
for antigen. In our studies, all the results (Figures S12 and S13 
and Table S2 in Supplementary Material) for the anti-influenza 
antibody, except FIRST-PG flexibility calculations for the Rosetta 
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FastRelax ensemble, show rigidification of the CDR-H3 loop as an 
effect of affinity maturation and agree with the detailed analysis 
of Schmidt et al.

For the three antibody families we analyzed in detail, we 
observed mixed effects of affinity maturation on two (catalytic 
antibodies and 4-4-20) and clear rigidification in one (anti-
influenza antibody). For the two with mixed results, we note that 
past work has also shown conflicting results. We interpret these 
results as supportive of our repertoire-wide analysis that affinity 
maturation does not always rigidify the CDR-H3 loop.

Biophysical Properties Underlying 
antibody Binding
Why is antibody CDR-H3 loop rigidification not a consistent 
result of affinity maturation? Consider the process of affinity 
maturation, which selects for antibody–antigen binding and 
against interactions with self or damaged antibodies (i.e., 
when deleterious mutations are introduced by activation-
induced cytidine deaminase) (71). Under these selection 
pressures, what is the benefit of CDR-H3 loop rigidification? 
Loop rigidification can only decrease the protein-entropy cost 
for antibody–antigen binding, having ostensibly no effect on 
enthalpy and solvent entropy of binding, and self-interactions. 
If CDR-H3 loop rigidification is just one of many biophysical 
mechanisms that can be selected for during affinity matura-
tion, then we do not expect to observe it consistently, in line 
with our results.

What are the other possible mechanisms then? Collectively, 
studies have shown that improved antibody affinity and specific-
ity for antigen can be achieved by introducing additional inter-
facial interactions, including hydrogen bonds, salt bridges, and 
van der Waals contacts (16, 72–74); increasing the buried surface 
area, either polar or apolar, depending on the antigen (20); and 
improving interface shape complementarity (20, 75), in addition 
to rigidification of the paratope (22). A detailed review on the 
structural basis of antibody affinity maturation, by Mishra and 
Mariuzza, can be found in this research topic (76).

An interesting consequence of the biological antibody selec-
tion process is the anti-hapten antibody, SPE7 (77). For SPE7, 
mutations leading to multi-specificity or promiscuity were 
beneficial—antibodies are multivalent, so an antibody capable 
of binding multiple antigens with intermediate affinity can gain 
an effective advantage through cooperative binding over an anti-
body capable of binding only one antigen. Crystal structures of 
SPE7 with different antigens and in its apo-state demonstrated 
that SPE7 can assume different conformations. Motivated by 
these observations, Wang et  al. exploited MD simulations to 
investigate the binding mechanisms of SPE7 (78). The MD 
simulations and subsequent analyses suggested that multi-
specific antigen binding is mediated by a combined mechanism 
of conformer selection and induced fit. Similar behavior, where 
the mature antibody is more flexible than the naïve has been 
observed for an antibody that recognizes the tumor-associated 
ganglioside GD2 (79). Such antibodies could not have arisen if 
CDR-H3 loop rigidification were a consistent result of affinity 
maturation.

cOnclUsiOn

We have conducted the largest-scale flexibility study of anti-
body CDR-H3 loops, analyzing 922 crystal structures and 
1,911 homology models. We used B-factors and FIRST-PG to 
assess flexibility. We sought to identify the effects of affinity 
maturation on CDR-H3 loop flexibility, expecting the CDR-H3 
loop to rigidify. We found that there were no differences in the 
CDR-H3 loop B-factor distributions or FIRST-PG DOFs for 
naïve vs. mature antibody crystal structures and in the CDR-
H3 FIRST-PG DOFs for homology models of repertoires of 
naïve and mature antibodies. These findings suggest that there 
is no general difference between naïve and mature antibody 
CDR-H3 loop flexibility in repertoires of naïve and mature 
antibodies. However, we observed rigidification of the CDR-
H3 loop for some, but not all, antibodies when the mature 
antibodies were compared directly to their germline predeces-
sors. So, we conclude that increased rigidity occurs alongside 
other affinity increasing changes, such as improved interfacial 
interactions, increased buried surface area, and improved shape 
complementarity.

Further work must be done to address the issues obser ved 
here, i.e., inconsistent results across the different methods 
are used to measure flexibility. One possible route is to 
explore experimental methods that directly measure protein 
dynamics across several timescales, and use them to study a 
relatively large (more than one or two antibodies) and diverse  
(e.g., from different source organisms or capable of binding 
different antigens) set of antibodies. For example, HDX-MS is 
capable of identifying protein regions with dynamics on time-
scales from milliseconds to days, has been previously used to 
study antibody dynamics, and has been correlated to FIRST-PG 
(29, 41, 80).

Finally, we note the need for more rapid and accurate anti-
body modeling methods. With the advent of high-throughput 
sequencing, there now exits a plethora of antibody sequence 
data, but little structural data. Accurate modeling can overcome 
the lack of high-throughput structure determination method and 
provide crucial structural data. These structures can then be used 
to address scientific questions on a larger scale than before, on the 
scale of the human antibody repertoire.
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