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Somatic assembly of T  cell receptor and B  cell receptor (BCR) genes produces a 
vast diversity of lymphocyte antigen recognition capacity. The advent of efficient high- 
throughput sequencing of lymphocyte antigen receptor genes has recently generated 
unprecedented opportunities for exploration of adaptive immune responses. With these 
opportunities have come significant challenges in understanding the analysis techniques 
that most accurately reflect underlying biological phenomena. In this regard, sample 
preparation and sequence analysis techniques, which have largely been borrowed and 
adapted from other fields, continue to evolve. Here, we review current methods and 
challenges of library preparation, sequencing and statistical analysis of lymphocyte 
receptor repertoire studies. We discuss the general steps in the process of immune 
repertoire generation including sample preparation, platforms available for sequencing, 
processing of sequencing data, measurable features of the immune repertoire, and the 
statistical tools that can be used for analysis and interpretation of the data. Because 
BCR analysis harbors additional complexities, such as immunoglobulin (Ig) (i.e., anti-
body) gene somatic hypermutation and class switch recombination, the emphasis of this 
review is on Ig/BCR sequence analysis.
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iNTRODUCTiON

Analysis and interpretation of antibody repertoire data require an understanding of the complex 
processes of somatic antigen receptor gene dynamics. Antibodies are composed of a combination of 
two identical heavy (H) and two identical light (L) immunoglobulin (Ig) chains, each with variable 
(V) and constant (C) regions. The IgH V-region is encoded by an exon that is generated somatically 
from assembly of three gene segments, named variable (also abbreviated as V, not to be confused 
with the V segment-containing V exon), diversity (D), and joining (J) gene segments. The IgH locus 
contains many related, but distinct VH, DH, and JH gene segments, which are genomically organized 
in tandem and selected in a semi-random process for somatic V(D)J assembly in bone marrow 
progenitor (pro-) B cells. There are two IgL loci—namely, Igκ and Igλ—which have their own pools 
of tandemly arranged VL and JL gene segments that are assembled by VJ recombination in precursor 
(pre-) B cells after productive IgH assembly (1, 2). Non-templated (N) and palindromic (P) nucleo-
tides are added to inter-segment junctions, further adding to the diversity. V(D)J recombination is 

Abbreviations: Ig, immunoglobulin; BCR, B cell receptor; TCR, T cell receptor; AID, Activation-induced cytidine deaminase; 
CSR, class switch recombination; SHM, somatic hypermutation; GC, germinal center; UMIs, unique molecular identifiers; JSD, 
Jensen–Shannon divergence; KLD, Kullback–Leibler divergence; SK, Storer–Kim (KMS); KMS, Kulinskaya–Morgenthaler–
Staudte; RDI, repertoire dissimilarity index; PCA, principal component analysis.
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dependent upon Rag1 and Rag2, occurs at the IgH locus before 
the IgL loci, and Igκ is usually attempted before Igλ assembly. 
V(D)J recombination usually occurs in an allelically ordered 
way. In this regard, if a V exon assembly attempt does not result 
in a productive reading frame, a subsequent attempt occurs on 
the sister allele. This process results in B  cells monoallelically 
expressing one B  cell receptor (BCR) specificity, although rare 
cells expressing IgH from two alleles, as well as both Igκ and 
Igλ, have been observed as well (3, 4). Although the IgH and IgL 
alleles that assemble non-productively do not produce protein, 
they are transcribed to contribute to the mRNA pool of the cell. 
Non-productive Ig sequences that appear in sequence data sets 
can be identified as such in the data processing stage.

Productive assembly of both IgH and IgL chains results in 
IgM expression on the surface of immature B cells, forming the 
antigen-binding part of the BCR. Mature naïve B  cells express 
both IgM and IgD due to alternative CH splicing of Cµ and Cδ. 
Upon activation, B cells can undergo two other forms of diversi-
fication, both initiated by activation-induced cytidine deaminase 
(AID). DNA cleavage and repair events can result in IgH class 
switch recombination (CSR), where removal of CH region DNA 
positions alternative CHs (e.g., Cγ, Cε, Cα) downstream of the V 
exon. AID is also required for V exon somatic hypermutation 
(SHM), which typically occurs in activated germinal center (GC) 
B cells (5, 6). B cells can further differentiate into BCR-expressing 
memory B cells, or antibody-secreted plasma cells (7).

While the actual BCR diversity is not completely defined, 
estimates of the theoretical diversity enabled by V(D)J recombi-
nation number more than 1013 different potential specificities (8). 
In addition, only 2% of the BCR repertoire is accessible in circula-
tion at any given time (9). The high diversity and the accessibility 
limitations constrain our ability to measure and analyze the 
human immune repertoire. Moreover, what can be learned from 
deep Ig sequencing is highly dependent upon sample preparation 
and statistical analysis utilized. In this context, various methods 
have been described for Ig library preparation and sequencing, 
and there are numerous statistical tools that have been applied 
to data analysis (Figure 1). Here, we will briefly review Ig library 
preparation and sequencing platforms and provide a more in-
depth treatment of available analysis tools.

LiBRARY PRePARATiON

Sample library preparation involves the isolation and amplifica-
tion of the target nucleic acid fragments for sequencing. There 
are two starting materials that can serve as the initial template to 
sequence Ig repertoires—genomic DNA (gDNA) and mRNA. Use 
of gDNA as a template has the advantages of the superior stabil-
ity of DNA over RNA and the fact that the initial Ig gene copy 
number is constant between cells. The use of mRNA as an initial 
template requires an additional step to convert RNA to DNA via 
reverse transcription (RT). Unique Molecular Identifiers (UMIs) 
can be added to cDNA molecules at this step. UMIs are randomly 
generated sequences of specific length (usually between 8 and 
22 nt) designed to mark individual molecules. These help identify 
PCR repeats in the analysis, as all repeats from single mRNA 
will have same UMI. Using mRNA as a template also has the 

advantage of being intronless, enabling the sequencing of both  
V and C regions in the same sequence read fragment. Because the 
number of mRNAs per cell is much higher than DNA copies, the 
copy number per cell overestimates the number of cellular clones. 
Despite these disadvantages, the greater mRNA copy number per 
cell enhances sequence coverage and allows variable and constant 
region information to be captured on the same length of read (10).

