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Tumor necrosis factor α (TNF) is a potent pro-inflammatory cytokine that has deleterious 
effect in some autoimmune diseases, which led to the use of anti-TNF drugs in some 
of these diseases. However, some rare patients treated with these drugs paradoxically 
develop an aggravation of their disease or new onset autoimmunity, revealing an immu-
nosuppressive facet of TNF. A possible mechanism of this observation is the direct and 
positive effect of TNF on regulatory T cells (Tregs) through its binding to the TNF receptor 
type 2 (TNFR2). Indeed, TNF is able to increase expansion, stability, and possibly func-
tion of Tregs via TNFR2. In this review, we discuss the role of TNF in graft-versus-host 
disease as an example of the ambivalence of this cytokine in the pathophysiology of an 
immunopathology, highlighting the therapeutic potential of triggering TNFR2 to boost 
Treg expansion. We also describe new targets in immunotherapy of cancer, emphasizing 
on the putative suppressive effect of TNF in antitumor immunity and of the interest of 
blocking TNFR2 to regulate the Treg compartment.
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TNFR2 ON ReGULATORY T CeLL (Treg): STATe OF THe ART

immunosuppressive Feature of Tumor Necrosis Factor α (TNF)
Tumor necrosis factor α is a pleiotropic cytokine produced by various cell types and involved in a 
wide range of pathological processes [for review, see Ref (1, 2)]. It has been initially considered as 
a pro-inflammatory molecule. However, preclinical and clinical data have shown that it also medi-
ates a paradoxical anti-inflammatory and immunomodulatory effect. Indeed, in murine models of 
type 1 diabetes or lupus nephritis, TNF may have a protective effect (3–7). Moreover, new onset 
or exacerbation of chronic inflammatory and autoimmune diseases has been observed in patients 
treated with anti-TNF therapies (8–14). We will describe below in detail the case of graft-versus-host 
disease (GVHD) as an example of the ambivalent action of TNF in an immunopathology.

Different Possible Mechanisms for the Suppressive Action of TNF
Tumor necrosis factor α binds to two receptors, namely, TNF receptor type 1 (TNFR1) and TNFR2 
(Figure 1). Unlike TNFR1 that has a ubiquitous expression, TNFR2 is expressed by some immune 
cells, preferentially by a fraction of Tregs, some endothelial cells, and cells of the nervous tissue 
(2, 15). Several mechanisms have been proposed to explain the suppressive action of TNF. It was 
shown that chronic stimulation with TNF may inactivate TCR signaling (16) or induce T cell 
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FiGURe 1 | Immunosuppressive action of tumor necrosis factor α (TNF).  
TNF can exert its immunosuppressive activity by intrinsic negative effect on 
conventional T cells (Tconvs) activation or by boosting suppressive cells, such 
as myeloid-derived suppressor cells (MDSC) or regulatory T cells (Tregs). On 
Tconvs, long-term effect of TNF may promote killing, exhaustion, or TCR 
inactivation. On MDSC, TNF may boost their activity by promoting their 
survival, local recruitment, or suppressive function. On Tregs, TNF may 
promote their proliferation, survival, and stability.
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exhaustion (17). Alternatively, the cytokine may kill CD8+ 
T cells, a phenomenon emphasized for autoreactive cells (18). 
Besides these cell-intrinsic mechanisms, TNF may exert its sup-
pressive activity by stimulating cells that have immunosuppres-
sive action, such as myeloid-derived suppressor cells (MDSCs) 
(19, 20). Finally, the pioneer works of Chen and Oppenheim 
suggested that this immunosuppressive effect of TNF could 
be related to a direct activation of Tregs (15, 21). This latter 
mechanism, which is the most studied one and supported by 
data obtained by different groups, is detailed below. Generally, 
the suppressive action of TNF is considered to be mediated 
by its interaction with TNFR2 since TNFR2 signaling appears 
to be protective in various immunopathologies and several of 
the mechanisms described earlier are TNFR2 dependent (22). 
However, whereas TNF/TNFR1 interaction has been mostly 
described to be pro-inflammatory, TNFR1 triggering may also 
inhibit IL-12/IL-23 p40 expression by macrophages (23). This 
mechanism may explain the paradoxical expansion of Th1/
Th17 cells following anti-TNF treatment in patients with auto-
immune diseases who do not respond to this therapy (24, 25).

