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Blacksburg, VA, United States

Consequential differences exist between the male and female immune systems’ ability 
to respond to pathogens, environmental insults or self-antigens, and subsequent effects 
on immunoregulation. In general, females when compared with their male counterparts, 
respond to pathogenic stimuli and vaccines more robustly, with heightened production 
of antibodies, pro-inflammatory cytokines, and chemokines. While the precise reasons 
for sex differences in immune response to different stimuli are not yet well understood, 
females are more resistant to infectious diseases and much more likely to develop auto-
immune diseases. Intrinsic (i.e., sex hormones, sex chromosomes, etc.) and extrinsic 
(microbiome composition, external triggers, and immune modulators) factors appear to 
impact the overall outcome of immune responses between sexes. Evidence suggests 
that interactions between environmental contaminants [e.g., endocrine disrupting chemi-
cals (EDCs)] and host leukocytes affect the ability of the immune system to mount a 
response to exogenous and endogenous insults, and/or return to normal activity following 
clearance of the threat. Inherently, males and females have differential immune response 
to external triggers. In this review, we describe how environmental chemicals, including 
EDCs, may have sex differential influence on the outcome of immune responses through 
alterations in epigenetic status (such as modulation of microRNA expression, gene 
methylation, or histone modification status), direct and indirect activation of the estrogen 
receptors to drive hormonal effects, and differential modulation of microbial sensing and 
composition of host microbiota. Taken together, an intriguing question develops as to 
how an individual’s environment directly and indirectly contributes to an altered immune 
response, dysregulation of autoantibody production, and influence autoimmune disease 
development. Few studies exist utilizing well-controlled cohorts of both sexes to explore 
the sex differences in response to EDC exposure and the effects on autoimmune disease 
development. Translational studies incorporating multiple environmental factors in animal 
models of autoimmune disease are necessary to determine the interrelationships that 
occur between potential etiopathological factors. The presence or absence of autoanti-
bodies is not a reliable predictor of disease. Therefore, future studies should incorporate 
all the susceptibility/influencing factors, coupled with individual genomics, epigenomics, 
and proteomics, to develop a model that better predicts, diagnoses, and treats autoim-
mune diseases in a personalized-medicine fashion.
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iNTRODUCTiON

The incidence of autoimmune and allergic diseases has been 
increasing for multiple decades (1, 2). Despite intensive studies 
in many laboratories, the etiology of autoimmune diseases is not 
well understood. It is nevertheless clear that there is no single 
genetic factor that solely determines the susceptibility to autoim-
mune diseases. Rather, susceptibility to autoimmune diseases 
appears to involve complex interactions of genetic, epigenetic, 
hormonal, and environmental factors. Many (but not all) auto-
immune diseases preferentially demonstrate a female dominant 
susceptibility bias. The high female to male incidence ratios in 
autoimmune diseases such as autoimmune thyroiditis, systemic 
lupus erythematosus (SLE), and Sjögren’s syndrome in both 
humans and relevant animal models have been widely reported 
(3–8). Interestingly, even those diseases that did not show a strong 
female bias of susceptibility in the past, such as multiple sclerosis 
(MS), now appear to tilt toward female predisposition. Patients 
diagnosed with MS were initially reported to have close to a 1:1 
female:male ratio in the 1950s (9). This ratio increased to 2:1 in 
the 1980s (10), and further to 3:1 in recent reports (11). While the 
precise reasons for sex differences are not known, the potential 
contribution of changes in environmental factors remains an 
intriguing possibility. The implication of non-genetic factors 
(e.g., epigenetic and environmental factors) is also evident in 
studies that reported the concordance rate of monozygotic twins 
manifesting autoimmune diseases is only between 20 and 35% 
(12–15). Further evidence for an environmental component driv-
ing autoimmune pathology exists with the Gullah population in 
South Carolina who are genetically very similar to members of 
their ancestral home of Sierra Leone. In a recent report, while 
the SLE disease prevalence (as measured by serum antinuclear 
antibodies) in the Gullah population is similar to their African 
counterparts, notably, the African cohort had higher levels of 
circulating anti-Smith and anti-cardiolipin autoantibodies, as 
well as increased numbers of seropositive individuals to multiple 
viral infections (16). This suggests that in genetically very similar 
populations, environmental factors can promote autoantibody 
production. The potential contribution of differences in expo-
sure to environmental chemicals between these two population 
groups cannot be discounted. Interestingly, human SLE patients 
with pet dogs are more likely to have dogs that also suffer from 
SLE (17). This finding supports the claim that a transmissible or 
common environmental agent, or agents, may be present that 

increased the risk for SLE development within the human and 
canine populations. Even in genetically susceptible inbred mice 
that spontaneously develop autoimmune diseases, such as lupus, 
differences in the outcome or severity of the diseases has been 
noted among various laboratories (18–24). This supports non-
genetic environmental factors influence on autoimmune disease.

It is now recognized that sex differences in the immune system 
cannot be solely attributable to differences in sex chromosomes 
and sex hormones (6, 7, 25). Direct comparisons among 
various studies exploring the specific mechanisms underlying 
the observed female bias in many autoimmune disorders are 
difficult due to differences in study methodology, population 
cohorts, and various extrinsic factors unable to be controlled for 
in human populations. Nevertheless, when the data are explored 
as a whole, the consequence of these variations can be mitigated 
and trends can be identified regarding sex-based differences in 
multiple systems.

In general, normal healthy males are thought to have immune 
systems that maintain tolerance, while the female immune system 
is susceptible to break in immune tolerance as evidenced by 
higher production of autoantibodies (26–28). Sex chromosomes 
contribute genetic differences, with multiple genes involved 
in immune system responses present on the X-chromosome, 
including genes for FoxP3 and toll-like receptors (TLRs) 7 and 8. 
These genes can be differentially expressed in males and females 
due to incomplete X-chromosome inactivation in the females, 
leading to potentially increased gene expression in females (29). 
Steroidal sex hormone levels vary between sexes, with female pre-
dominant estrogens promoting B cell survival and contributing 
to exacerbation of multiple autoimmune diseases, and androgens 
exerting immune regulatory effects to prevent, suppress, or delay 
autoimmunity (30, 31). Endocrine disrupting chemicals (EDCs) 
act through multiple mechanisms, displaying both estrogenic 
and anti-estrogenic properties, reducing androgen production, 
and influencing epigenetic regulation (28, 32). It is now prudent 
to incorporate environmental influences (e.g., EDCs) in studying 
the development of autoimmune diseases, which will provide a 
more comprehensive understanding of mechanisms of autoim-
mune diseases (33). Assessed individually, these various factors 
may not be able to induce autoimmunity sufficiently. However, 
when multiple internal and environmental factors interact, these 
may cause the loss of tolerance, the production of autoantibod-
ies, and drive autoimmune disease pathogenesis (Figure 1). This 
review will focus on how sex differences identified in genetics, 
epigenetics, hormonal responses, and response to microbial 
stimuli influence immune tolerance dysregulation and autoanti-
body production, with an emphasis on the contributing effects of 
EDCs on immunological functions.