A key objective of techniques designed so far in deep sequenc-
ing of Ig repertoires has been to exhaustively amplify the Ig rep-
ertoire with minimum error and bias. Primer selection, especially 
at the 5′ V-region end, is a crucial step to this process as there 
are many dozens of V gene segments. Some approaches use a 
mixture of degenerate VH family primers (frame work region 1) 
as forward primers and a mix of J segment or C region reverse 
primers. Using a mixture of primers may lead to biases in prim-
ing and amplification. Furthermore, SHM-mediated sequence 
differences may also contribute to unwanted bias (11). The use of 
synthetic repertoires as control templates to identify and remove 
potential bias at the analysis stages have been used as an approach 
to address the problem of primer bias for T cell receptor (TCR) 
sequencing (12). Another way to reduce primer bias is with the 
use of 5′ adaptor sequences. This can be done by attaching an 
oligonucleotide to the 5′ of Ig mRNA molecules by RNA ligation, 
or by 5′ rapid amplification of cDNA ends (5′ RACE). This ena-
bles the attachment of a known sequence to the 5′ end, for use in 
subsequent PCR amplification steps (13). This approach requires 
only one set of gene-specific primers targeting the less variable J 
or C region sequences at the 3′ end. However, 5′ RACE is less able 
to represent the richness of the sample due to lower efficiency of 
sequence capture compared to direct priming. The bait capture 
method uses polyA and part of the sequence of interest attached to 
streptavidin magnetic beads to isolate the Ig mRNA. The beads are 
then washed, and the hybridized fragments eluted for sequencing 
(10). A more recent method called linear amplification-mediated 
high-throughput genome-wide translocation sequencing (LAM-
HTGTS) uses translocation specific sequence at the 3′ end of J 
region to capture and isolate the complete V(D)J sequence from 
the gDNA after DNA fragmentation via sonication (14). Random 
fragmentation used with LAM-HTGTS risks losing rare clones. 
Direct comparison of multiplex PCR, RACE, and bait capture 
methods for Ig repertoire sequencing showed that these methods 
were generally concurrent (10).

Errors may be introduced into the sequence at several steps, 
including RT, PCR amplification, or during sequencing due to 
incorrect base call (15, 16). To control for errors that occur during 
PCR amplification, the UMI can be used to create a consensus 
sequence of PCR repeats (Figure 2A). A number of UMI-based 
methods have been devised to improve sequence quality 
(Figures  2B–D) or identify PCR bias (Figure  2E)—discussed 
here.

The Molecular Identifier Group based Error Correction 
(MIGEC) groups similar sequences with same UMI and uses 
a set of rules to predict errors (17). One rule is to identify a 
consensus sequence based on the most common variant within 
a UMI group. However, if the porportions of mismatches are 
such to evade consensus, the sequence is dropped. A problem 
with this is that an early error during library preparation could 
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FigURe 1 | Complete workflow for high-throughput sequencing and analysis of the immunoglobulin repertoire. Text within orange outlines the complications at each 
step.
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provide a consensus that does not reflect the original template. 
To solve this, discarded sequences are assessed for PCR error hot 
spot locations. Sequences with changes within identified error 
hotspots can then be reevaluated (Figure 2A).

Duplex Sequencing adds UMI to both ends of the sequence 
and then sequences both strands separately (18). A mismatch has 
to be present in both the strands to be considered a true muta-
tion (Figure 2B). Another method uses paired-end sequencing 
wherein both the forward and reverse strands are sequenced after 
adding a single UMI (19). Errors are removed for both the strands 
separately and they are overlapped to get the complete sequence 
(Figure 2C).

Another system uses a sequence target for Tn5 transposase 
attached to the forward or reverse primer. This allows random 
insertion into the UMI-containing sequence library (20). The 
complete sequence and the Tn transposase-foreshortened 
sequences can be overlapped to get the consensus sequence with 
less chances of error (Figure  2D). In molecular amplification 
fingerprinting (MAF), a reverse UMI (RUMI) is added at the RT 
step and a forward UMI (FUMI) is added with each PCR cycle 
keeping a track of the number of PCR cycles and PCR bias toward 
different sequences (Figure 2E) (21). The utility of each of these 
methods depends on the question under study. The most com-
monly applied methods of the five are MIGEC and paired-end 
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FigURe 2 | Use of unique molecular identifiers (UMIs). Each strand is an mRNA or a cDNA and smaller bars are UMIs. Same color of the strand and bar represents 
copies of same mRNA and UMI, respectively. (A) Molecular Identifier Group based Error Correction (MIGEC) (17). Among all sequences with same UMI, only few 
have error (late PCR error) (red), the error is identified and removed; if near 50% of the sequences have the same error, the sequence is dropped; an early error 
(present in most sequences) would be unidentifiable but it is dropped if it falls on a PCR hotspot. (B) Duplex Sequencing (18). UMIs are added to both ends of the 
sequence and both strands are sequenced. If a mutation (green, black, or cyan) is present in only one of the two stands, it is an error. (C) Paired-end sequencing is 
done after UMI tagging. Error corrections are done for individual reads and then they are merged to get the full good quality sequence (19). (D) Tn5-enabled 
molecular identifier-guided amplicon sequencing (TMIseq) (20). The PCR amplified libraries are tagmented using Tn5 transposase where either forward (green) or 
reverse (pink) primer is inserted. Thus, only part of the sequence containing both forward and reverse primers gets amplified for sequencing. Both, the smaller 
libraries and the complete sequence library are sequenced and used to generate a consensus error-free sequence. (e) Molecular amplification fingerprinting (MAF) 
(21). A reverse UMI (RUMI) is added at the reverse transcription (RT) step and a forward UMI (FUMI) is added at each subsequent PCR amplification step. FUMIs 
keep track of PCR bias for different sequences. Some sequences are over amplified while some may be lost in the process.
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FigURe 3 | Impact of erroneous barcodes (25). Each strand represents a 
mRNA. The bar at the end represents a unique molecular identifier (UMI). 
Same color of the strand and bar represents copies of same mRNA and UMI, 
respectively. The sequence of the UMI is mentioned within each strand.
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sequencing. These are the simplest in terms of sequencing and 
preprocessing steps. If a more stringent analysis of SHM has to be 
done, Duplex Sequencing and Tn5 transposase method would be 
expected to offer increased accuracy. In case of MAF, addition of 
a FUMI at each PCR step would lead to gradual increase in length 
accompanied by reduced quality at the RUMI sequence site but 
can be used to understand PCR bias and loss due to random 
subsampling during sequencing.

Unique molecular identifier length affects the analysis results. 
Shorter UMIs lead to more non-unique attachment, where the 
same UMI sequence gets attached to different template mol-
ecules. Longer UMIs increase the risk of primer dimer forma-
tion and have higher chances of error during amplification and 
sequencing, which may lead to inflation, misinterpretation, and/
or mismatch (22, 23). A UMI length of 8–12 nucleotides is most 
recommended. Assumptions usually held in the analysis are that 
UMIs are uniformly represented and all templates uniformly 
tagged. In practice, however, different target templates have been 
observed to attach to identical UMI sequences (24). Even with 
different methods being applied to overcome these issues (23, 25), 
the impact of erroneous barcodes (Figure 3) may not be trivial 
(26). We favor an approach of identification of PCR repeats by 
using both UMI and sequence information (with 1–2 nucleotide 
error).

