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People living with human immunodeficiency virus (HIV) infection typically have hypovita-
minosis D, which is linked to a large number of pathologies, including immune disorders 
and infectious diseases. Vitamin D (VitD) is a key regulator of host defense against infec-
tions by activating genes and pathways that enhance innate and adaptive immunity. VitD 
mediates its biological effects by binding to the Vitamin D receptor (VDR), and activating 
and regulating multiple cellular pathways. Single nucleotide polymorphisms in genes 
from those pathways have been associated with protection from HIV-1 infection. High 
levels of VitD and VDR expression are also associated with natural resistance to HIV-1 
infection. Conversely, VitD deficiency is linked to more inflammation and immune activa-
tion, low peripheral blood CD4+ T-cells, faster progression of HIV disease, and shorter 
survival time in HIV-infected patients. VitD supplementation and restoration to normal 
values in HIV-infected patients may improve immunologic recovery during combination 
antiretroviral therapy, reduce levels of inflammation and immune activation, and increase 
immunity against pathogens. Additionally, VitD may protect against the development 
of immune reconstitution inflammatory syndrome events, pulmonary tuberculosis, and 
mortality among HIV-infected patients. In summary, this review suggests that VitD defi-
ciency may contribute to the pathogenesis of HIV infection. Also, VitD supplementation 
seems to reverse some alterations of the immune system, supporting the use of VitD 
supplementation as prophylaxis, especially in individuals with more severe VitD deficiency.

Keywords: vitamin D deficiency, human immunodeficiency virus, inflammation, immune activation, adaptive 
immunity, innate immunity

viTAMin D (vitD) BACKGROUnD

vitD Metabolism
Vitamin D is a fat-soluble steroid synthesized from a cholesterol precursor (7-dehydrocholesterol), 
which has a chemical secosteroid structure (1). The major forms of VitD that are important to 
humans are VitD2 or ergocalciferol, synthesized from ergosterol in plants, and VitD3 or cholecalcif-
erol synthesized naturally from cholesterol in animals (VitD3) (1, 2). They can be supplied to the body 
from the diet and VitD-fortified products, among other sources (1, 2). However, the main source 
of VitD for the human body is its synthesis in the skin. A flowchart describing VitD metabolism is 
represented in Figure 1.

Transport and Mechanism of Action
Transport and mechanism of action are shown in Figure 2A. A small fraction of VitD circulates 
in serum as “free” steroid and enters cells by simple diffusion. The remaining VitD in blood is 
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FiGURe 1 | Schematic of the synthesis of vitamin D (VitD) in the body. Cutaneous 7-dihydrocholesterol is converted into preVitD3 following irradiation by ultraviolet 
light from the sun (2). Next, preVitD3 forms cholecalciferol (VitD3) by spontaneous isomerization. Subsequently, cholecalciferol is hydroxylated to 25-hydroxy-VitD 
(25(OH)D) or calcidiol, mainly in the liver, by the cytochrome P450 hydroxylase enzymes CYP27A1 and CYP2R1. Then, 25(OH)D is transported to the kidneys, 
where it is hydroxylated at the 1 alpha position by the 25-hydroxy-VitD-1 alpha hydroxylase (CYP27B1) to generate 1,25-dihydroxycholecalciferol [1,25 (OH)2D] or 
calcitriol, which is the metabolically active compound (1, 2). Hydroxyvitamin D-24-hydroxylase (CYP24A1) is the enzyme responsible for the multi-step catabolism of 
both 25(OH)D and 1,25 (OH)2D. The main product of 25(OH)D catabolism by CYP24A1 is 24,25-dihydroxycholecalciferol [24,25(OH)2D], which is less active than 
calcitriol and presumably represents a metabolite destined for excretion. Importantly, VitD is not only converted from 25(OH)D to 1,25 (OH)2D in the kidney but it is 
also activated locally by CYP27B1 in many tissues, including the brain, smooth muscle, breast, and prostate as well as cells of the immune system.
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transported bound to VitD-binding protein (DBP) (1, 2), which 
is able to bind the various types of VitD, albeit with different 
affinities. While DBP has a strong affinity for 25(OH)D, it has a 
weak affinity for 1,25(OH)2D. This low affinity together with the 
high affinity of the Vitamin D receptor (VDR) for 1,25(OH)2D 
makes 1,25(OH)2D the only ligand with direct access to the 
transcriptional signal transduction machinery (3). VitD binds 
to VDR in the nucleus, forming a complex with retinoic acid 
X receptor (RXR) and promotes gene transcription of several 
target genes by binding to VitD response elements (VDREs) 
(4). However, VitD can also regulate gene transcription via 
other mechanisms not related to VDREs. Additionally, VitD 
can enter the cell by binding to VDR situated on the cell mem-
brane (VDRm), leading to non-genomics effects (5). The range 
of non-genomic effects is related to the cell-type and matura-
tion status, but includes the modulation of growth factors and 
cytokines through cytosolic signaling pathways and effects 
on the activity of target transcription factors in the nucleus 
(5). Finally, VitD regulates its synthesis by a robust negative 
feedback mechanism (6).