SeX DiFFeReNCeS iN GeNeTiCS AND 
AUTOiMMUNiTY

Female cells are genetically the same as male cells in all chro-
mosomes except the sex-specific X and Y chromosomes. To 
compensate for gene copy differences, female cells, other than egg 
cells, undergo X-chromosome inactivation, thereby permanently 

Abbreviations: AID, activation-induced cytidine deaminase; AIRE, autoimmune 
regulator; AR, androgen receptor; BAFF, B-cell-activating factor; BPA, bisphenol-
A; CLRs, C-type lectin receptors; CMV, cytomegalovirus; DHT, dihydrotestoster-
one; DNMT, DNA methyltransferase; EBV, Epstein–Barr virus; EDC, endocrine 
disrupting chemicals; ER, estrogen receptor; GPR, G protein-coupled estrogen 
receptor; HDAC, histone deacetylase; HEV-hepatitis E virus; IFN, interferon; LPS, 
lipopolysaccharide; MAMPs, microbial-associated molecular patterns; miRNA, 
microRNA; MRL/lpr, MRL/MpJ-Faslpr/J; MS, multiple sclerosis; NLR, NOD-like 
receptor; NZB/WF1, New Zealand Black/White F1 progeny; NOD mice, non-obese 
diabetic mice; PBMCs, peripheral blood mononuclear cells; pDCs, plasmacytoid 
dendritic cells; PPAR, peroxisome proliferator-activated receptor; RLRs, RIG-I-
like receptors; SCFA, short chain fatty acid; SLE, systemic lupus erythematosus; 
T1DM, type-1 diabetes mellitus; TLR, toll-like receptor.
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FiGURe 1 | Interactions of multiple factors are required for the development 
of autoimmunity. Genetic susceptibility, sex chromosomes, sex hormones, 
infections and microbial stimuli, and environmental factors are all thought  
to contribute to autoimmune pathogenesis and lead to autoantibody 
production. There is little evidence that any one particular factor is able  
to initiate autoimmunity without input from another factor. The specific 
relationships and interplay among each of the various factors, such as  
the relative importance of one factor compared with the others, age at,  
or duration of, exposure, is not yet understood.

FiGURe 2 | Autoimmune disease prevalence in relation to life stage. 
Autoimmune diseases can develop during childhood, but most autoimmune 
diseases develop following the onset of puberty and in later life.
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silencing one copy of the X chromosome. This process may be 
incomplete in some individuals, leading to overexpression of 
genes present on the X-chromosome. Abnormalities in chromo-
some numbers may exist, such as in Klinefelter syndrome, where 
males have one or more extra X chromosomes. Notably, men with 
Klinefelter syndrome are predicted to have a similar risk of SLE to 
that of females, and a 14-fold increase in SLE risk compared with 
healthy males (34). It is conceivable that in the context of incom-
plete X-chromosome inactivation, females could have alterations 
in the expression of X-chromosome linked genes that promote 
inflammation and subsequent autoimmunity, such as TLR7/8.

Many autosomal genes are differentially expressed in males and 
females. The transcription factor vestigial-like family 3 (VGLL3) 
was recently found to be upregulated in female tissues, such as 
ovaries, the uterus, adipose tissue, and smooth muscle. VGLL3 is 
located on chromosome 3, and it is unknown at this time what 
contributes to this sexual differential expression pattern. This 
transcription factor contributes to the differential expression of 
hundreds of genes between sexes. Genes of interest regulated 

by VGLL3 include BAFF, ITGAM, IL-7, ICAM-1, MMP9, and 
ETS1. These female biased genes are associated with known 
autoimmunity susceptibility loci and inflammatory processes, 
and the increased expression of these genes appears independent 
of sex hormone regulation (35). Furthermore, it is also possible 
that other newly identified and unknown transcription factors 
are contributing to the sex bias gene expression and autoimmune 
disease susceptibility.

SeX HORMONeS AND eNviRONMeNTAL 
eDC ReGULATiON OF iMMUNiTY AND 
AUTOiMMUNiTY

Sex differences in sex steroid hormone levels and regulation on 
the immune system of normal and autoimmune individuals have 
been extensively studied (7, 36–40). While the sex differential 
effects on immunity and autoimmunity cannot be solely attribut-
able to sex hormone profiles, sex steroid hormones do have a 
major impact on various aspects of the immune system, includ-
ing their contribution to cell differentiation, cytokine profiles, 
epigenetic alterations, and autoimmune disease (36, 38–44). The 
case for the role of sex hormones in autoimmune diseases can be 
further made by the fact that a majority of autoimmune diseases 
are manifested after sexual maturity, at a time when sex hormone 
levels are elevated and differential biological responses of sex-
hormone regulated genes are evident (Figure 2). Interestingly, it 
is not yet understood why women are at a higher risk of devel-
oping autoimmune diseases such as SLE, rheumatoid arthritis, 
Graves’ disease, and thyroiditis following menopause (45). EDCs 
are able to exert agonistic or antagonistic roles on normal physi-
ological sex hormone actions, enhancing or mitigating hormonal 
effects on immune cells (25, 46–48). As with many endocrine 
components, sex hormones and EDCs exert differential effects, 
not only due to dosage but also in temporally dependent and 
context-specific manners.

Exposure to EDCs is nearly impossible to avoid in current 
 societies. These compounds can be present in drinking water, 
cosmetic products, paper products, food and beverage contain-
ers, many forms of plastics, and the food we eat (32). The route 
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and dosage of exposure are important considerations when 
determining the effect EDCs will have on various aspects of health 
and physiology. Many EDCs have been determined to be able to 
elicit bi-phasic dose responses, with evidence that very low EDC 
concentrations can exert a positive effect, while at higher concen-
trations they may have opposite effects, and vice versa. Currently, 
controversy exists regarding evaluation of internal concentra-
tions, metabolites, and daily exposure levels of EDCs (49).