PCR/primer bias for certain templates can complicate assign-
ment of repeat sequences (27). In addition, different B-lineage cell 
populations can produce widely different amounts of Ig mRNA 
molecules per cell. In this regard, an activated B cell or plasma 
cell has a much higher copy number of mRNA than a naïve or 
memory B cell (28). Assigning identical Ig sequences to clonal 
expansion versus copies per cell typically requires single-cell 
sequencing. In addition, IgH and IgL can be paired accurately in 
single-cell sequencing. A growing number of single-cell sequenc-
ing techniques for Ig and TCR repertoire analysis are becoming 

available. These usually entail an initial barcoding step before 
amplification and sequencing. Summaries of high-throughput 
single-cell sequencing approaches are shown in the Figure 4.

SeQUeNCiNg PLATFORMS

A number of sequencing platforms are available that differ in 
features like read length or the coverage of Ig gene, sequencing 
depth, cost, and run time (Table 1). The PacBio platform, due to 
its long read length, enables the amplification of H and L chains 
physically linked together, but is limited due to high error rate, 
high cost, and low reads per run. Illumina HiSeq offers the high-
est read depth, but at a cost of read length. Table 1 illustrates the 
most commonly used platforms along with some of the important 
features. Larger read number provides higher coverage of a 
particular sequence giving greater chances of error correction in 
sequence. Some platforms also provide the feature of paired-end 
sequencing, in which sequencing is done from both ends of the 
DNA amplicon, and the final sequence is obtained by merging 
the two paired-end reads. This ensures superior read quality com-
pared to single end sequencing. Illumina and Ion torrent provide 
paired-end sequencing. Choice of sequencing platform depends 
upon the research goals and experimental questions.

iNiTiAL PROCeSSiNg AND ANNOTATiON

The output for each of these platforms is a binary file format: 
standard flowgram format (.sff—Roche’s 454 GS FLX), base call 
(.bcl—illumina), and Binary Alignment Map (BAM—PacBio). 
Ion torrent gives output in three formats—BAM, FASTQ, or 
VCF. Each of these has to be converted to Fasta or Fastq format 
either by running scripts that are part of the software platform 
(sffinfo-Roche; bcl2fastq-Illumina) or by using one of the many 
freely available scripts (bamtoFastq, sff_extract). Fasta and Fastq 
are the two common input formats for most analysis programs. 
Fasta format consists of a list of sequences with a unique identi-
fication tag preceding each sequence. Fastq files (34) also include 
the information regarding the quality of each residue in the 
sequence in the form of a Phred score (Q score). The Q score gives 
an estimated probability of error for each nucleotide position. 
They are encoded in the form of ASCII characters, which can be 
transformed into integers.

Once the data are available from the sequencing reaction, ini-
tial processing (often termed “preprocessing”) of the sequences is 
necessary prior to annotation. Preprocessing includes filtering out 
low quality sequences, sequence trimming to remove continuous 
low quality nucleotides, merging paired-end sequences and, if 
possible, identifying and filtering out PCR repeats. The quality 
of the output sequences from various platforms is such that with 
increase in length from the 5′ toward the 3′ end, the quality of 
residues deteriorates. With Ig sequences, it is important to identify 
the mutations from sequencing errors. Thus, low quality residues, 
usually those with a Q score <30, at the 3′ end are excluded. In 
the case of paired-end sequencing, regions of sequence that are 
included in both reads (i.e., overlapping regions) can be used to 
form a consensus based on Q scores derived from both reads. 
Sequences with very long stretches of poor quality and paired-end 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


TABLe 1 | Common platforms used for immunoglobulin repertoire sequencing.

Platforms Roche’s 454 gS FLX illumina MiSeq illumina HiSeq PacBio ion torrent

Mechanism Pyrosequencing Dye terminator 
sequencing

Synthesis (fluoresces attached to nt is 
excited and detected after each run)

Synthesis (florescence tag attached to 
phosphate chain)

Synthesis 
(detect H+)

Read length 700 bp 300 × 2 250 × 2 860–1,100 >100
Run time 18–20 h 26 h 8 days 0.5–2 h 2 h
Reads/run 1M 3.5M 2B 0.01M 60–80M
Error rate (%) 1 ~0.1 ~0.1 ~13 ~1
Type of errors Indel Substitution Substitution Indel Indel
Cost/mbp ($) 12.40 0.74 0.10 11–180 <7.5
Region of antibody 
covered

FWR1-CR FWR1-CR FWR1-CR Amplification of linked H and L chains FWR3 to CR

FigURe 4 | Single cells bulk sequencing: (A) Single cells are sorted in 96-well plates, and VH and VL are tagged with cell specific unique molecular identifier (UMI). 
Sequences from all cells are pooled together and sequenced (29). (B) Single cells are isolated in polydimethylsiloxane slides (1.7 × 105 wells/slide-56-μm diameter 
wells); poly(dT) microbeads are added; wells are sealed with dialysis membrane and equilibrated with lysis buffer; VH and VL mRNAs get attached to poly(dT) beads; 
beads are emulsified for cDNA synthesis; linkage PCR generates paired VH:VL products which are pooled together and sequenced (30). (C) Single cells and 
poly(dT) magnetic beads are trapped into emulsions along with lysis buffer. VH and VL mRNAs annealed to poly(dT) beads and sequenced as in (B) (31). (D) Single 
cells are sorted in 384-well PCR plates. Instead of unique UMI for each cell, each row and column has unique UMIs attached to respective forward and reverse 
primers, which help trace back to the wells (32). The DNA is pooled and sequenced. (e) Microfluidic device joins two aqueous flows into distinct droplets: one with 
cells and other with barcoded primer beads in lysis buffer. The cell is lysed and its mRNAs hybridizes to the primers on the microparticle surface. The microparticles 
are collected, washed, and the mRNAs are reverse transcribed, each with unique UMI from the beads. They are pooled and bulk sequenced together (33).
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sequences with no overlapping regions are excluded. High-quality 
filtered and merged sequences can be grouped based on common 
UMIs (if available from the library preparation), as discussed 
above, to filter out PCR repeats. In addition, appropriate steps 
have to be taken to remove sequences with barcode error and 
remove chimeric reads (25).

Most analysis methods use alignment of the sequence with the 
germline to assign the respective V, D, and J segments. IMGT 
database (35) is the most extensively used database for germline 
Ig sequences. IMGT (36) and IgBlast (37) are the most common 
annotation software packages, and both use the IMGT database 
to align sequences. Though alignment with germline seems 

straightforward, the presence of SHM can make identification 
problematic as some V gene segments are very homologous and 
differentiating between allelic differences in the germline and 
somatically generated mutations may not be straight forward. 
Also, Ds and Js are small and have insertions and deletions as 
a result of V(D)J recombination. In many cases, the D segment 
remains unidentified due to its small size or several can multim-
erized in tandem (38). Accuracy of gene segment identification 
depends upon completeness of the reference germline databases. 
Humans and mice have the most well defined Ig gene loci, but a 
map of all allelic variants is not complete (39). There have been 
efforts to address this with algorithms—such as TIgGER (40), 
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IgDiscover (39), IMPre (41), and a more recent allele prediction 
and validation tool (42)—that can be used to identify germline 
alleles for individual repertoires. Proper identification of non-
template additions and deletions depends to a large degree on 
the accuracy and completeness of the reference database used.