TNFR2 expression by Tregs
TNFR2 expression is upregulated in activated Tregs and can be 
detected in activated conventional T cells (Tconvs), although at 
lower levels than in activated Tregs. Some other members of the 
TNFR family, such as GITR, OX40, or 4-1BB, are also preferen-
tially expressed by Tregs, and their expression is also upregulated 
upon activation (26). Remarkably, in transcriptomic analyses, 
comparing Tregs and Tconvs of lymphoid tissues, TNFR2, OX40, 
and GITR belong to the Treg signature and their expression cor-
relates with low DNA methylation in Tregs suggesting that their 
transcription is at least partly regulated at the epigenetic level  

(27, 28). These three molecules are expressed early in the Treg 
lineage, since the thymic Treg progenitor stage, and their expres-
sion is essential for Treg development (29). In mice lymphoid 
tissues or in human blood, TNFR2 is expressed by the fraction of 
activated Tregs expressing high levels of other activation markers 
such as CTLA-4 (30). TNFR2 expression remarkably identifies a 
subset of Tregs with the highest suppressive capacity (21, 30, 31).

Stimulating effect of TNF on Tregs via 
TNFR2
The direct effect of TNF on TNFR2-expressing Tregs has been 
studied by Chen and Oppenheim in vitro and has been reviewed 
elsewhere (32). Briefly, TNF increases proliferation, survival, 
stability, expression of CD25, Foxp3, and activation markers, 
as well as suppressive function of mouse Tregs (15, 26, 30, 31). 
Many of these effects of TNF, notably on proliferation, could be 
reproduced with human Tregs (32–35). However, some studies 
claim that TNF inhibits the suppressive activity of human Tregs 
(36–39). The interpretation of some of these studies was com-
plicated by the fact that TNF can render Tconvs more refractory 
to the Treg-mediated suppression. After extensive and careful 
exploration of this question, we could conclude that TNF does 
not inhibit the suppressive activity of human Tregs (35).

Role of TNFR2 on Treg Biology In Vivo
The in vivo role of TNFR2 on Treg biology has been more difficult 
to evaluate because of the absence of a conditional knockout of 
TNFR2 in Tregs. However, there is strong evidence that TNF can 
boost Treg expansion in different inflammatory contexts (40). 
We showed that TNF, probably produced by Tconvs, stimulated 
Treg proliferation during type 1 diabetes (41). Others observed 
a similar phenomenon during septic shock, infectious disease, 
or immune response (15, 42, 43). Also, TNFR2-deficient Tregs 
lost their capacity to control colitis, which was associated with 
reduced survival and stability compared with wild-type control 
Tregs (31, 44). The critical role of TNFR2 expressed by Tregs has 
been also studied in the context of GVHD and cancer and will be 
specifically discussed below. Overall, among all the effects of TNF 
on Treg biology, its capacity to increase proliferation is the most 
convincing since it has been reported in many in vitro and in vivo 
studies performed by different groups using mouse and human 
Tregs. The evidence that this cytokine also increases Treg survival 
and stability is quite convincing and its effect on Treg function 
requires further investigation.

HOPe AND DiSAPPOiNTMeNT  
iN TARGeTiNG TNF iN GvHD

TNF and TNFR1 As Predictive Biomarkers 
in GvHD
Tumor necrosis factor α plays a key role in acute GVHD 
(aGVHD), a systemic and highly inflammatory complication 
that occurs after allogeneic hematopoietic stem cell transplanta-
tion (allo-SCT) (45). TNF indeed plays a major role at differ-
ent steps of this pathological process in which donor T  cells 
recognize as foreign host healthy tissues and eventually cause 
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FiGURe 2 | Hope and disappointment in targeting tumor necrosis factor α (TNF) in graft-versus-host disease (GVHD). Anti-TNF treatments are able to block the 
effect of TNF at different steps of acute GVHD pathophysiology, including initial host APC activation (1), effector T cell recruitment and activation in target tissues (2), 
and direct cell necrosis (3). By inhibiting TNF ligation to TNFR2 expressed by regulatory T cells (Tregs), anti-TNF treatments could also have a deleterious effect on 
these suppressive cells, leading to an increased expansion and activation of alloreactive donor T cells that may be responsible for the disappointing results observed 
with anti-TNF treatments in this setting. Abbreviations: APC, antigen-presenting cell; LPS, lipopolysaccharide.