Little consensus has been reached regarding when, where, 
and how EDCs disrupt endocrine homeostasis in exposed 
individuals. One vital issue that impairs our understanding of 
the mechanisms and overall influence of EDCs on health is the 
potential lag between exposure and development of clinical signs, 
such as reproductive disorders. In humans, the lag period may be 
years or decades before sexual maturity and fertility can be tested 
(50). Much of the current data on EDC functions and effects are 
targeting alterations in reproductive systems. Due to the wide 
variety of compounds and exposure routes, this review will only 
address how well-studied models of EDCs, such as bisphenol-A 
(BPA) and phytoestrogens, may affect the immune system.

estrogen, Natural, and environmental
The effects of estrogen on immune cell populations and functions 
have been extensively studied and reviewed (6, 36–40). We will 
highlight the important aspects of estrogen’s actions that promote 
or inhibit autoantibody production. Estrogens are able to exert 
effects on multiple immune cell phenotypes through activating 
either estrogen receptors (ERs)-mediated genomic signaling or 
G protein-coupled estrogen receptor 1 (GPR30/GPER1)-coupled 
non-genomic signaling pathways (30). Following ligand binding, 
ERα and/or ERβ binds to the estrogen response element (ERE), 
which drives transcriptional regulation, particularly Pax5, BSAP, 
HOXC4/HoxC4, and activation-induced cytidine deaminase 
(AID) genes in B cells, promoting B cell maturation and survival. 
Estrogen activated GPR30 signals through P38/ERK MAPK and 
PI3 kinase pathways, driving B cell activation and rearrangement 
of the Ig heavy and light chain, as well as activating NF-κB (30). 
Furthermore, sex hormones and hormone metabolites can also 
induce their effects on target cells (such as cells of the immune  
system) in sex-hormone receptor independent mechanisms 
(51,  52). Activated ERs can bind to other transcription factors 
(such as NF-κB) to mediate cell signaling for regulating gene 
expression. In addition, ERs can be activated independent of 
ligand binding (53, 54). Therefore, it is conceivable that, in 
females, direct and indirect activation of ERs by external triggers, 
such as endocrine disruptors, can potentially have differential 
effects compared with males.

In most instances, estrogen enhances both cell-mediated and 
humoral immunity. Studies in peroxisome proliferator-activated 
receptor (PPAR) knockout mice show that T follicular helper cell 
responses, important for antibody production, were upregulated 
in female but not in male CD4-PPARγKO mice, in part due to 
estrogen (55). In regards to B  cells and antibody production, 
estrogen drives B cell maturation, immunoglobulin class switch 
recombination, and somatic hypermutation in germinal centers, 
promotes B  cell survival, and enhances antibody production  
(30, 56, 57). Directly, estrogen regulates gene transcription 

through ERs binding to ERE sites. Indirectly, estrogen promotes 
B cell survival through increased B-cell-activating factor (BAFF) 
production. In mouse models, BAFF gene expression is upregu-
lated by estrogens and interferon (IFN) stimulation both at the 
mRNA and protein levels through a mechanism involving ERα, 
IRF5, or STAT1. Treatment of the mouse macrophage cell line 
RAW264.7 with IFNα, IFNγ, or estrogen induced p202, which 
correlated with increased BAFF production, contributing to 
sex differences (58). In humans, under normal physiological 
conditions, no detectable differences are found between male 
and female BAFF levels. However, following estradiol treatment, 
both sexes had an increase in BAFF production, with the increase 
in females being much more profound (59). Thus, in the pres-
ence of estrogen, B  cell survival, and maturation is enhanced 
through multiple mechanisms, potentially increasing the ability 
of autoreactive B cells to break tolerance and drive autoantibody 
production (Figure 3).

BALB/c transgenic mice treated with estrogen had increased 
Bcl-2 production that allowed naïve B  cells to break tolerance 
induction and drive anti-dsDNA autoantibody production (60). 
Anti-cardiolipin autoantibody was shown to be enhanced in 
orchiectomized male and normal female B6 mice treated with 
17β-estradiol, but replacement of dihydrotestosterone (DHT) in 
castrated males had no effect, and intact males had lower levels 
of circulating autoantibodies than females (43). Autoreactive 
B cell pools are created predominantly in females, and ER signal-
mediated activation of DCs was found to modulate T and B cell 
responses (61–63). Enhanced B cell survival through estrogen’s 
various actions promotes self-reactive B cell escape from negative 
selection in the bone marrow, and progression of autoantibody 
production (64, 65). Therefore, it is conceivable that the lower 
levels of circulating E2 in males, in combination with higher 
levels of androgens, allows for better regulation and removal of 
autoreactive B cell populations before autoimmunity onset.

Evolutionarily, the female immune system is biologically equi-
pped to robustly respond to infectious threats to protect the young 
dependent offspring and in the larger sense aiding in the survival 
of species. With the passage of time in the relatively recent era, 
introduction of new chemicals and emerging and re-emerging 
infections now pose unique challenges to the primed female 
immune system. It can be argued that initially the female immune 
system had biologically been exposed to natural estrogens. With 
the advent of, and exposure to, EDCs, the female immune system 
may be exposed to “surges or overloads” of endocrine compounds 
with competing endocrine effects, thus increasing the chance for 
deviation of immune modulation by hormones. Whether these 
new threats have contributed to increased autoimmune diseases 
is an open question that warrants investigation.

The ability of EDCs to influence the immune system subsets 
and alter disease susceptibility is poorly understood at this time. 
BPA has multiple estrogenic-like functions that alter T cell subset, 
B  cell function, and dendritic cell activity, inducing abnormal 
immune signaling and disrupting ER and PPAR signaling, 
thus, altering target gene transcription. In mice, BPA induced 
splenocyte proliferation and shifted the cytokine profile from 
Th2- to Th1-mediated cytokines, enhancing autoimmunity (32). 
For example, BPA has been associated with the development of 
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FiGURe 3 | Possible mechanism for estrogens to influence immunity and autoimmune disease development. The exact mechanism for estrogenic influence  
on autoimmune disease development is likely disease- and context-dependent, and research is ongoing to identify distinct pathways in which estrogen is able  
to exert its effects. The figure illustrates potential molecular mechanisms of estrogen regulation. AIRE, autoimmune regulator.

5

Edwards et al. Sex Differences, Environment, and Autoimmunity

Frontiers in Immunology | www.frontiersin.org March 2018 | Volume 9 | Article 478

type 1 diabetes mellitus (T1DM) in non-obese diabetic (NOD) 
mice, a mouse model of insulitis and leukocytic infiltration of 
pancreatic islets leading to type 1 diabetes mellitus (66–68). 
Human studies have also associated EDCs with the development 
of organ-specific autoimmune diseases mediated by autoreactive 
T cells. For example, serum BPA levels correlated with increased 
antithyroperoxidase in human patients of Hashimoto’s thyroidi-
tis, and estrogens regulate miR-21, which may drive inflamma-
tion in polymyositis (69, 70). Exaggerated T cell activation and 
polar Th1/Th2 shifts are due in part to increased antigen-specific 
IFNγ following BPA exposure (71). In this way, BPA shows an 
antagonistic effect to physiological estrogen responses. BPA can 
affect the MAPK and STAT pathways, disrupting the normal 
prevention of autoreactive T cell proliferation and survival (72). 
IFN-associated mechanisms modulated by BPA have been shown 
to influence SLE pathogenesis (73). Interestingly, prenatally BPA 
exposed mice showed an increase in IL-4 and IFNγ. However, 
mice exposed after reaching adulthood showed increases in IL-4, 
IL-10, and IL-13, but not IFNγ. In both cases, Tregs were reduced 
(74). This disparity shows that the effects of EDCs are strongly 
dependent on age at exposure.