The VitD system plays a global role in many physiopathologi-
cal processes since VDR is expressed in tissues and cells nearly 
throughout the entire organism. The tissues with the highest 
VDR content are the intestine, kidney, parathyroid gland, and 
bone, all of which are associated with maintenance of calcium 
homeostasis (42). Immune cells also express VDR, and they are 
capable of metabolizing circulating 25-hydroxy-VitD (25(OH)D) 
to the active form 1,25-dihydroxycholecalciferol [1,25(OH)2D], 
indicating a regulatory role of VitD in both the innate and adap-
tive immune systems (43, 44). Additionally, the effect of VitD on 
the immune response by binding to VDR is also present in many 
other cells, such as keratinocytes, bronchial/gastrointestinal 
epithelial cells, decidua, and trophoblastic cells (45).

vitD Levels: Measurement and Cut-Off 
Points
The quantification of 25(OH)D in serum or plasma is the fast-
est and most accurate way to measure VitD levels in the body. 
However, this method has some drawbacks due to the hydropho-
bic nature of VitD, its high affinity to DBP, and the low concentra-
tion in blood (46).

The measurement of 25(OH)D levels is performed mainly via 
two different methodologies (46, 47): (a) competitive immuno-
assays, such as competitive protein-binding assays or radioim-
munoassays, which do not differentiate between 25(OH)D2 and 
25(OH)D3 isoforms; and (b) tests based on high-performance 
liquid chromatography and direct detection with liquid chroma-
tography tandem-mass spectrometry (LC-MS/MS), which are 

highly sensitive and allow for the independent quantification of 
25(OH)D2 and 25(OH)D3.

Vitamin D levels are expressed in nanogram per milliliter 
(ng/mL) or nanomol/liter (nmol/L). VitD deficiency in adults 
is considered to be when total 25(OH)D levels are <25 nmol/L 
(10 ng/mL) and inadequate/insufficient if levels are <75 nmol/L 
(30 ng/mL); while >75 nmol/L (30 ng/mL) is considered to be a 
normal healthy level (47, 48). Suboptimal VitD levels have been 
reported in rickets, osteomalacia, and non-skeletal diseases. 
There is wide variability in the prevalence of VitD deficiency 
across different patient groups. Regarding human immunode-
ficiency virus (HIV), conflicting data have been found. Some 
authors have described that there is no evidence of higher VitD 
deficiency in HIV-infected patients compared to non-HIV adults 
(49). However, others have described that VitD deficiency was 
more prevalent in HIV-positive than in HIV-negative individu-
als (50).

There is a lack of standardization regarding reference 
materials and reference methods, which makes it difficult to 
compare results across different laboratories (47, 51). However, 
the accuracy of results as well as particular aspects of 25(OH)
D and 1,25(OH)2D methods (linearity, specificity, and the 
effect of anticoagulants) are being assessed by the large group 
of experts comprising the VitD External Quality Assessment 
Scheme (DEQAS). DEQAS has a close link to the Vitamin D 
Standardization Program, which promotes the standardized 
laboratory measurement of 25(OH)D (52).