3

Salomon et al. TNF and Treg in Cancer

Frontiers in Immunology | www.frontiersin.org March 2018 | Volume 9 | Article 444

their destruction (Figure  2). In this line, clinical studies have 
clearly demonstrated a positive correlation between soluble 
TNFR1 levels measured 7 days after transplant and the time to 
onset and severity of aGVHD (46, 47). The increase in TNFR1 
levels between baseline and day 7 was not only an independent 
predictor of aGVHD but also of transplant-related mortality and 
overall survival. Also, a rise in TNF, as measured by protein levels 
in peripheral blood, RNA transcription levels, or flow cytometry, 
precedes the onset of aGVHD, before peaking at the time of its 
development (48–50). Overall, the results of these clinical studies 
have led to the integration of TNFR1 as part of a biomarker panel 
that can discriminate patients with and without aGVHD, and 
predict survival (51).

Anti-TNF Clinical Trials in GvHD
The key role of TNF in aGVHD pathophysiology logically 
led researchers and physicians to try to block this cytokine to 
decrease inflammation and consequently to prevent or treat 
aGVHD. Along this line, most of the clinical trials focused on 
two molecules: infliximab—a monoclonal antibody (mAb) that 
binds TNF—and etanercept—a soluble TNFR that competes 
with cellular receptors for TNF binding. The great hope risen by 
TNF targeting in aGVHD during the first decade of this century 
has unfortunately faded rapidly due to somewhat disappointing 
results of clinical studies. Indeed, clinical trials failed to prove 
any benefit in adding infliximab to standard treatment, both 
for aGVHD prophylaxis and treatment (52, 53). Only small 
retrospective studies have shown promising response rates for 
the treatment of steroid-refractory aGVHD, mostly in case of 
intestinal tract involvement (54–57). However, the benefit of 

infliximab in steroid-refractory aGVHD does not seem to be 
superior to the one observed with other drugs available (58), even 
though prospective randomized trials are lacking. Moreover, 
other studies have shown that responses after infliximab therapy 
are poorly sustained and have raised concern over a heightened 
risk of severe infections (59, 60).

Regarding etanercept, a single center prospective study 
showed a promising response rate when combining etanercept 
with standard high-dose corticosteroids for first-line treatment 
of aGVHD compared with a cohort of contemporaneous case-
matched patients treated with high-dose corticosteroids alone 
(61). However, the higher response rate observed with etanercept 
did not translate into a significantly superior survival at 6 months 
from aGVHD onset. Moreover, a multicenter prospective rand-
omized “pick the winner” study comparing four promising mol-
ecules in combination with corticosteroids for first-line aGVHD 
treatment identified mycophenolate mofetil, and not etanercept, 
as the most promising agent (62). However, mycophenolate 
mofetil failed to prove any benefit in the subsequent multicenter, 
randomized, double-blinded, and placebo-controlled phase 3 
trial evaluating its addition to standard corticosteroids (63). In 
the setting of steroid-refractory aGVHD, two small single center 
studies have shown only a modest effect of etanercept with few 
complete responses (64, 65). As for infliximab, efficacy seemed 
to be higher in case of gut involvement. Finally, a phase 2 study 
involving 100 patients also evaluated etanercept as part of 
aGVHD prophylaxis, in combination with tacrolimus and low-
dose methotrexate (66). Once again, the benefit of etanercept was 
not obvious, as its addition to standard prophylaxis did not affect 
the overall risk of grade 2–4 aGVHD, as compared with a control 
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cohort of 161 previously reported patients. Only a potential 
benefit among non-total-body-irradiated patients was suggested 
in this study. TNFR1 plasma level monitoring can also be used 
to evaluate and/or predict response to treatment with etanercept, 
as a significant reduction in these levels has been observed in 
responding patients (61, 66). To summarize, the current place 
of anti-TNF treatments in the arsenal of aGVHD is only limited 
to a therapeutic option for steroid-refractory disease, mostly in 
case of intestinal tract involvement. A possible explanation of this 
failure is that blocking TNF would also impact on the TNFR2-
dependent Treg boost that is protective in GVHD as suggested 
by experimental data discussed below.