Bisphenol-A has been shown repeatedly to increase immuno-
globulin production in B cells. B1 cells have been associated with 
Sjögren’s syndrome and rheumatoid arthritis patients (75–77), 
and in mouse models of SLE have been shown to be more sensi-
tive to EDC’s modulatory effects than B2 cells (78). B1 cells 
increased production of anti-dsDNA autoantibody, enhanced 
IgG deposition and glomerulonephritis and overall worsened 
SLE signs following BPA implantation (79). MRL/lpr mice fed 
diets that contained phytoestrogen compounds diadzin and 
genistin had higher levels of IgG and complement component 
C3 deposition in glomeruli, along with altered immune cell infil-
tration into glomeruli compared with mice fed a diet devoid of  
estrogenic components (23). The majority of evidence supports 

that exposure to EDCs enhances autoantibody production and 
autoimmunity in mouse models of disease.

The complex immunological effects of EDCs can also display 
immune-suppressive effects. In people under 18  years of age, 
circulating BPA levels were negatively associated with anti- 
cytomegalovirus (CMV) antibody titers, suggesting that some 
EDCs may attenuate antiviral immunity (80). Short-term BPA 
exposure in New Zealand Black/White F1 progeny (NZB/WF1) 
mice suppressed autoimmunity, reduced albuminuria, and exte n- 
ded the disease-free period, through modulation of IFNγ (81). 
Thus, when determining the impact of EDC exposure on disease 
states, it is vital to view data in the context of dosage, exposure 
length, age, and infection status, due to the wide range of effects 
that may be altered by EDC exposure.

To date, less is known regarding the role EDC exposure has on 
androgens, and androgen receptors (ARs) compared with EDC 
effects on ERs. EDCs may act in a manner that primarily disrupts 
the balance between androgen and estrogenic signals, altering 
the endogenous ratio of testosterone, DHT, and 17β-estradiol 
synthesis (28). Urinary BPA concentration was inversely cor-
related to free androgen index in males (82) with evidence that 
BPA can potentially interfere with androgen production and 
function (83–85). EDCs did not affect functions of normal ARs, 
though it is possible that in certain disease states, such as prostate 
cancer, EDCs could influence patient therapy through mutant 
ARs (86, 87). Much work needs to be done to evaluate the dif-
ferential effects that EDCs have on the various immune pathways 
important in disease management, tolerance, and autoantibody 
production in a sex-dependent context. It is possible that the 
actions exerted by various EDCs on androgens may reduce the 
immunoregulatory efficacy and tip the delicate balance toward 
promotion of autoimmunity.

Nevertheless, much work needs to be done to definitively 
understand the effects of endocrine disruptors on autoimmunity. 
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FiGURe 4 | Possible mechanism for sex differences in environmental EDC exposure on immune function. The exact mechanism for immune system alterations  
due to EDC exposure in each sex is not yet well understood. Here, we propose possible mechanisms in which EDCs may exert sex-specific influence on immune 
cell functions.
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Distinct sex-based responses to EDC exposure may contribute  
to dysregulation of the immune system to varying degrees in a  
disease-specific manner (Figure  4). Significant effort is still 
required to identify and molecularly characterize the impact of  
various environmental triggers, especially ubiquitous environ-
mental contaminants, on the regulatory mechanisms of host 
immune systems.

Androgens
The effects of DHT and testosterone in mammalian species have 
been shown to be primarily immunosuppressive (31, 88–91). 
ARs are expressed in lymphoid and non-lymphoid cells of the 
thymus and bone marrow. However, they have not been found in 
peripheral lymphocytes (92). This suggests that while androgens 
may not have a direct effect on lymphocyte function, they are 
important in developmental stages of T and B lymphocytes. 
Thymic epithelial cells and bone marrow stromal cells also act as 
mediators of androgen’s effects on immature lymphocytes (92). 
AR levels were not altered in the thymus following castration and 
were present on CD3+CD4+ and CD3+CD8+ thymic cells, with 
the highest level found on CD3loCD8+ immature lymphocytes. 
ARs were also present in both cortical and medullary regions of 
the thymus following castration (92). The effects of castration 
extend to B  cell development, leading to increased immature 
B  cell populations in the bone marrow, as well as increased 
splenic B cells and enhanced antibody and autoantibody produc-
tion in mice. Androgen replacement reversed the changes in the 
bone marrow, but did not affect splenic B cells (93).

In general, there is good evidence that androgens downregu-
late immune system response in both normal and autoimmune 
individuals (Figure  5). Gonadectomized male mice, compared 
with intact females, had increased responses to, and reduced 
infection by, protozoans and fungi (31, 88–90). Androgens have 
been shown to suppress various autoimmune disorders including 
lupus and autoimmune thyroiditis (94, 95). Androgen deprivation 

led to increased T cell numbers (96). Inhibition of IL-12-induced 
STAT4 phosphorylation occurs through the AR binding to Ptpn1 
conserved region, inhibiting IL-12 signaling in CD4+ T cells, and 
suppressing Th1 differentiation (97). Androgens reduce IFNγ 
production through decreased PPARγ (98). Suppressive effects 
are also exerted on B cell antibody production by androgens (99). 
In psoriatic arthritis patients, testosterone appears to exert a pro-
tective effect. Higher serum BAFF concentrations are associated 
with increased disease activity, while serum BAFF concentrations 
negatively correlate with circulating levels of testosterone (100). 
Therefore, it is possible that androgens can regulate the immune 
responses of a genetically autoimmune susceptible individual to 
favor the maintenance of homeostasis (Figure 5).

SeX DiFFeReNCe iN STReSS ReSPONSe 
AND AUTOiMMUNiTY

Associations have long been suspected between stressor events 
in a patient’s past and development of autoimmune diseases, 
such as SLE, MS, RA, and T1DM. Lack of evidence-based and 
prospective studies contribute to the skepticism that stressful life 
events are major etiopathological factors to consider in autoim-
mune disease development. Nevertheless, these events cannot 
be discounted, as stress responses can directly and indirectly 
influence immune responses. Sexual dimorphism exists in the 
hypothalamus–pituitary–adrenal (HPA) axis, a major component  
of the physiological stress response (101). Stress primarily acts 
upon the immune system through release of glucocorticoids, 
leading to alterations in cytokine production. In general, gluco-
corticoids inhibit the production of pro-inflammatory cytokines, 
such as IL-6, TNFα, and IFNα, whereas IL-4 and IL-10 are unaf-
fected (102). Glucocorticoids are also able to inhibit the activation, 
proliferation, and differentiation of many cell types (103–106).