Apart from IMGT and IgBlast, other software programs are 
available for analysis of the BCR and TCR repertoire data. A num-
ber of them also include preprocessing, annotation, and statistical 
analyses all in a single pipeline. Some of these programs along 
with their features are listed in Table 2.

DeSCRiBABLe FeATUReS OF B CeLL 
RePeRTOiReS

The expansive capacity of the BCR repertoire makes the prob-
ability of finding the same sequence within two individuals and 
even within two tissues of same organism extremely low, and this 
limits direct comparisons of specific sequences between indi-
viduals. However, it has recently been shown that human TCR 
repertoires can be grouped into functionally related categories 
that can be shared between individuals (73). The same algorithm, 
called GLIPH (Grouping of Lymphocyte Interactions by Paratope 
Hotspots), could also be used to group functional BCR repertoire 
but would have to include the additional complexity due to SHM. 
A number of other features have been used to quantitatively com-
pare antigen receptor repertoires between individuals, groups, 
or experimental conditions. Below, we provide a brief survey of 
measurable repertoire features and some representative studies 
that have assessed them in the context of a variety of lines of 
inquiry.

v(D)J Segment Usage Frequencies
An Ig repertoire can be described in terms of the frequencies 
with which it uses the gene segments that make up the V exon, 
particularly the V segment, as it is the longest and most diverse. V 
gene segment frequencies, or VJ combinations frequencies, have 
been used to compare stages of immune responses, for example, 
to describe differences in B cell repertoires of avian flu (H7N9) 
patients at the time of infection and during recovery, where 
recovery was shown to utilize more diverse VJ combination 
frequencies (74). V gene usage frequency comparisons have also 
been used to describe age-related changes (75) as well as general 
population level descriptions (39, 40, 76).

Complimentary Determining Region 3 
(CDR3) Properties
The CDR3 is the most variable region of an antibody and can be 
used to define clonal lineages. The CDR3 length and amino acid 
properties have been used to characterize a functional repertoire. 
The advantages and methods of CDR3 comparisons are reviewed 
elsewhere (77). There are many studies comparing CDR3 features 
in repertoire analysis. Comparisons of CDR3 lengths between cell 
groups expressing different IgH isotypes showed that IgM had 
longer CDR3s compared to all other isotypes examined (11), sug-
gesting a potentially interesting link between a general V-region 

feature and IgH isotype. An analysis of BCR repertoire of naïve, 
IgM memory, and class switched memory B  cells suggest that 
memory B cells may have shorter CDR3s with more positively 
charged amino acids. It was also found that IgM memory cells 
may have lower hydrophobic and aliphatic indexes compared to 
memory cells of other IgH isotypes (78). Antigen-experienced 
B cell repertoires appear to have a more exposed CDR3 region 
rich in charge (79). Antigen exposure also appears to be associ-
ated with a decrease in CDR3 length (80). IgM and IgA CDR3s 
tend to be longer with age (81). Systemic lupus erythematosus 
(SLE) patients were reported to have shorter CDR3 with higher 
arginine content (82).

Complimentary determining region 3 analysis also helped 
identify the “public” sequences. Public CDR3 (or public Ig) is 
a term used when similar or identical sequences are found in 
different individuals. They are usually reported in individuals 
who had been exposed to the same pathogen, like Haemophilus 
influenzae type B, tetanus toxoid, and influenza (83, 84). Public 
sequences are more common for IgL as compared to IgH (79). 
The public BCRs have also been observed in persistent diseases 
like autoimmunity and cancer (85). Understanding emergence 
of public CDR3s could help understand the process of affinity 
maturation and antibody development (86).

Mutation Analysis
Diversity due to somatic mutation is also a feature of the Ig 
repertoire. This includes insertions and deletions during V(D)J 
recombination and SHM. During SHM, AID targets at DGYW 
motifs (D = A/G/T, Y = C/T, W = A/T) (87, 88), which are also 
referred to as mutational hotspots. In general, mutations are ana-
lyzed as degree of divergence from germline sequences and give 
insight into the biological process of SHM and affinity matura-
tion. Any nucleotide mutation can result in a different amino acid 
encoded at that position (replacement) or can result in no change 
(silent). Analysis of replacement versus silent mutation status at 
nucleotide positions can have implications for studies examining 
positions important for antibody selection (53, 89).

Somatic hypermutation analysis in twins has shown that 
genetic factors play a role in determining mutation frequency 
(90). Similar analysis showed that the level of SHM is reduced 
in older individuals (81). AID-mediated mutations tend to occur 
unequally across the V exon. CDRs have more hotspots and tend 
to mutate more than FWRs. Also, mutation selection pressure is 
different for the two regions. Mutations in the FWRs are more 
likely to be selected against, as these regions are important for 
structural fitness (91). Insertions and deletions occur during 
SHM, adding to the structural plasticity of the antibodies, but are 
relatively rarely found as they are more likely than mutations to 
cause negative selection from structural instability (92).

Somatic hypermutation studies have been employed to 
decipher why Ig loci are permissive for AID-mediated mutation 
compared to off target, non-Ig loci. This remains one of the most 
elusive questions in B cell biology. Studies examining a particular 
V gene segment in which certain AID-target hot spots were 
experimentally removed in a mutating human B  cell line sug-
gested that local sequence context may influence SHM of other 
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TABLe 2 | Softwares available for sequence error correction, annotation, and analysis of immunoglobulin (Ig) repertoire.

Name Platform/
availability

input format Maximum 
sequence limit

Features Reference

IMGT/V-QUEST Online Fasta 50 V(D)J Annotation, junction analysis; mutation; amino acid 
statistics; comparisons between two repertoires

(36, 43, 44)
IMGT/HighV-Quest Online Fasta 150,000 (45–48)

JOINSOLVER Online/standalone Fasta – Annotation; complimentary determining region 3 (CDR3); 
mutation; insertion deletion in human only

(49)

VDJSolver Online Fasta 500 Use hidden Markov model (HMM) or maximum likelihood to 
prediction V(D)J recombination

(50)

iHMMune-align Online/standalone Fasta HMM to model the processes involved in human IGH gene 
rearrangement and maturation

(51)

VDJFasta Standalone Fasta – HMM-based CDR identification; translation and alignment; 
probabilistic germline classification

(52)

BASELINe Online/standalone Fasta – Quantifying selection based on somatic hypermutation 
(SHM) patterns

(53)

IgAT Standalone 
(windows)

IMGT output files 150,000 Gene segments usage; CDR3; antigen selection based  
on SHM; the hydrophobicity of antigen-binding sites; 
structural properties of the CDR-H3 loop using Shirai’s  
H3-rules

(54)