HOPe iN TARGeTiNG TNFR2 (AND Tregs) 
iN GvHD

Regulatory T cells modulate alloreactivity during allo-SCT. Cell 
therapy using Tregs efficiently control GVHD (67, 68) whereas 
Treg deletion can be used to boost the graft-versus-leukemia 
(GVL) effect (69). Thus, some research teams envisioned TNFR2 
as a potential target to act directly on Tregs in this setting and 
modulate alloreactivity with either TNFR2 agonists or antago-
nists. In this regard, three important studies were published 
almost simultaneously in 2016 (70–72).

In a murine model of aGVHD prevention relying on Treg 
infusion, we have clearly shown using three different experimen-
tal approaches that the protective effect mediated by therapeutic 
Tregs was dependent on TNF produced by pathogenic Tconv 
and TNFR2 expressed by Tregs (71). Indeed, when blocking 
the TNF/TNFR2 interaction with an anti-TNFR2 mAb, or 
when using either TNFR2-deficient therapeutic Tregs or TNF-
deficient Tconvs, aGVHD prevention was abolished in all cases, 
highlighting a boost of alloreactivity after TNF/TNFR2 blockade. 
Moreover, Treg and Tconv phenotypes were also modified, with 
the former displaying decreased expression of activation and sup-
pression markers while the latter showed increased production of 
pro-inflammatory cytokines.

The second study was published by Chopra and colleagues, 
who developed a TNFR2 agonist called STAR2 (70). In vitro, 
STAR2 was able to stimulate expansion and activation of Tregs, 
an effect not observed with Tconvs. This selective Treg expansion 
and activation was also triggered in vivo, when mice were treated 
with STAR2 intraperitoneal injections. Most of all, in a murine 
model of aGVHD, pretransplant administration of STAR2 to 
recipient mice protected from aGVHD and significantly increased 
survival. The protective effect of STAR2 was associated with a pre-
served GVL effect and had no deleterious effect on posttransplant 
anti-cytomegalovirus immune reconstitution.

Finally, in the study of Pierini and colleagues, therapeutic 
Tregs were preincubated in vitro with TNF (+IL-2) for a short 
period (72). This TNF priming resulted in a higher expression of 
Foxp3 and activation/suppression markers by Tregs and a higher 
proliferation rate. Most interestingly, when such “TNF-primed 
Tregs” were infused to recipient mice in an aGVHD murine 
model, this resulted in prolonged survival, increased weight 
gain, and improved GVHD clinical score, even at the very low 

1:10 Treg:Tconv ratio. In this study also, the beneficial effect of 
TNF priming did not come with a detrimental loss of the GVL 
effect.

Altogether, the results of these three studies pave the way 
for TNFR2 targeting to modulate alloreactivity after allo-SCT 
(Figure  3A). Additional preclinical data are needed, especially 
regarding the effect of TNFR2 agonists and antagonists on vari-
ous human cell types (Tconvs, Tregs, and cancer cells) in vitro, 
before the start-up of clinical trials evaluating their efficacy and 
safety for prevention and/or treatment of aGVHD and posttrans-
plant relapse of hematologic disease, respectively. Notably, in the 
setting of aGVHD prevention, single center clinical trials have 
shown the high potential of Treg cell therapy (73, 74). However, 
adoptive transfer of such cells is limited by the small proportion of 
Tregs among peripheral blood mononuclear cells (PBMCs) that 
necessitates an ex vivo culture for expansion before infusion to 
the patient. In this regard, the direct administration of a TNFR2 
agonist to the patient to selectively activate and expand in vivo 
Tregs with the highest suppressive capacity holds the promise of 
a more simple, costless, less time consuming, and possibly more 
efficient method.