Fetal exposure to glucocorticoids can potentially impact a 
person’s HPA axis, either directly or indirectly; an effect to which 
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female offspring are particularly vulnerable. Females exposed to 
a “prenatal stressor” had higher HPA reactivity than similarly 
exposed male offspring (107). Sex differences in cortisol response 
have been found in multiple life stages. Boys younger than 8 years 
of age had higher cortisol response than females of the same age. 
From 8 to 18 years of age, females have higher cortisol reactivity 
than males, an effect that is reversed in adulthood (107–112). 
Men have a more robust acute HPA response when compared 
with women, as determined by cortisol levels and sympathetic 
nervous system evaluation (113, 114). Men had higher gluco-
corticoid sensitivity and reduction in lipopolysaccharide (LPS)-
stimulated cytokine production, whereas women had a decreased 
glucocorticoid sensitivity and increased LPS-stimulated cyto-
kine production following a stress challenge (115). The type of 
stressor is also important when evaluating sexual dimorphism, 
as women had greater levels of cortisol in response to a social 
rejection challenge, while males had higher levels of cortisol in 
response to an achievement stimulus (116). Stress is able to alter 
plasma estradiol levels (117, 118) and estrogens have been shown 
to dampen the HPA and sympathetic nervous system response 
in certain studies (113, 119). However, other studies report a 
higher female HPA response independent of circulating gonadal 
hormone levels, suggesting either an innate difference in HPA 
mechanisms of action or an early developmental difference in 
response to sex hormone exposure (120).

A recent meta-analysis of 14 retrospective case–control stud-
ies supports major psychosocial stress as a risk factor for autoim-
mune disease development (121). This associated risk remained 
independent of the autoimmune disease reported. Appropriate 
controls in human studies exploring the role of stressors on 
autoimmune disease are difficult to determine, as the etiology 
of autoimmune diseases are still not well characterized. Most 
human retrospective studies rely on patient recall of stressful 
events that occur relatively close to disease diagnosis. It is possible 

that immune dysregulation and autoantibody production occur 
many years before the appearance of clinical signs. This would 
suggest that a stressor event that happens temporally close to 
the time of diagnosis would be a disease exacerbator, rather than  
an etiological factor. Consideration must also be given to the 
potential that the recrudescence of a latent virus or alteration 
in microbiota composition induced by a stressful event may be 
a driving factor in autoimmune disease development. Due to 
experimental limitations on human subjects, and the species 
differences in HPA axis response, these questions remain difficult 
to address, though the use of humanized rodent models may help 
to mitigate these limitations.

SeX DiFFeReNCeS iN ePiGeNeTiC 
ReGULATiON AND AUTOiMMUNiTY

Recent studies highlight the importance of epigenetic regulation 
in biological systems development and function. Abnormal 
epigenetic regulation, such as microRNA (miRNA) dysregulation 
and DNA hypomethylation, has been implicated in autoimmune 
diseases (122–128). Epigenetic mechanisms are important 
contributors to the balance between functional gene expression 
and regulation. These pathways, such as those that drive specific 
gene DNA methylation status, are dynamic processes and may 
potentially be altered in response to environmental cues and 
contaminants.

Hormones influence epigenetic 
Regulation
Recent studies have suggested that sex hormones regulate immu- 
nity and autoimmunity through epigenetic mechanisms (Figures 3  
and 5). miRNAs is a class of small non-coding RNAs that has 
emerged as a key epigenetic regulator of immune system functions 
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in the last two decades (129). We have reported that estrogen 
regulated a set of miRNA in the splenic cells of normal B6 
mice, of which, miR-146a and miR-223 were further validated 
to contribute to enhanced inflammation in splenocytes from 
estrogen-treated mice (130). Many estrogen-regulated miRNAs, 
such as miR-17-92, miR-125, miR-181a, miR-155, and miR-150, 
have been implicated in the regulation of B cell development and 
antibody production by targeting different genes such as Bim, 
C-Myc, Lin28, Pu.1, and AID (129, 131, 132). This suggests that 
estrogen may regulate B cell functions and antibody production 
via miRNA regulation. We recently reported that select lupus-
associated miRNAs were differentially expressed in male and 
female NZB/WF1 mice and that estrogen promoted the expres-
sion of these lupus-associated miRNAs in orchidectomized male 
NZB/WF1 mice. Estrogen conferred a female expression pattern of 
miRNAs on the male NZB/WF1 mice, contributing to the female 
bias of lupus (36). Estrogen regulation of miRNA expression and 
the underlying mechanism has been further reviewed in more 
detail in our previous publication (5).

Increasing evidence indicates that sex influences the DNA 
methylome, which contributes to the sex differences in organ 
development, function, and susceptibility to specific diseases. 
Estrogen regulation of DNA methylation is suggested by the 
finding of the positive correlation between ER-positive status 
and promoter hypermethylation in breast tumors (133, 134). 
Estrogen has been reported to upregulate DNA methyltransferase 
(DNMT)3b expression in Ishikawa endometrial adenocarcinoma 
cells to facilitate malignant transformation of endometrial cancer 
cells (135). However, the inhibitory effect of estrogen on DNA 
methylation has also been observed in prostate cancer cell lines, 
which was mediated by the activation of ERβ, suggesting the 
importance of context on estrogen’s actions (136). There are 
limited data with regard to estrogen regulation of DNA methyla-
tion in immune cells. Autoimmune regulator (AIRE) is a negative 
regulator of autoimmunity, which is differentially expressed in 
the male and female thymus and contributes to the gender dif-
ference of autoimmune diseases (39). A recent study revealed 
that estrogen downregulated AIRE expression by inducing DNA 
methylation at the promoter, contributing to the female bias of 
autoimmune diseases (39). Nevertheless, the detailed mechanism 
of estrogen-mediated promotion of DNA methylation at the AIRE 
promoter remains to be clarified in future studies.