IgBlast Online/standalone Fasta Online-1,000/
SA-none

V(D)J assignment; CDR3 identification; mutation; can use 
custom database in SA

(37)

pRESTO Standalone Fastq/Fasta None Merge; filter; error correction (with/without UMIs); annotation (55)

Vidjil Online/standalone Fastq/Fasta None Extract V(D)J junctions; clonality (56, 57)

The antibody mining toolbox Standalone Fastq None Analysis based on CDR3 as sequence identifiers (58)

MIGEC Standalone (Unix) Fastq None Error correction and sequence assembly (17)

IgRepertoireConstructor Standalone Fastq None Merge; filter; error correction (with/without UMIs); validation 
using mass spec; clonality; diversity

(59)

MiXCR Standalone Fastq None Merge; filter; PCR error correction; annotation; Gene 
segment usage; clonality; mutation

(60)

IMonitor Standalone Fastq/Fasta None Merge; filter; V(D)J assignment; gene usage frequency; 
CDR3; mutation; insertion and deletion

(61)

IgSCUEAL Standalone Fasta None V J annotation based on phylogeny; gene usage frequency; 
CDR3 length

(62)

Change-O Standalone IMGT/IgBlast 
Result

None Gene usage; clonality; CDR3; diversity; phylogenetic; 
mutation; selection pressure; novel germline prediction

(63)

TIgGER Standalone Fasta – Predicts germline alleles (40)

LymAnalyzer Standalone Fastq None V(D)J identification; CDR3; diversity; mutation; polymorphism 
analysis

(64)

sciReptor Standalone SFF/Fastq/Fasta 2,500 Single-cell analysis, annotation; maintains regional database; 
gene segment usage; clustering; mutation

(65)

repgenHMM Standalone Fasta None Predicts scenarios of V(D)J recombination (66)

bcRep Standalone (R) IMGT output files – Gene usage frequency; clonality; diversity; mutations; 
repertoire comparison; visualization

(67)

IgDiscover Standalone Fastq – Identification of existing and novel germline V genes (39)

Recon Standalone Frequency table 
(txt)

– Diversity (68)

IMPre Standalone Fasta – Predicts germline genes and alleles (41)

ARResT/Interrogate Standalone IMGT output files – Calculation of statistics; visualization (69)

Antigen Receptor Galaxy Online Fastq/Fasta None Demultiplex; annotation using IMGT/High V-Quest; V(D)J 
usage; SHM and CSR; Ag selection; clonality

(70)

IGoR Standalone Fasta None Calculates V(D)J recombination and mutation probabilities (71)

ClonoCalc and ClonoPlot Standalone Fastq – GUI; Demultiplex; merge and annotate using MiXCR; 
analysis and plots using tcR package in R

(72)
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regions within the V exon (93). Local sequence context was also 
shown to influence AID targeting on a passenger allele system, 
wherein a non-productive test allele was paired with a produc-
tive IgH knock-in to remove the effects of BCR-mediated cellular 
selection (88). DGYW motifs within CDR sequence regions 
were in general targeted more than DGYW motifs in framework 
regions (88). When the Ig passenger sequence was replaced with a 
non-Ig sequence, it was also targeted by AID, suggesting that the 
general location of the Ig V-region in the context of the IgH locus 
was an important feature of accessibility to SHM (88). This same 
passenger allele system was used to uncover sequence-intrinsic 
SHM-targeting rates of nucleotides across substrates represent-
ing maturation stages of an anti-HIV-1 broadly neutralizing 
antibody (94).

isotype Analysis
Immunoglobulin repertoire analysis can provide insights into 
the biology of IgH isotypes. Each isotype has distinct biological 
functions governed by the CH region domain. The sequences in 
a repertoire can be categorized into their respective isotypes if 
the experimental design accommodated for C region sequence 
in the library. Isotype analysis has included the categorization of 
Ig repertoire features, functions, or conditions to Isotype groups. 
As discussed above, sequencing data have shown that IgM is the 
least mutated and features the longest CDR3 in general compared 
to the other isotypes (11). Among memory cells, IgM has lower 
hydrophobic and aliphatic index compared to others (78), and 
SHM frequency has been reported to be higher in switched 
isotypes compared to IgM and IgD and varies between different 
subclasses of the same isotype (11). Isotype and SHM analysis has 
also been a key part of the concept of sequential switching. CH 
regions for the various IgH isotypes are arranged in tandem along 
the IgH locus. Sequential switching occurs when CSR occurs 
first to Cμ-proximal CH regions (e.g., to produce IgG3, IgG1, or 
IgA1), and then from these, to distally located isotypes (e.g., to 
IgG2, IgG4, or IgA2) (95). Studies have indicated that direct and 
indirect CSR can occur to distal isotypes (96, 97).

Clonal Relationship and Lineage Analysis
Lineage analysis and identification of clonal relationships 
between antibodies collected from an infected individual or 
during course of infection over time can track the evolutionary 
steps in the development of functional antibodies. This has been 
used in following HIV-1 bnAb VRC01 producing lineage for 
15 years using peripheral B cell sampling for the rate of matura-
tion and diversification in a single HIV-1-infected patient (98). A 
high substitution rate of 2 per 100 nucleotides per year resulted 
in extreme diversification in the context of chronic infection. 
Another study involving HIV-1 bnAbs found the intermediate 
antibodies to have reduced autoreactivity (99). PGT121-134 
(100), PGT135-137 (16), and CH103 (101) are other bnAbs 
against HIV whose lineages have been studied in detail. Ig lineage 
and clone analysis has shown to have clinical relevance in the 
setting of lymphoma diagnostics. In this regard, lineage analysis 
at the time of diagnosis and relapse has revealed that B cells that 
reemerge are generally clonally related to the original cancer 
causing BCR (102, 103).

Network Based Analysis
A network is made from a group of entities (or nodes) connected 
to each other by links or edges if they share selected features. 
A B cell network may be based on mature antibody sequences 
clustered around the germline ancestor sequence. In this regard, 
all the nodes in a cluster would be the sequences identified to have 
come from that ancestor sequence, with edges connecting the 
nearest previous ancestor (Figures 5A,B). A healthy individual 
should have a very uniform network with each cluster of similar 
size and complexity (Figure 5C). An individual recently infected 
with a pathogen would have few expanded clusters correspond-
ing to various versions of pathogen-reactive clones (Figure 5D). 
A uniformly distributed network versus a deformed network with 
few overly expanded VH segments can identify chronic lympho-
cytic leukemia patients (104) (Figure  5E). A simpler network 
would be based on just the CDR3 region wherein homologous 
CDR3s are clustered together. Hepatitis B-infected patients 
harbor specific CDR3 sequences that may serve as identifica-
tion signatures (105). General network properties—including 
reproducibility, robustness, and redundancy, have been studied 
for healthy Ig networks and can be evaluated vis-a-vis diseased Ig 
networks (106). The iGraph package in R can be used for network 
construction and visualization (107).