New CHeCKPOiNT iNHiBiTORS  
iN iMMUNOTHeRAPY OF CANCeRS  
AND ROLe OF Tregs

New Targets in immunotherapy of Cancers
Several clinical trials have clearly demonstrated that modulation 
of the immune response can improve the overall survival of 
advanced stage cancer patients (Figure 4) (75, 76). Indeed, since 
the approval of a-CTLA-4 antibody treatment for metastatic 
melanoma in 2011 (77–79), the field has witnessed the advent 
of numerous therapeutic approaches modulating the immune 
response (80, 81). Blockade of programmed death 1 and its 
major ligand PD-L1 has given impressive and durable clinical 
results (82–84) and fueled clinical evaluation (85) of (i) new 
inhibitory checkpoint targets, such as LAG-3 (86), TIM-3 (87), 
VISTA (88), and TIGIT (89), (ii) agonistic antibodies targeted to 
co-stimulatory receptors, such as 4-1BB (90), GITR (91), CD40 
(92), and OX40 (93), (iii) cell-based therapies using dendritic 
cells, tumor-infiltrating lymphocytes (TILs), and genetically 
engineered T cells (CAR-T cells) (94), (iv) immune modulators 
such as innate ligands (95), and (v) vaccines, notably directed 
to neo-epitopes (94, 96). Along these lines, dozens of antitumor 
immunotherapeutic approaches have been already approved 
by regulatory agencies and thousands of such clinical trials are 
currently ongoing. Nevertheless, only 20–40% of patients benefit 
from these therapies, and some cases of resistance have been 
described (97–99).

Most of the abovementioned treatments are thought to work 
mainly by (re)-activating the cytotoxic arm of the immune 
response (100–102), namely, CD8+ T cells and NK cells; and 
by rescuing them from exhaustion (103, 104). Nevertheless, 
as the antitumoral immune response is also highly curtailed 
by Tregs, overcoming Treg-mediated immunosuppression in 
the tumor microenvironment (105, 106) represents a sound 
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FiGURe 3 | Hope in targeting TNFR2 [and regulatory T cells (Tregs)] in graft-versus-host disease (GVHD). Depending on the clinical situation and the risk for the 
patient to develop or not GVHD, different therapeutic strategies could be envisaged. (A) For patients with elevated risk of GVHD (unrelated donor or one or several 
HLA mismatch), TNFR2 agonist could be administered to recipients before allo-SCT, as shown previously (73), or at time of grafting to boost Tregs. Patients could 
also be treated at time of GVHD occurrence. (B) For patients with elevated risk of relapse (aggressive leukemia, geno-identical allo-SCT), anti-TNFR2 could be 
administered to recipients at time of grafting to inhibit Tregs. In case of tumor relapse, patients could also be treated at time of donor lymphocyte infusion (DLI) to 
block Treg effect.
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alternative for successful cancer immunotherapy. Of note, this 
can be obtained either by depleting Tregs or by inhibiting their 
function in vivo (107).

Can we Treat Cancer by Depleting Tregs?
The first proof of the beneficial effect of Treg depletion on the 
antitumoral response was brought forward by Onizuka et  al. 
(108). They showed that administration of an anti-CD25 anti-
body (mAb; PC61) had prophylactic, although not therapeutic 
efficacy, probably due to the concurrent elimination of CD25-
expressing activated effector lymphocytes. More recently, the 
group of Quezada (109) has shown that anti-CD25 antibody-
mediated Treg depletion can be ineffective due to the high 
expression of the inhibitory Fc receptor FcgRIIb by cells present 
in the tumor microenvironment. Consequently, anti-CD25 
antibodies designed to avoid FcgRIIb binding induced massive 
Treg depletion in the tumor and led to impressive tumor regres-
sion. Also, specific depletion of Tregs in transgenic DEREG 
mice (110), which express a diphtheria toxin receptor under the 
control of the Foxp3 regulatory sequences, resulted in a partial 
regression of established melanoma that correlated with CD8+ 
T cell accumulation in the tumor. Furthermore, mouse studies 
point out that anti-CTLA-4 antibodies mainly act by eliminating 
or inhibiting the tumor-associated Tregs (which highly express 
this molecule) rather than by reinvigorating exhausted T  cells 
(111, 112). Indeed, controversial results have been observed with 