DNA methylation plays an essential role in regulation of sexual 
dimorphism of brain function during early development. It has 
been shown that females display higher DNMTs activity and 
hypermethylation in the highly sexually dimorphic preoptic area 
at postnatal day 1. Treatment with the testosterone metabolite 
estradiol significantly reduced global methylation at the preoptic 
area, leading to brain masculinization (137). Yolk testosterone 
was positively correlated with methylation levels of the ERα pro-
moter in the diencephalon (138). The AR can both prevent DNA 
methylation through binding of the AR to the promoter of a gene 
of interest and promote DNA methylation through interaction 
of the AR with a suppressor, silencing expression of the gene of 
interest and eventual DNA methylation. AR function is associated 
with distinct DNA methylation patterns in genital tissues (139). 
Interestingly, the DNA methylation analysis of human blood 

revealed that there was a tendency of higher methylation levels 
in healthy males when compared with healthy females (140). 
Although the mechanism was unknown, we observed a reduction 
of global DNA methylation in splenocytes from estrogen-treated 
B6 mice when compared with placebo-controls. Given that DNA 
hypomethylation plays an important role in autoimmune diseases, 
such as lupus, it is significant to understand whether the gender 
difference in DNA methylation in immune cells contributes to the 
female bias of autoimmune disease directly and whether estrogen 
plays a role in the sexual dimorphism of DNA methylation in 
immune cells. It is noteworthy that sex hormones may regulate 
DNA methylation differentially in the context of different tissues, 
developmental stages, and pathological conditions. It should also 
be considered that the effect of estrogen on the global methylation 
level and the methylation of specific gene loci in defined subsets 
of cells of the immune system may be different.

eDCs influence epigenetic Regulation
An individual’s ability to respond to an immunological stimulus 
can be modified generations before that individual is even con-
ceived, primarily through the trans-generational effect of EDC 
exposure on epigenetic regulation of immune system develop-
ment (141–143). After conception, maternal exposure to EDCs 
can also lead to alterations in the fetal epigenome, potentially 
leading to aberrant development of multiple body systems in 
the developing fetus (49). Following birth, that individual will 
continue to encounter EDCs through various sources and routes 
of exposure including, but not limited to, drinking water, cosmet-
ics and personal hygiene products, handling of food containers 
and consumption of the stored contaminated food, medications, 
and pesticides (144–146). Exposure to these myriad EDCs can 
potentially alter an individual’s epigenome throughout all stages 
of life, influencing the body’s development and overall response 
to stimuli.

Endocrine disrupting chemicals have been shown to be 
involved in the three known forms of epigenetic regulation: 
miRNA production, DNA methylation, and histone modification. 
BPA is commonly used as a model EDC to investigate mechanisms 
by which estrogenic EDCs are able to modulate cellular functions. 
To date, most studies have focused on BPA’s ability to alter non-
lymphoid tissue epigenetics. Dose and sex-specific changes were 
noted in ER gene expression, DNMT1 and DNMT3a expression, 
and DNA methylation status of the ERα gene Esr1 in various 
areas of the brains of BALB/c mice exposed in utero to BPA. Male 
mice had increased Esr1, Esr2, Esrrg, DNMT1, and DNMT3a 
expression in the hypothalamus at low- and mid-range doses 
of BPA, but reduced expression at high doses, while the females 
showed the reverse effect. Female mice showed hypomethylation 
on multiple exons of the Esr1 gene when exposed in utero (141). 
BPA exposure by pre-pubescent girls in Egypt led to evidence 
of hypomethylation of CpG-islands on the X-chromosome and 
reduced methylation levels in multiple genes associated with 
immune function (147). Overall, exposure to estrogenic EDCs, 
such as BPA, is associated with hypomethylation. CD4+ T cells 
have been shown to be hypomethylated in human SLE patients 
compared with healthy control (148). Therefore, it is possible 
that the reduced methylation associated with exposure to EDCs 
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contributes to the hypomethylation of CD4+ T cells seen in SLE 
and systemic sclerosis patients, promoting aberrant gene expres-
sion in these cells, contributing to disease pathology.

Estrogenic environmental agent exposure can lead to aberrant 
miRNA expression profiles. BPA and DDT are able to alter the 
miRNA expression in a similar manner to estrogen. Increases have 
been seen in miR-21 and miR-146a. BPA was shown to decrease 
miR-134 (149–152). Lupus-prone MRL/lpr mice fed a chow-
based diet containing phytoestrogens had increased expression  
of multiple miRNA and higher levels of global DNA methyla-
tion following LPS stimulation in splenic leukocytes along with 
increased DNMT1 expression (23). While the precise mechanism 
for this paradoxical finding is not yet known, it is possible that 
in select immune cell subsets, DNA methylation was reduced, or 
that the increased DNA methylation status suppressed immu-
noregulatory pathways, contributing to the enhanced disease 
phenotype seen in these mice. We are further investigating these 
findings. Long-term BPA exposure enhanced the expression and 
function of histone deacetylase 2 in adult mice, specifically in 
the hippocampus (153). Currently, there are no known effects of 
epigenetic regulation by BPA specifically on immune cell subsets. 
Further investigation is warranted into mechanisms by which 
estrogenic EDCs can alter the epigenome in immune cell subsets 
and promote tolerance dysregulation and antibody production.

AUTOiMMUNiTY AND MiCROBiAL 
AGeNTS

Observational relationships between infections and autoim-
mune diseases have long been recognized. Infections have been 
reported in a number of autoimmune diseases that either pre-
ceded overt expression of autoimmune disease or noted concur-
rently. Associations have been made between human CMV and 
Epstein–Barr virus (EBV) and autoantibody production in SLE 
patients, EBV and Mycoplasma arthritidis in RA patients, and 
multiple viruses, including hepatitis E virus, in type I diabetes 
mellitus (154–158). In most associations, antigenic mimicry is 
thought to be the mechanism that drives autoantibody produc-
tion. It is evident that for the majority of vaccinations and viral 
pathogens, females mount a much stronger antibody response, 
suggesting that if subsets of female B cells were to break central 
and peripheral tolerance, that these abnormal B cells would drive 
higher autoantibody production than male autoreactive B cells. 
In the same manner as gene associations, it is very difficult to 
link a single infection, or multiple infections, with causation of 
autoimmune diseases. Alterations in commensal gut microbiota 
composition have been found in multiple mouse models of SLE 
as well as human SLE patients (22, 159). Breaks in the mucosal 
barrier during stressful events or during the female reproductive 
cycle may expose the immune system to both infectious and com-
mensal microbes (160). As the role of infectious agents potentially 
contributing to autoimmunity has been well documented to date, 
this review will focus on recent evidence linking sex differences 
in response to microbial stimulation, commensal microbiota, and 
environmental factors that may influence autoantibody produc-
tion in susceptible individuals.