Vitamin D deficiency is a major public health problem 
around the world in all age groups, even in countries closer 
to the equator with adequate UV radiation and in industrial-
ized countries where VitD is typically supplemented (53). The 
prevalence of VitD deficiency (<25 nmol/L) is between 5 and 
15%, and hypovitaminosis D (<75 nmol/L) is from 50 to 75% in 
high-income countries (53). This deficiency is directly involved 
in bone pathologies (rickets, osteoporosis, and osteomalacia). 
Additionally, there is growing evidence supporting its associa-
tion with many other “non-classical” disorders not related to the 
bones, such as cardiovascular disease, cancer, multiple sclerosis, 
metabolic disorders, and infectious diseases (54). In fact, VitD 
deficiency is related to an increased incidence and severity of 
Mycobacterium tuberculosis (TB), HIV, and hepatitis C virus 
(HCV) infection (55, 56).

vitD in Hiv inFeCTiOn

vitD Deficiency in Hiv-infected Patients
In a recent review article, Mansueto et al. showed that the preva-
lence of VitD deficiency ranges from 70 to 85% in HIV-infected 
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patients, based on a large number of epidemiological articles that 
reported data of hypovitaminosis D with varying thresholds and 
a broad geolocalization of patients (56). VitD deficiency may be 

due to different reasons in these patients. On the one hand, there 
are many non-HIV-related risk factors for VitD deficiency, such 
as sex (females have higher risk), advanced age, limited sunlight 
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FiGURe 2 | Schematic of transport and mechanism of action of vitamin D (VitD) in the body. (A) A small fraction of VitD circulates in the serum as a “free” steroid, 
having easy access to the intracellular compartment. The remaining VitD is transported in the blood while bound to the vitamin D-binding protein (DBP) (1, 2), which 
seems to critically regulate the bioavailability of VitD (7). This protein-bound fraction (bound to DBP) is actively transported into the cell by megalin or cubulin. 
Calcitriol is considered the main ligand of the vitamin D receptor (VDR) to trigger the effects of VitD, because its affinity is 1,000 times greater than calcidiol (8). When 
VitD binds to VDR in the nucleus of target cells, it forms a complex with the retinoic acid X receptor (RXR), which controls transcriptional activity of target genes. This 
heterodimer binds to VitD response elements (VDREs), a predefined promoter DNA sequence, initiating gene transcription processes, which covers around 5% of 
the human genome and 36 different cell types (4). However, there are genes regulated by VitD that do not contain VDREs (9). These genes may be regulated by 
microRNAs, phosphorylation, or other modifications of proteins, which affect their stability or the activity of proteases that target them (9). Additionally, non-genomic 
effects have been reported when the VDR is situated on the cell membrane (VDRm) complexed to caveolin (5), which immediately activates several intracellular 
pathways, such as mitogen-activated protein kinases, protein kinase C (PKC), protein kinase A, and Ca2+-calmodulin kinase II through the activation of several 
signaling molecules (5). VitD may reduce its synthesis by inhibiting CYP27B1 and increases its degradation by inducing CYP24A1 (6). (B) VitD modulates the 
function of monocytes/macrophages and dendritic cells (DCs) in response to infections. In monocytes/macrophages, 1,25(OH)2D leads to the expression of 
multi-target genes, among which are cathelicidin microbial peptide (10, 11), human β-defensin 4 (DEFB4) (12), and genes involved in autophagy and phagosome 
maturation, all of which are involved in the intracellular destruction of pathogens (7, 13). Furthermore, 1,25(OH)2D enhances the chemotactic and phagocytic 