Daclizumab (an anti-CD25 antibody) and with a fusion protein 
between the IL-2 and the diphtheria toxin (Ontak) (113–118). 
Thus, direct proofs of the beneficial effect of Treg depletion in 
human are still missing for solid cancers, and there are to date no 
clinical tools that specifically target this population. This point is 
more advanced in the field of onco-hematology. With the intent 
of preventing or treating post allo-SCT relapse of hematologic 
disease, GVL effect can be activated by donor lymphocyte infu-
sion (DLI). In this setting, the harmful effect of Tregs after DLI 
was suggested by a study in which the authors quantified Tregs 
in DLI products and demonstrated that patients with a durable 
complete remission of their malignancy after DLI had received 
a lower number of Tregs (119). This observation led to the idea 
of depleting Tregs to improve responses to DLIs, an approach 
that was successfully tested in a clinical trial in which a magnetic 
depletion of CD25+ cells was performed on donor PBMCs before 
their infusion to recipients that were considered “alloreactivity 
resistant” (69).

Can we Treat Cancer by Modulating Treg 
Differentiation and expansion?
Besides Treg depletion, tumor-associated Tregs can be therapeu-
tically targeted by the modulation of the tumor microenviron-
ment. Indeed, cancer cells produce metabolites, cytokines, and 
growth factors that can (i) promote Treg accumulation and 
expansion, (ii) enhance Treg function, and even (iii) induce 
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FiGURe 4 | Tumor immunotherapies and regulatory T cells (Tregs). Over the past decades, several clinical trials and animal models have demonstrated that 
therapies acting on the immune response can help to fight against cancer. To control tumoral process, immunotherapies can either activate the effector arm of the 
immune response (1–3) or inhibit the suppressor mechanisms (4–6). The following therapies that potentiate T cell responses have been proposed: tumor-infiltrating 
lymphocytes (TILs) and CAR T cell thrapies (1); agonist and anti-checkpoint antibody treatments (2); other therapies such as vaccines, modulator ligands, and high 
doses of IL-2 (3). On the other hand, cancers promote suppressor mechanisms involving Tregs or myeloid-derived suppressor cell (MDSC), which are able to 
inhibit effector cells. Some treatments are being tested to modulate Treg suppression by preventing their differentiation/expansion (4), Treg depletion (5), or 
starvation (6).
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Treg conversion from conventional CD4+ T cells (96). Among 
them, adenosine—generated upon catabolism of ATP by the 
ectoenzymes CD39 and CD73—and kynurenines—generated 
upon catabolism of tryptophan by the indoleamine 2,3-dioxy-
genase (IDO) enzyme—favor the accumulation, conversion, 
and expansion of Tregs and suppression of effector T cells (120). 
Accordingly, IDO inhibitors and either antagonists of A2A/A2B 
adenosine receptor or anti-CD39 and anti-CD73 antibodies 
significantly decrease the rate of Treg peripheral conversion and 
impair tumor growth (108, 121–124). Furthermore, therapeutic 
agents targeting these molecules in combination with immune 
checkpoint inhibitors show additive or synergistic effects in 
experimental tumor models, and their combination is currently 