Sex Differences and Microbiota
The host microbiota, which has repeatedly been shown to influ-
ence immune phenotype, is dependent on multiple host factors, 
including age, diet, sex hormones, antibiotic usage, host genetics, 
obesity status, and various lifestyle choices. Early host–microbe 
interactions during childhood development can have long term 
and profound consequences on adult health through immune 
system “training” and induction of tolerance (161). Males and 
females have distinct microbial profiles, seen both in humans 
and mouse models of disease (162, 163). Gnotobiotic male and 
female C57BL/6 mice were administered the colonic contents of  
a human male. Upon analysis, the female mice had higher diver-
sity as assessed by Shannon Diversity index, and a separate profile, 
whereas the male mice more closely resembled the donor profile. 
Forty-six distinct operational taxonomic units (OTUs) were dif-
ferent between the sexes, with 33 OTUs being overrepresented 
in the female fecal microbiota (162). Sex differences in microbial 
profiles were observed in multiple strains of mice. Gonadectomy 
with or without hormone replacement revealed further evidence 
of hormone effects on sex differences in mouse gut microbiota 
(164). In humans, the microbiota of males had reduced repre-
sentation of Bacteroides at a BMI  >  33, and the level of these 
microbes was reduced with increasing BMI. Post-menopausal 
females did not show an alteration in Bacteroides associated with 
BMI (165). An early critical window for microbial alteration of 
disease was shown for T1DM development in non-obese diabetic 
mice (NOD mice). Genetically similar mice housed in separate 
facilities eventually led to differing rates of T1DM development 
resulting in NODlow and NODhigh communities. Co-housing or 
oral gavage of fecal contents from the NODhigh mice to NODlow 
weanlings did not alter T1DM incidence. However, the offspring 
of the co-housed NODlow mice did have increased T1DM inci-
dence, suggesting that a window exists either in utero or before 
weaning where alterations of the microbiota result in disease 
development later in life (24). The importance of differing envi-
ronmental, housing, and laboratory conditions on animal models 
of disease phenotypes is evident in this study. It is plausible that 
male and female epithelial and immune cells respond in a dif-
ferential manner to microbial recognition during the formative 
periods in infancy and early childhood, and this differential 
response contributes to the distinct differences found in micro-
bial composition in adulthood. It follows that if male and female 
cells inherently respond differently to microbial recognition dur-
ing development, then exposure to EDCs during this important 
time period could drastically alter the microbial composition, 
thereby exerting long-term consequences on adult health from 
childhood exposures. Further investigation is vital to determine 
the role EDCs play in the development of microbial composition 
and resultant functional alterations in childhood and adulthood.

Communication between the host and commensal microbes 
occurs through multiple pathways, which are not yet well under-
stood. Recognition of microbial-associated molecular patterns 
(MAMPs), production of soluble mediators, and interactions within 
the microbiota–gut–brain axis are thought to be the predominant 
methods of host–microbe communication. Resident immune 
cells at mucosal sites are able to recognize MAMPs and promote 
inflammation or induce regulation through Foxp3-positive T cell 
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TABLe 1 | Sex-based differences in microbiota and autoimmune disease development.

Autoimmune 
disorder

Animal 
models

Microbiota phenotype Outcome Reference

Systemic lupus 
erythematosus 
(SLE)

MRL-lpr 
mice

Elevated Lachnospiraceae sp. Associated with more severe glomerulonephritis (23)

SLE MRL-lpr 
mice

Administration of Lactobacillus Reduced proteinuria and renal pathology, serum IgG2a, 
IL-10, and IgA in castrated males, not intact males

(22)

Decreased circulating luteinizing hormone

SLE MRL-lpr 
mice

Female MRL-lpr have elevated Lachnospiraceae and reduced 
Lactobacillus compared to controls, males showed no difference 
from controls

Accelerated disease in females compared with males (21)

Type-1 diabetes 
mellitus (T1DM)

NOD mice Male microbiota and gavage of male microbiota  
to female mice

Reduce T1DM in association with functional androgen 
receptor

(163)

Germ-free conditions Attenuated sex differences in cumulative T1D (%)

T1DM NOD mice Segmented filamentous bacteria monocolonized Protected males but not females (175)
Specific pathogen free conditions and colonization with  
segmented filamentous bacteria

Increased blood testosterone levels in males compared 
to germ free

Rheumatoid 
arthritis

HLA-DRB1 
0401, 0402 
mice

0401 Clostridium-like bacterium dominant, loss of age,  
and sex differences in microbiota

More susceptible to disease (176)

0402 Porphyromonadaceae and Bifidobacteria dominant,  
retain sex- and age-based microbiota differences

Resistant to disease
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populations (166–168). Cytokines, metabolites, hormones, mucus, 
and anti-microbial peptides are all mediators produced by the host 
in response to the presence of microbes, while microbes release 
short chain fatty acids, polysaccharide A, formyl peptides, and 
d-glyceo-β-d-mannoheptose-1,7-bisphosphate (HBP), all of which 
can modulate the host response and microenvironment (169). It 
is currently understood that a two-way communication channel 
exists between the gut microbiota and the central nervous system. 
Microbes exert effects on the vagal afferents and enteric nervous 
system, and resultant stress responses act through the HPA axis to 
drive or dampen cortisol secretion. Cortisol acts both locally and 
systemically on immune cells, promoting the secretion of various 
cytokines and chemokines, which in turn alters gut permeability 
and intestinal barrier function. These actions alter the microbial 
composition within the gut (170, 171). Thus, complex mechanisms 
of communication between the host and microbiota, which is 
dependent on specific microbial composition, may promote either 
tolerance or inflammation, both locally and systemically in a 
context-dependent manner.

In the context of autoimmune disease, Markle et al. investi-
gated the sex differences in microbiota in a mouse model of auto-
immune T1DM. Transfer of the male microbiota to female mice 
led to systemic alterations in sex hormone levels and protection 
of female mice against development of T1DM (163). This protec-
tive effect conferred by the transfer of male microbiota to female 
mice was dependent on AR activity. Blockage of AR activity by 
the AR antagonist flutamide, attenuated the protection from 
insulitis, autoantibody production, metabolome changes, and 
the capacity of T cell transfer to confer autoimmune disease in 
NOD SCID mice. Bacteria are able to metabolize sex hormones, 
thereby regulating the balance between active and inactive 
hormones, and potentially modulating hormone function (172). 
Probiotics were shown to enhance antibody response to vaccines, 

potentially affecting the efficacy of oral vaccinations due to gut 
microbiota (173, 174). We and colleagues showed that in a mouse 
model of SLE, Lactobacillus spp. was inversely associated with 
disease severity. Supplementation with Lactobacillus spp. led to 
reduced IL-6 production, suppression of IgG2a production and 
glomerular deposition, and increased IL-10 in circulation along 
with increased Treg populations and decreased Th17 subsets. 
Lactobacillus was also associated with reduced renal pathology. 
These protective effects were seen in female and castrated male 
MRL/lpr mice, but not in intact MRL/lpr mice, suggesting that 
some microbial effects act in a sex-hormone dependent manner 
(22). Sex-based differences in microbiota and effects on disease 
development or progression in the context of sex-biased autoim-
mune diseases are summarized in Table 1.