capacity of macrophages (14). Moreover, VitD also promotes an anti-inflammatory response by inhibiting the maturation of DCs, resulting in a phenotype 
characterized by the downregulation of antigen presenting molecules (MHC-class II), costimulatory molecules (e.g., CD40, CD80, and CD86), and pro-inflammatory 
cytokines (e.g., IL-12 and IL-23); while an anti-inflammatory cytokine (IL-10) and T-cell inhibitory molecule (PD-1) are enhanced (15–22). Therefore, VitD induces 
hypo-responsiveness and allows a shift in the T-cell polarization from the pro-inflammatory Th1 and Th17 responses to a more tolerogenic Th2 response (16, 17, 20, 
22–24), which leads to an altered alloreactive T cell activation (25). (C) VitD induces anti-inflammatory responses through direct effects on T-cells. Specifically, 
1,25(OH)2D inhibits the proliferation of T-cells by blocking mitosis and IL-2 production (26, 27), limits the differentiation of Th1/Th17 cells, which favors Th2 
differentiation (28–32), and induces the generation of IL-10 secretory Treg cells (32–34). Additionally, T-cell proliferation is significantly reduced when DCs are 
exposed to 1,25(OH)2D3 (16). T-cell cytokines also regulate VitD metabolism by monocytes. Thus, the Th1 cytokine IFN-γ induces CYP27B1, leading to the 
conversion of 25(OH)D to 1,25(OH)2D, whereas the Th2 cytokine IL-4 promotes upregulation of CYP24A1 (35). Stimulation of B-cells with 1,25(OH)2D leads to 
apoptosis, impaired plasma cell differentiation, decreased antibody production, inhibition of memory B-cell formation, and increased production of IL-10 (32, 36–41).
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exposure, skin pigmentation, black ethnicity, low levels of dietary 
VitD intake, gastrointestinal absorption disorders, liver and 
kidney diseases, higher body mass index, diabetes mellitus, and 
alcohol consumption (13, 56). These risk factors affect both HIV-
positive and HIV-negative cohorts in a similar manner (57, 58). 
On the other hand, several HIV-related factors may lead to VitD 
deficiency. HIV infection itself leads to chronic inflammation and 
immune activation, and patients with VitD deficiency have been 
found to have increased IL6 and TNFα levels as well as activated 
monocyte phenotypes (59). Additionally, chronic inflammation 
may be responsible for impaired 1α-hydroxylase activity in the 
kidneys, resulting in reduced production of 1,25(OH)2D by block-
ing the PTH-stimulated conversion of 25(OH)D to 1,25(OH)2D 
(56, 60). Additionally, comorbidities, infectious complications, 
and hospitalizations of HIV-infected patients lead to reduced 
sun exposure, malnutrition, and diminished oral intake of VitD-
rich foods (56, 61). In this regard, injection drug users infected 
with HIV suffer a disproportionate burden of VitD deficiency 
since they often have poor nutrition, limited and delayed access 
to health care, and a higher prevalence of comorbidities and 
infectious diseases (62). Finally, protease inhibitors (PIs) and 
non-nucleoside reverse transcriptase inhibitors (NNRTIs) seem 
to have an impact on VitD metabolic pathways. PIs seem to 
reduce 25(OH)D conversion to 1,25(OH)2D and NNRTIs seem 
to increase 25(OH)D catabolism, since low 25(OH)D levels have 
been seen in patients treated with these drugs (56).

vitD Deficiency and Genetic Background
Several single nucleotide polymorphisms (SNPs) in DBP gene 
seem to influence plasma levels of VitD (63, 64). DBP gene vari-
ants associated with reduced 25(OH)D levels were also associated 
with reduced DBP levels. In this setting, it has been hypothesized 
that altered DBP levels could affect the delivery of 1,25(OH)2D 
to target tissues, as well as the removal of VitD metabolites from 
circulation (63). A significant association has been found between 