under clinical investigation (96, 125). In addition, therapies aim-
ing at inhibition of CD4+ T cell differentiation into Tregs have 
been tested. Among them, the effects of neutralizing antibodies 
or pharmacologic inhibitors of IL-10 and TGF-β have been evalu-
ated in preclinical and clinical settings (126–128). These studies 
have demonstrated both pro- and antitumoral effects, probably 
due to their complex involvement in immune and non-immune 
processes. Moreover, there are not consistent data on the effect 
of these therapies on Tregs. Overall, manipulation of Treg induc-
tion and function through inhibition of metabolic and biochemi-
cal pathways active in the tumor microenvironment represent 
an alternative immunotherapeutic approach. Nevertheless, the 
significant side effects associated with the involvement of these 
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FiGURe 5 | Tumor necrosis factor α (TNF) is a pro-tumoral cytokine. TNF may promote cell transformation and tumor growth by increasing DNA damage and 
mutations, abnormal cell proliferation, and neovascularization. TNF may also favor tumor cell dissemination by increasing matrix metalloproteinase production and 
vascular permeability and leakiness. By recruiting macrophages and neutrophils in the tumor environment that release inflammatory cytokines and chemokines, TNF 
may promote growth of tumors that respond to these inflammatory factors. Finally, by boosting the activity of myeloid-derived suppressor cells (MDSC) and 
regulatory T cells (Treg) in the tumor environment, TNF may indirectly suppress antitumor immunity.
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pathways in different physiological processes must be taken into 
consideration.

Can we Treat Cancer by iL-2 Deprivation 
to Target Tregs?
On top of the abovementioned strategies designed to disarm 
Tregs for therapeutic aims, “cytokine starvation or cytokine 
deviation” represents an alternative promising approach. Namely, 
deprivation of Tregs from IL-2 and TNF—two key cytokines 
essential for their biology—should lead to Treg dysfunction or 
death. Clinical manipulation of IL-2 levels remains complex 
as IL-2 can act both as an immune stimulating or suppressive 
cytokine, depending on the dose. On one hand, low-doses of 
IL-2 favor Treg survival and suppressive function and lead to 
a better control of autoimmune and inflammatory diseases 
(129–131). On the other hand, high-dose IL-2 administration 
boosts effector immunity and, consequently, enhances antiviral 
or antitumoral responses (132, 133). Noteworthy, in the cancer 
setting, low efficacy of high-dose IL-2 administration (134) can 
be explained in part by the unwanted effect of IL-2 on Tregs, 
which constitutively express the high affinity IL-2 receptor 
[composed by three subunits: IL-2-Rα (CD25), IL-2Rβ and 
IL-2Rγ] (135). For efficient antitumoral effect, there is a need 
to activate CD8+ T and NK cells, which also respond to IL-2 
through the intermediate affinity IL-2 receptor, composed of 
IL-2Rβ and IL-2Rγ (136, 137). Interestingly, to prevent the IL-2 
critical signal on Tregs, IL-2/anti-IL-2 antibody complexes, 
formed by an anti-IL-2 antibody acting as a CD25 mimotope 
hampering IL-2 fixation to CD25, were used to redirect IL-2 
action to CD8+ T and NK  cells (138). Of note, mutant IL-2 
proteins have been designed to bear reduced binding affinity to 
CD25 and preserved affinity for IL-2Rβ, endowing them with 
preferential action on NK and CD8+ T cells. As for IL-2, depriv-
ing Tregs from TNF may also impair their function and improve 
antitumoral responses as detailed below. Thus, starvation of 

cytokine, such as IL-2, may emerge as a new firearm among the 
arsenal of immunotherapeutic strategies, which either alone 
or in combination, enrich the picture of immune checkpoint 
inhibitors available to fight cancers.

CAN we TReAT CANCeR BY TNF 
DePRivATiON TO TARGeT Tregs?

TNF is Pro-Tumoral
As suggested by its name, TNF was described initially as a killer 
of cancer cells. We now know that this cytokine plays a complex 
role in cancer and tumor immunity because of its pleiotropic 
effect and the fact that it has two receptors. Actually, TNF is 
even considered mostly as a pro-tumor cytokine. Numerous 
mouse studies have shown that anti-TNF drugs reduced tumor 
growth in different types of cancers. This deleterious effect 
of TNF was further supported in TNF knockout mice that 
display reduced tumor growth (139–146). The individual role 
of TNFR1 and TNFR2 was assessed in knockout mice in some 
of these studies.