Paired Heavy and Light-Chain Analysis
Single-cell high-throughput sequencing of IgH and IgL together 
has been an important advance. With knowledge of IgH/IgL 
pairing, frequencies of paired usage of different VH and VL gene 
families can be determined together and a more authentic evalu-
ation of antibody specificity can be achieved—as has been done 
in the evaluation of vaccine responses (30, 108, 109) as well as 
in autoimmune and inflammatory diseases (110). A comparison 
of single-cell sequences from naïve and antigen-experienced Ig 
repertoires uncovered several features related to how IgH and 
IgL pair together between these two groups (79). Single-cell 
sequencing can easily identify allelic inclusions, specifically noted 
by presence of both kappa and lambda light chains on the same 
B cell, as well as public VH and VL sequences. Single-cell sequenc-
ing has also shown that public VLs were able to pair with multiple 
VH in multiple donors (31).

STATiSTiCAL ANALYSiS OF B CeLL 
RePeRTOiReS

Various forms of statistical tools have been applied on BCR and 
TCR sequences in a descriptive sense as well as to compare them 
in the context of experimental systems. Some or all of these 
methods can be used to describe and compare most of the BCR 
repertoire features discussed above. Below, we provide a brief 
survey of some of the analysis tools used in Ig repertoire studies.

Resampling
Resampling otherwise known as rarefication, or subset analysis, 
is a technique used to correct for differences in sequencing depth 
between samples. The sequencing reaction may generate more 
reads in certain libraries due to stochastic reasons and, depending 
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FigURe 5 | Network analysis of immunoglobulin (Ig) repertoire—an explanatory model. (A) An example network arising from single germline sequence (Red).  
(B) Multiple clusters arising from different ancestral sequences. Each color represents cluster arising from different germline. (C) Representative network of a healthy 
individual: each cluster arising from an ancestral sequence is of uniform size and complexity. (D) Representative network of an individual exposed to an antigen: 
larger clusters represent the antibody, which recognizes the antigen and hence expands and mutates. (e) Representative Ig network of chronic lymphocytic 
leukemia patient with one dominant highly expanded cluster.
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on how sequences are processed, has the potential to generate 
erroneous conclusions in the analysis. Subset sampling has been 
used in metagenomics studies where the number of sequences 
for all samples is reduced to the depth of that with the lowest 
read count. This step is designed to exclude any differences in 
the analysis that may be due to variable read depth, instead of the 
underlying biologic principle under investigation (84, 111, 112). 
However there are different views regarding use of rarefication. 
On one hand, subset analysis resolves randomly generated differ-
ences in sequence depth, but also results in discarding data, which 
leads to loss of assay power. This reduces the ability of finding 
difference between populations. In this light, it is important to 
run several control subsampling analyses to examine the degree 
to which the test subsamples reflect the properties of the whole. A 
sufficiently subsampled library from a whole library of sufficient 
depth should be essentially identical to the whole as well as other 
test subsets. Parallel comparisons of subsetted and whole data 
may be valuable to uncover read depth sufficiency. In general, 
we use subsetting when comparing averages of feature measure-
ments from experiments repeated independently. If a test is used 
that considers only total counts (instead of averages of multiple 
experiments), such as the chi-square test, then we do not subset, 
as long as control comparisons of independently repeated tests 
indicate sufficient read depth of individual samples.

Chi-Square Test
Chi-square test for independence (113) checks if the proportions 
of two categorical variables are different from each other or not. 
It is a non-parametric test, which deals only with total counts—
relative frequencies are not allowed. Here, the null hypothesis 
(H0) states that the variables are independent while the alternate 
hypothesis states that they are dependent, i.e., knowledge of one 
variable can help predict the other variable. The test statistics for 
the Chi-square test is calculated as:

 
χ2

2

= ∑
−( )O E
E

,
 

where O is the observed frequencies; E is the expected frequencies, 
which, for each observation in the table is calculated as [(total 
observations in respective row)*(total observations in respect 
column)]/total number of observations in the table.

A limitation of the chi-square test is that it is extremely sensi-
tive to sample size. The number of samples has to be large enough 
to have an expected value of at least 5 in each cell (113). Also, 
the test becomes more and more sensitive with increase in the 
sample size—eventually showing significance even with mild 
variation that can occur within assay error or repeat biological 
samples (114). This limits the use of chi-square test in high read 
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output platforms, such as the illumina systems. An example of 
deep sequencing data analyzed with chi-square test is in the com-
parison of VH and VL segment usage in developing B cells within 
weanling mouse bone marrow versus intestine. Chi-squared tests 
of pyrosequencing data showed significant differences in the VL 
segment usage for the two groups, but not when randomly com-
pared between biological repeats (115). Another such study used 
the chi-square test on Sanger sequencing data to compare the 
usage of V, D, and J segment families among patients with chroni-
cally evolving hepatitits C Virus (HCV) infection compared to 
resolved HCV, and healthy controls (116). They found that some 
of the families showed statistically significant association with 
the clinical groups for each of the three segments. HIV-1 specific 
and non-HIV-1 specific antibodies from an infected individual 
showed differences in the highly used VH segments (117). A com-
parison of productive and non-productive antibody sequences 
revealed strong bias in the pairing of specific D and J segments 
due to multiple sequential D-to-J rearrangements (118). The 
function for calculation of chi-square statistics is available in the 
R package “stats.”

Jensen–Shannon Divergence (JSD)
Jensen–Shannon divergence gives a measure of similarity between 
two probability distributions (119), and has also been used in Ig 
repertoire analysis. JSD is derived from Kullback–Leibler Diver-
gence (KLD). For two probability distributions A and B, the JSD 
is calculated as:

 JSD KLD KLDA B A M B M|| . * ( || ( || )),( ) = ( ) +0 5  

where M = 0.5(A + B)–midpoint of the two probability distribu-
tions and KLD(A||M) and KLD(B||M) are the KLD of A and M, and 
B and M, respectively. JSD is symmetric [JSD(A||B) = JSD(B||A)] 
and non-negative measure in contrast to KLD which is asymmet-
ric [KLD(A||B) ≠ KLD(B||A)] and may be negative. JSD = 0, if 
A = B. JSD is also a non-parametric test. Since the test compares 
probability distributions of two populations, it is not affected 
by sample size. However, the effect of difference in sequencing 
depths leading to the differences in the probability distributions 
would still interfere with the results. Unlike KLD, it is symmetric, 
with values bound between 0 and 1 for both directions of com-
parison, which simplifies comparisons of multiple distributions.