rs222020 and rs2282679, which are in low linkage disequilibrium 
(LD), and the variation of serum 25(OH)D levels in healthy 
populations (64). Besides, rs222020 G allele, which has been 
associated with VitD deficiency, has been related to unfavorable 
outcome in HIV infection (65). Moreover, many SNPs located in 
genes related to the VitD pathway (DHCR7, CYP2R1, CYP3A4, 
CYP27A1, DBP, LRP2, CUB, CYP27B1, CYP24A1, VDR, and 
RXRA) are linked to a large number of non-skeletal health prob-
lems, especially infectious and autoimmune-related diseases (66). 
For example, the VDR rs1544410 G allele is related to the delayed 
progression of acquired immunedeficiency syndrome (AIDS) 
and increased resistance to HIV infection, which appears to be 
related to an increased response to VitD (67, 68). Additionally, 
VDR haplotypes conformed by rs11568820, rs4516035, 
rs10735810, rs1544410, and rs17878969 polymorphisms are also 
associated with protection against HIV infection. In this context, 
the protective haplotype has been related to a lower efficiency of 
VitD signaling, suggesting that an altered VitD pathway confers 
protection against HIV transmission. The exact mechanism of 
these polymorphisms is unclear. However, it is thought that VDR 
rs1544410 could reduce VDR messenger RNA production and 
stability, rs10735810 T allele might lead to a low transactivation 
capacity of the VDR protein, preventing normal VDR function, 
and VDR promoter rs4516035 could be biologically crucial to the 
immune system (69). Additionally, it is important to take into 
account that unknown functional genetic variants in LD with 
the known ones could be responsible for the regulation of serum 
25(OH)D levels and the disease outcome.

vitD AnD THe iMMUne SYSTeM

vitD, innate immunity, and Hiv infection
Vitamin D is involved in host defense via an autocrine pathway 
in human monocytes and macrophages following stimulation of 
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toll-like receptors (TLRs)2/1, TLR4, the receptor of interferon 
gamma (IFN-γ) or CD40 (70, 71). These receptors initiate a signal-
ing cascade that induces upregulation of the VDR and CYP27B1, 
which leads to the conversion of 25(OH)D to 1,25(OH)2D. 
Binding of 1,25(OH)2D to the VDR leads to the expression of 
multitarget genes, which modulate the function of monocytes/
macrophages during infection (see Figure 2B). Moreover, VitD 
prevents the excessive inflammatory response to infectious 
diseases by inhibiting the maturation of dendritic cells (DCs) 
(7, 13). Note that DCs also express VDR, as well as CYP27A1 
and CYP27B1, thereby generating locally bioactive 1,25(OH)2D 
(72, 73). However, Kundu et al. described that human monocyte-
derived DCs convert 25(OH)D to 1,25(OH)2D significantly less 
than macrophages, likely due to the fact that DCs mostly express 
a truncated CYP27B1 transcript, which may lead to a deficiency 
in VitD activation (74).

High levels of VitD and its receptor seem to be associated 
with a natural resistance to HIV-1 infection. This may stem 
from the upregulation of anti-inflammatory IL-10 and induc-
tion of anti-HIV-1 defensins in mucosa of HIV-1-exposed 
seronegative individuals (75). In addition, the expression of 
VDR is positively correlated with the expression of several anti-
HIV molecules [such as elafin, TRIM5, cathelicidin microbial 
peptide (CAMP), HAD-4, and RNase7], which are linked to 
natural resistance to HIV-1 infection (76). Furthermore, it 
has been described that exogenous 1,25(OH)2D in monocytes 
decreases susceptibility to HIV infection by inhibiting viral 
entry, reducing surface CD4 expression and limiting monocyte 
proliferation (77, 78). Also, it has been demonstrated that TLR8 
agonists inhibit HIV infection through a VitD- and CAMP-
dependent autophagic mechanism in human macrophages 
(79). Furthermore, it has also been shown that VitD triggering 
autophagy in macrophages significantly inhibits replication of 
HIV-1 in a dose-dependent manner (80). However, there are 
other studies with contradictory data, in which VitD was found 
to increase HIV replication in monocytes both from patients 
and cell line clones (81–83).