Sex Differences, Pathogen Sensing, and 
TLR7/8/9
Microbial signals are recognized through multiple pattern-
recognition receptors, including TLRs, NOD-like receptors, 
C-type lectin receptors, and RIG-I-like receptors that are present 
in varying levels between cell subsets. Males and females tend 
to be exposed to the same pathogens and inflammatory triggers. 
However, the responses and outcomes to these exposures can be 
vastly different between sexes. One key sex difference in pathogen 
and inflammatory trigger sensing comes from the different levels 
of receptor expression. There are multiple immune-related genes, 
including TLR7, TLR8, FOXP3, CD40L, and CD13 that are pre-
sent on the X-chromosome (177). It is possible that incomplete 
X chromosome inactivation can lead to increased numbers of 
FoxP3+ cells. Interestingly, while the number of FoxP3+ cells 
increased, the mean fluorescent intensity of FoxP3 was decreased 
and functional ability of these cells to regulate immune responses 
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was suppressed (178). There is a potential for increased levels 
of TLR7 and 8 expression due to incomplete inactivation of the 
X-chromosome in females. The balance among TLR7, 8, and 
9 has been shown to be vital to disease development in mouse 
models of SLE. TLR7 and 8 sense single-stranded RNA, and TLR9 
binds to specific unmethylated CpG DNA motifs. Mice with 
increased levels of TLR7, or loss of TLR9, had enhanced autoan-
tibody production and diseases severity, with TLR9 suppressing 
the autoantibody production induced by TLR7 (179). Male mice 
had higher levels of TLR4, circulating LPS-binding protein, and 
increased expression of CD14 on macrophages than female mice 
following LPS stimulation in vivo. These changes were seen at the 

protein level, while mRNA expression was unchanged between 
sexes (180, 181). Therefore, the potential differences in ability of 
male and female cells to recognize microbial or self stimuli may 
contribute to the observed differential responses.

Sex differences are also observed in how immune cells respond 
internally following ligand binding to receptors. Female Kuppfer 
cells produce IL-6 in a MyD88-dependent pathway, while male 
cells produce IL-6 in a MyD88-independent pathway (182). The 
ligation of CD200–CD200R is important in the suppression of 
TLR7 response to pathogens and control of IFNα production 
(183). Release of this inhibition through the knockout of the 
CD200 gene in mice enhanced sex differences in TLR7 and 
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outcomes of viral infection. In HIV-1 infection, female plasma-
cytoid dendritic cells produced higher levels of IFNα after TLR7 
stimulation than males and also had enhanced expression levels 
of all 13 IFNα subtypes and IFNβ following stimulation of TLR7 
on peripheral blood mononuclear cells (PBMCs) (183). Caution 
must be taken when evaluating changes in expression levels and 
correlating that to immune responses, as PBMCs from human 
SLE patients showed increased expression of TLR9 mRNA and 
proteins compared with healthy controls. However, the function 
of TLR9 was impaired in SLE PBMCs leading to reduced IFNα 
following stimulation (184). Therefore, it is plausible that female 
cells may be more sensitive to PAMPs, and following receptor 
binding, internal signaling differences may enhance inflamma-
tory responses compared with male cells.

CONCLUSiON AND FUTURe DiReCTiONS

Biological differences exist in immunological responses to stimuli 
between males and females, and this likely contributes to the sex 
difference in the loss of immunological tolerance and produc-
tion of autoantibodies. These differences manifest in a complex 
network of intrinsic differences in the ability of immune cells to 
recognize a stimulus, respond, and return to homeostasis. Female 
and male cells could have differential cell signaling and outcomes 
to environmental contaminants exposure, concurrent disease or 
pathogen exposure, commensal populations, age, sex hormone 
fluctuations, and other environmental influences. While this bio-
logical end point generally protects females from infectious dis-
eases, it predisposes genetically susceptible individuals to chronic 
inflammatory conditions and development of autoimmunity 
compared with their male counterparts. Our understanding 
of environmental interactions with sex-specific characteristics 
remains incomplete, with evidence that sex-specific therapies 
or preventive measures may exist. Sex-based differences have 
been seen in response to treatment with methylprednisolone and 
rituximab (a monoclonal antibody against CD20) (185, 186). Sex 
disparities in clinical presentation, progression, and outcome 
of autoimmune diseases exist, suggesting that separation of 
sex-based groups in the evaluation of treatment strategies may 
help to appropriately tailor multiple treatment modalities in the 
future (187, 188). Environmental exposures may also influence an 
individual’s response to medication, highlighting the importance 
of considering a patient’s environment when determining the  
best possible treatment regimen. Further investigation into the 
precise mechanism of how environmental chemical exposure 
alters distinct ligand–receptor signaling cascades in specific 
immune cell subsets is vital for better understanding the extent to 
which these ubiquitous chemicals can modify human and animal 
physiology. The exploration into associations between commen-
sal microbial dysregulation and host disease susceptibi lity, or 

severity, must also take into account, to the best extent possible, 
the environment to which that particular individual has been 
exposed. Microbial metabolism of EDCs may exert protection or 
promote exacerbation of certain disease processes depending on 
resultant metabolites and bioavailability.

Given that multi-factors are likely required for the induction 
of autoimmune diseases, a different approach is needed to under-
stand sex differences in susceptibility to these chronic conditions. 
Biologically, male and female cells of the immune system are dif-
ferentially exposed to sex hormones and sex hormone-regulated 
proteins (other unidentified internal regulators) and manifest 
inherent genetic differences in sex chromosomes. Thus, the cells 
of the innate and adaptive immune system could be molecularly 
primed differently between sexes. It is therefore conceivable that 
male and female cells will differently perceive the binding of their 
receptor to the same ligand. In females, exposure to these triggers 
may have adverse effects. Following external triggers, the female 
immune system may be more prone to dysregulation (e.g., break 
in immune tolerance) and have augmented induction of autoan-
tibodies and cytokines/chemokines that have been associated 
with autoimmune diseases. We further postulate that in geneti-
cally susceptible individuals, sex differences, both intrinsic and 
in response to environmental contaminants, such as estrogenic 
EDCs, contri bute to female bias of immune tolerance dysregula-
tion and drive autoantibody production and subsequent pathol-
ogy (Figure 6). Understanding the complex interactions among 
differences in sex hormones, a wide range of chemicals, genetic 
variations, infections, and environmental triggers and deriving 
conclusions about impacts on pathogenesis will likely require the 
utilization of complex computational models. With the progres-
sion of indi vidualized medicine, these environmental exposures 
will likely prove unique to various lifestyles and geographical 
locations.
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