Some studies, which included the use of JSD, calculated the 
distance between the repertoires under different conditions. 
JSD was used to compare TCR repertoires of cells with different 
epitope specificities (120). Ten epitope-specific TCR repertoires 
were characterized, and the JSD was used to compare gene 
frequency distributions for these repertoires with respect to the 
background distribution. A comparison of VJ combination and 
VJ-independent repertoires of peripheral blood mononuclear 
cells (PBMC) and tumor-infiltrating lymphocytes (TIL) in glioma 
patients revealed specific signature TCRs that were associated 
with PBMC of patients exhibiting low TIL divergence and which 
were depleted in patients with highly divergent TIL repertoires. 
This divergence, detectable in PBMC, can be used as a nonin-
vasive technique for longitudinal monitoring of glioma (121). 
JSD has also been used to find similarity in isotype abundance 

in repertoires of individuals (95). The R package “tcR” includes 
a function to calculate the JS divergence for TCR and BCR rep-
ertoires (122).

Storer–Kim (SK) and Kulinskaya–
Morgenthaler–Staudte (KMS)
Storer–Kim and KMS tests have been used recently to find sta-
tistically significant differences between two distributions (123, 
124). Both tests assume non-parametric distribution. The second 
assumption might not be appropriate when considering affinity 
maturation and clonal expansion. SK test does not provide a 
confidence interval while KMS test does. Like JSD, these tests 
compare probability distributions and hence there is no limita-
tion to number of sequences. A mouse study used SK and KMS 
tests to compare the V family usage within GC B cell repertoire 
of animals vaccinated with complex Ebola virus-like particle 
and unvaccinated controls (125). Enhanced use of IGHV8 was 
observed in the vaccinated group. The tests have been imple-
mented in “WRS2” R package (126).

Repertoire Dissimilarity index (RDi)
Repertoire dissimilarity index compares Ig repertoire based on 
usage of V, D, or J (127, 128). It is a non-parametric method, which 
tries to circumvent the problem of varying number of sequences 
in different samples. The first step involves subsampling the larger 
sample to the size of the smaller one. From these uniform samples, 
the feature of interest is counted; the frequency is normalized and 
transformed into probability distributions. Root mean square 
deviation (RMSD) is calculated between the two. Random sub-
sampling is done multiple times and mean RMSD is calculated 
to get the RDI. This reduces sampling bias effects of rarefication 
to some degree. Since, for each comparison, the sample size is 
the lower of the two, RDI values between different samples are 
not comparable. Also, with decrease in sample size, RDI values 
increase. The RDI value gets closer to the true value as sample 
size increases. RDI was used to show that genetic bias effects VJ 
usage by analyzing BCR repertoire of monozygotic twins (127). 
RDI was validated by recapitulating known differences between 
T-cell subsets (128). R codes for calculation of RDI are available 
at https://bitbucket.org/cbolen1/rdicore (128).

Diversity
Diversity has frequently been used to describe lymphocyte antigen 
receptor repertoires. These indices come from ecology, where they 
are used to compare the diversities of ecosystems. With respect 
to the immune repertoire, diversity can be calculated in terms of 
use of V, D, and J gene segments as well as the use of individual 
CDR3s. Depending upon the kind of comparison diversity can 
be categorized into three types, namely, alpha, beta, and gamma. 
Alpha diversity is the diversity of an individual’s repertoire, i.e., 
the total number of individual species (VH or CDR3) present in 
the repertoire. This is also the species richness. Beta diversity gives 
a difference in repertoire of two individuals. It would be given by 
the sum of unique species in both the repertoires. Gamma diver-
sity is a combine diversity of all the ecosystems or repertoires. 
Alpha, beta, and gamma diversities were compared between 
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patients with gastritis with (GHP) and without Helicobacter pylori 
(GNHP) background, gastric mucosa-associated lymphoid tissue 
lymphoma (MALT-L) (caused by GHP), and diffuse large B cell 
lymphoma (DLBCL) (may or may not be transformed MALT-L) 
(129). Contrary to the expectation, similar diversification was 
found in both GHP and GNHP, and MALT-L transformed 
DLBCL, and independent DLBCL. Also, MALT-L transformed 
DLBCL and MALT-L patients did not share any feature in their 
repertoires.

Species Richness
Species richness (alpha diversity) is the total number of unique 
species in a community. It is just a count and does not take into 
account the species abundance. It is the simplest way of describing 
diversity but is very sensitive to sampling depth. Greater sampling 
depth results in capture of more and more rare species resulting in 
higher species richness. Rarification can have a significant impact 
on this measure, as less represented species are usually lost during 
random subsampling. To account for the unseen species problem 
for under-sampled population, a number of measures have been 
devised which predict the actual species richness based on the 
sampled data, including Chao1 (130), abundance-based coverage 
estimators (ACE) (131), and DivE (132).

Chao1 and Abundance-based Coverage 
estimators (ACe)
Chao1 and ACE have commonly been used in assessment of 
microbial species richness. These estimators add a correction 
factor to the number of observed species to account for the hid-
den/unsampled once (133). Chao1, for example, extrapolates the 
richness based on the number of rare species (count = 1 or 2) 
found in the samples.

 
Chao1= +S n

n
obs

1
2

22
,
 

where Sobs is the observed number of species, n1 is the number 
of singletons (species with count = 1), and n2 is the number of 
doubletons (species with count = 2).

Abundance-based coverage estimator, on the other hand, 
takes into account the number of species with count less than or 
equal to 10. It is calculated as:
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where Sabund is the number of species with count greater than 10; 
Srare is the number of species with count less than or equal to 10; 
CACE = 1 − F1/Nrare; F1 is the number of species with count = 1
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Even with the correction factors incorporated to calculate 
the true species richness, these estimators are still sensitive to 
sampling depth. A small change in the library preparation steps 
leading to increased sample quality or quantity may impact 
species diversity measurements. These factors are still unable to 
predict the real number of unseen species.

Diversity estimator (Dive)
DivE (Diversity Estimator) is a diversity measure used originally 
in the calculation of TCR repertoire diversity (132). The initial 
step involves construction of rarefaction curves for multiple 
nested subsamples. A rarefaction curve is a plot of the number 
of species as a function of the number of sequences or sample 
size. A mathematical model, defining each of the rarefaction 
curves, is built and tested on all the nested samples. Each model 
is scored based on degree of fit using four criteria: Discrepancy 
(between the data points and the model), accuracy (of pre-
dicted versus actual species richness), similarity (between area 
between the curve fitted to the subsample and the complete 
data), and plausibility (the predicted number of species should 
increase or plateau off or the rate of increase of species should 
decrease or remain constant—any other scenario is not plausi-
ble). The top five scored models are extrapolated and combined 
to calculate a DivE. This estimator is unaffected by sample size 
and its accuracy is improved from the use of multiple models to 
predict diversity. The drawback is that the calculation process 
is lengthy and there is a requirement to fit multiple models. 
DivE has been used to calculate the species richness of T cell 
repertoires. With B  cell repertoires being even more diverse, 
the computations are expected to be more complex. This species 
richness estimator was used to calculate the number of cells 
infected with human T-lymphotropic virus type 1 in patients, 
species richness in a TCR repertoire and fecal microbiota of 
infants (132).