In contrast, VitD deficiency is associated with greater inflam-
mation (upregulation of CXCL10, IL-6, TNF-α, and D-dimer) 
and activated monocyte phenotypes (CX3CR1+ and CCR2+) 
in HIV-infected patients (55, 59, 84), which have been related 
to tissue dysfunction, comorbidity development, AIDS progres-
sion, and death in HIV-infected people (85, 86). In addition, 
chronic inflammation may also induce hypovitaminosis D (7). 
Thus, inflammatory processes involved in the appearance and 
clinical course of disease may reduce 25(OH)D levels, which 
would explain the low VitD status in a wide range of disorders 
in the general population (54) and in HIV-infected patients (7, 
56). Legeai et al. found that severe VitD deficiency is associated 
with low CD4 counts and increased markers of inflammation in 
combination antiretroviral therapy (cART)-naïve HIV-infected 
patients (87). However, it is important to note that high 25(OH)
D levels have also been recently associated with unexpectedly 
high levels of proinflammatory cytokines in HIV patients on 
cART therapy (88). Additionally, LPS and HIV gp120 upregulate 
the expression of CYP27B1 and CYP24A1 in monocytes and 
macrophages, leading to hypovitaminosis D in HIV-infected 

individuals and a reduction in mRNA expression of VDR and 
the antiviral peptides PI3 and CAMP (89, 90).

The restoration of VitD levels to normal values may minimize 
both ongoing inflammation and the complications of HIV and 
cART associated with chronic inflammation (13). For example, 
VitD supplementation stimulates expression of CAMP and 
improves antibacterial immunity in monocyte cultures and 
plasma from HIV-infected subjects (91, 92). VitD supplementa-
tion decreased markers of monocyte activation in HIV-infected 
patients (93). In vitro, VitD exposure improves the chemotactic 
activity of macrophages in AIDS patients (94). In addition, HIV-
infected patients suffer from bacterial translocation, which is 
an effect of intestinal barrier damage caused by HIV itself (95). 
Recent studies have demonstrated the role of VitD in regulat-
ing host–bacteria interactions, intestinal innate immunity, and 
homeostasis (96). However, the rationale for VitD supplementa-
tion to reduce microbial translocation and systemic inflammation 
in the HIV population is controversial. For instance, no associa-
tion between VitD levels and markers of microbial translocation 
was found in HIV-infected patients (97), while optimal VitD 
plasma levels have been associated with lower bacterial DNA 
translocation in HIV/HCV-coinfected patients (98). These dif-
ferences between studies could be due to a high percentage of 
HIV/HCV-coinfected patients with advanced fibrosis/cirrhosis 
in the latter study, since severity of liver disease has been related 
to VitD deficiency (99) and bacterial translocation (100) in HIV/
HCV-coinfected patients. The lack of consensus guidelines about 
VitD supplementation in HIV infection underlies the need for 
robust studies to critically evaluate the potential benefits of VitD 
supplementation in these patients.

Additionally, VitD has also been related to other infec-
tious diseases in HIV-infected patients. VitD rescues impaired 
TB-mediated TNF release in macrophages of HIV-infected 
patients through an enhanced TLR signaling pathway (101). 
Additionally, high VitD levels have been associated with protec-
tion against the development of immune reconstitution inflam-
matory syndrome (IRIS) events (102) and decreased incidence 
of pulmonary tuberculosis and mortality among HIV-infected 
patients (103). However, a recent meta-analysis shows that there 
are other studies, particularly in HIV/TB-coinfected African 
patients receiving cART, which have not found any association 
between lower VitD levels and IRIS. Besides, they showed that 
VitD deficiency was not associated with an increased risk of TB 
in African HIV-infected patients (104). In regards to other infec-
tious diseases, VitD levels have not been associated with better 
immune response to hepatitis B or pneumococcal vaccination in 
HIV-infected patients (105).

vitD, Adaptive immunity, and Hiv infection
Vitamin D may indirectly affect T-cell responses via modulation 
of the DC phenotype and its stimulatory capacity toward T cells 
(106). Additionally, both naïve and resting memory T-cells 
express VDR at low levels, which suggests that VitD also acts 
directly on these T-cells (28, 107). T-cell activation increases 
the expression of VDR and CYP27B1, which allows 25(OH)D 
to be converted into 1,25(OH)2D to modulate effector functions 
of VitD (108). VitD suppresses the Th1, Th17, and Th2 profile 
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COnCLUSiOn

Vitamin D deficiency may contribute to the pathogenesis of 
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