TNF/TNFR1 interaction Promotes 
Carcinogenesis and Pro-Tumoral 
inflammation
The pro-tumoral effect of TNF has been explained by differ-
ent mechanisms (Figure  5). TNF may directly promote cell 
transformation by activating oncogenes and inducing DNA 
damage (147). It may stimulate cell proliferation favoring cell 
transformation and neovascularization that is critical in cancer 
development (144, 146, 148). TNF may also promote growth 
of tumors that benefit from inflammatory cytokines and 
chemokines by recruiting neutrophils and macrophages (139, 
141, 145, 149). Also, TNF may favor tumor invasiveness and 
metastasis by stimulating matrix metalloproteinase production 
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and vascular permeability (150). When analyzed, the role of 
TNFR1 rather than TNFR2 was involved in these different 
mechanisms.

TNF/TNFR2 interaction Promotes 
immunosuppression by Boosting MDSCs 
and Tregs
In mouse models of cancers, reduced tumor growth in mice 
treated by anti-TNF drugs or in TNFR2 knockout mice was 
associated with decreased numbers of MDSCs suggesting that 
TNF increases survival, recruitment, or function of MDSCs that 
suppress antitumor immunity (Figure  5) (20, 140, 143, 151). 
In a mouse model of melanoma, TNF injection favored tumor 
metastasis by acting on TNFR2-expressing hematopoietic cells, 
which was associated with an increase of Tregs (142). A similar 
mechanism was observed in models of colorectal cancer and 
hepatocarcinoma, since the tumor-dependent Treg expansion 
was abolished with an anti-TNFR2 mAb. Also, pretreatment of 
Tregs with TNF increased their capacity to suppress antitumor 
immunity after adoptive transfer (152).

In the setting of hematologic tumor relapse after allo-SCT, a 
similar approach using an anti-TNFR2 blocking mAb or TNFR2 
antagonist could be considered to inactivate the deleterious effect 
of Tregs (Figure  3B). These molecules may be administered 
directly to the recipient to prevent or treat hematologic relapse, 
with or without a combined DLI, or even be used to preincubate 
donor PBMCs before infusion, to inactivate Tregs contained in 
the product.

what about the Role of TNF in Cancer 
Patients?
All the above studies were performed in mice. What do we know 
about the role of TNF in cancer in patients? It is well described 
that some cancers, such as colorectal cancer and hepatocarci-
noma, benefit from chronic inflammation. Importantly, recent 
meta-analyses of patients receiving anti-TNF treatment because 
of their autoimmune diseases did not show an increased risk of 
cancer development (153, 154). Also, because of the beneficial 
effect of anti-TNF administration in preclinical mouse models, 
some patients with advanced cancers received TNF blockers. 
In this phase II trial, infliximab and etanercept were well toler-
ated (155, 156). The possible effects of these treatments have 

been studied in  vitro or in  vivo after xeno-transplantation in 
immunodeficient mice. Results indicated that blocking TNF may 
reduce tumor growth, which is associated with reduced tumor 
dissemination, angiogenesis, and infiltration with myeloid cells 
(157–159). Finally, TNF may suppress antitumor immunity by 
boosting Tregs via TNFR2 since high amounts of TNFR2+ Tregs 
were associated with more severe lung and ovarian cancer (160, 
161).

It has to be emphasized that these studies that provide pos-
sible mechanisms to explain the supratumoral effect of TNF were 
only based on correlations or in vitro observations. None of them 
has provided definitive in vivo proofs because of the pleiotropic 
effect of TNF. This would have required, for instance, conditional 
deletion of TNFR in a cell subset. However, based on what is 
known on the effect of TNF on Tregs and of Tregs on antitumoral 
immunity (see above), the possibility that TNF inhibits antitumor 
immunity by boosting Tregs is a very attractive hypothesis that 
may play a major role in some cancer types.

CONCLUSive ReMARKS

Immunotherapy of cancers is a promising land but unfortunately 
only a minority of patients responds to these treatments. Among 
multiple targets that are being tested, TNFR2 is an attractive one. 
Indeed, TNF blockade may have different impacts by limiting 
cell transformation, neovascularization, or pro-tumoral inflam-
mation and may boost antitumor immunity by acting on MDSC 
or Tregs. Recent works suggest that targeting TNFR2-expressing 
Tregs would be a safe and efficient way to stimulate antitumor 
immunity. Future experiments and clinical trials are required to 
validate this new therapy.
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