These estimators have been adopted in analysis of diversity of 
BCR and TCR repertoires. Studies on the effect of aging on the 
B cell immune repertoire diversity on administration of influenza 
vaccine showed that the repertoires become more specialized and 
less plastic with age (134). Both naïve and antigen-experienced 
repertoires show reduced diversity with age. The Chao1 estima-
tor was used to describe BCR repertoire differences within and 
between individuals (84). The R packages for estimation of DivE 
(132), Chao1, and ACE (135) are available.

Although species richness may be the most direct measure 
of diversity, evenness or the homogeneity/uniformity of spe-
cies in the community also provides important information. 
Species evenness would describe the degree of clonal expan-
sion in an immune repertoire. Two common indices calculated 
considering both richness and evenness, namely, the Shannon 
Index and the Simpson Indexes have different prospective for 
each (136).

Shannon index (H)
Shannon index (H) calculations operate under the assumptions 
that individuals are randomly sampled from an infinitely large 
community, and that all species are represented in the sample. 
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The Shannon index increases as both richness and evenness of the 
community increase. The Shannon index is given by:

 
H p p
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where pi = ni/N the proportion of individuals of the ith species; ni 
is the number of individuals of the ith species; and N is the total 
number of individuals and s is the total number of species. Since 
this index is directly proportional to the species richness, it is 
sensitive to sampling depth.

Simpson index of Diversity
Simpson Index of diversity is calculated as 1  −  Dominance 
Index (D). D gives more weight to dominant species. It gives 
the probability that two individuals drawn from a population 
will belong to the same species. Thus, presence of rare species 
would not affect D and D increases with increase in dominance 
leading to decease in diversity. Simpson index of diversity 
(1 − D) gives the diversity value, which increases with decrease 
in dominance.
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where ni is the number of individuals of the ith species and N 
is the total number of individuals, and s is the total number of 
species.

Shannon diversity has been used widely in antigen receptor 
diversity analysis. Some examples of this analysis in human 
studies include the comparison of TCR repertoires in colorectal 
tumors and adjacent healthy mucosa (137) and B cell repertoire of 
patients before and after hematopoietic stem cell transplantation 
(138). R packages are available for calculation of diversity indices 
like vegan (139) and BiodiversityR (140), with one developed spe-
cifically to characterize and analyze immune repertoires (122). 
Recon is another program developed to calculate the diversity 
measures (68).

Diversity 50 (D50)
Diversity 50 or D50 is the percentage of dominant unique spe-
cies, which make up 50% of the total community. In terms of Ig 
repertoire, it is the percentage of distinct VH segments or CDR3 
constituting half of the total VH or CDR3 in a population (141). 
A larger D50 value shows larger diversity. D50, like the Simpson 
index, is based on the number of dominant species and is not 
affected by the addition of rare species. The D50 has been used 
to compare the degree of clonal expansion/clonal dominance 
during infection. Both T and B cell repertoire diversity have been 
assessed via D50 analysis in human studies of viral infection (74), 
as well as in the characterization of TCR diversity in patients with 
Wiskott–Aldrich syndrome (142).

UniFrac Distance Matrix
In the context of microbial communities, this index includes 
environmental differences by taking into consideration phyloge-
netic information (143, 144). The branch lengths are deemed to 
differ based on genetic changes occurring due to environmental 

selection pressure. Thus, the branch lengths between two species 
in both communities are taken into account while considering 
the distance between the communities. Analogically, different 
selection pressure within repertoires of two organisms can be 
taken into account by including the phylogenetic information 
starting from the germline sequence (134). UniFrac distance is 
also sensitive to sequencing depth. Smaller number of sequences 
in a sample would be underrepresenting the rare species and this 
would artificially influence the distance between similar com-
munities. UniFrac distance was used to calculate the difference 
between the Ig repertoires before and after immunization with 
influenza vaccine in old and young individuals. With age, Ig 
repertoires appear to become more specialized and less plastic, 
resulting in lower uniFrac distances, compared to younger indi-
viduals (134). R packages for calculation of uniFrac distance are 
available (145, 146).

Principal Component Analysis (PCA)
Principal component analysis is a way of simplifying the analysis 
of large datasets by reducing the dataset dimensionality. It does 
so by creating a new set of variables or principal components 
(PCs), which describe more complex variability in the data set. 
The first PC (PC1) explains the maximum variance of the dataset, 
followed by PC2, and so on. PCA can also help identify patterns 
in the data, which would otherwise not be prominent. PCA can 
be used to compare the Ig repertoire based on multiple variables. 
Using multiple variables like diversity, mutation rates, and oth-
ers, to define Ig repertoire under different conditions, PCA has 
been used to find association patterns between these groups. A 
limitation of PCA is that it considers only linearly correlated 
data. Also, it discards smaller variance as noise, which may be 
important under certain conditions. Depending upon the vari-
ables being used to analyze the samples, PCA may or may not be 
dependent on sequencing depth. For example, having diversity 
as one of the variables would make PCA sample size dependent. 
PCA has been used on V(D)J usage among productive antibodies 
to explore the relationship between pre-B, FO, and MZ cells. A 
very clear clustering and gradient separation of pre-B, follicular, 
and marginal zone cell subsets was seen which was also observed 
with V usage analysis but not that of D and J (147). In a study 
comparing the effect of various influenza vaccines on B  cell 
repertoire, PCA was applied to rarefaction analysis, diversity, 
V usage frequencies, and mutation rates for unimmunized and 
immunized groups (148). The basic stats package of R has func-
tion for PCA.

When it comes to the analysis of Ig repertoires, a standard 
protocol has yet to be set. The specific scientific question and the 
difference in the sequencing depth is one of the major concerns 
when selecting a statistical approach. Rarefication, a way to 
overcome differences in sequencing depth, works best when the 
number of sequences is not very different for each sample. This 
criterion is not always met. Chi-square test does not work well 
with sequencing depth of over a few thousand. The JSD, SK, and 
KMs approaches work are reasonable measures for large sequenc-
ing data sets. RDI addresses the problem of variable sequencing 
read depths by resampling multiple times and taking the mean. 
However, the RDI values for two different pairs of data are not 
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comparable. JSD on the other hand always gives a bounded value 
between 0 and 1 and can be relatively scaled between different 
comparisons. Diversity, though being the most common method 
used to assess and compare the Ig repertoire, is very susceptible 
to sequencing depth. Because each estimator used alone incom-
pletely describes the diversity of a B  cell repertoire, multiple 
parallel approaches are warranted.

CONCLUDiNg ReMARKS

High-throughput sequencing provided immunology with a tool 
to enhance our understanding of lymphocyte antigen receptor 
repertoires. With increased application in human diagnostics—
sample preparation, sequencing, and analysis techniques will 
continue to evolve to assist workers in describing lymphocyte 
antigen receptor repertoires. As large data sets become less 
expensive and more efficiently produced, necessities for more 

uniform and improved analysis methods are expected to drive 
further innovation.
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