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Background: The cuprizone (CPZ) model of multiple sclerosis (MS) was used to 
identify microRNAs (miRNAs) related to in  vivo de- and remyelination. We further 
investigated the role of miR-146a in miR-146a-deficient (KO) mice: this miRNA is 
differentially expressed in MS lesions and promotes differentiation of oligodendrocyte 
precursor cells (OPCs) during remyelination, but its role has not been examined during 
demyelination.

Methods: MicroRNAs were examined by Agilent Mouse miRNA Microarray in the corpus 
callosum during CPZ-induced demyelination and remyelination. Demyelination, axonal 
loss, changes in number of oligodendrocytes, OPCs, and macrophages/microglia was 
compared by histology/immunohistochemistry between KO and WT mice. Differential 
expression of target genes and proteins of miR-146a was analyzed in the transcriptome 
(4 × 44K Agilent Whole Mouse Genome Microarray) and proteome (liquid chromatog-
raphy tandem mass spectrometry) of CPZ-induced de- and remyelination in WT mice. 
Levels of proinflammatory molecules in the corpus callosum were compared in WT 
versus KO mice by Meso Scale Discovery multiplex protein analysis.

results: miR-146a was increasingly upregulated during CPZ-induced de- and remye-
lination. The absence of miR-146a in KO mice protected against demyelination, axonal 
loss, body weight loss, and atrophy of thymus and spleen. The number of CNP+ oligo-
dendrocytes was increased during demyelination in the miR-146a KO mice, while there 
was a trend of increased number of NG2+ OPCs in the WT mice. miR-146a target genes, 
SNAP25 and SMAD4, were downregulated in the proteome of demyelinating corpus 
callosum in WT mice. Higher levels of SNAP25 were measured by ELISA in the corpus 
callosum of miR-146a KO mice, but there was no difference between KO and WT mice 
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during demyelination. Multiplex protein analysis of the corpus callosum lysate revealed 
upregulated TNF-RI, TNF-RII, and CCL2 in the WT mice in contrast to KO mice. The 
number of Mac3+ and Iba1+ macrophages/microglia was reduced in the demyelinating 
corpus callosum of the KO mice.

conclusion: During demyelination, absence of miR-146a reduced inflammatory 
responses, demyelination, axonal loss, the number of infiltrating macrophages, and 
increased the number of myelinating oligodendrocytes. The number of OPCs was slightly 
higher in the WT mice during remyelination, indicating a complex role of miR-146a during 
in vivo de- and remyelination.

Keywords: cuprizone, mir-146a, mir-181b, mir-193a, demyelination, remyelination, multiple sclerosis

inTrODUcTiOn

Multiple sclerosis (MS) is an inflammatory demyelinating disease 
of the central nervous system [CNS; (1)]. Immunomodulatory 
treatments are available for prevention of relapses in the relaps-
ing–remitting form of the disease, but treatment options to 
prevent demyelination are limited (2).

It has been estimated that more than 60% of all protein-coding 
mammalian genes can be regulated by microRNAs (miRNA) (3). 
The functional level of miRNAs can be manipulated in vivo (4), 
and clinical trials are already running with the intention of either 
restoring miRNA function by administration of miRNA mimics 
(5) or inhibiting their function by antimiR oligonucleotids (6). 
The posttranscriptional regulatory system of microRNAs has 
been found to be extensively involved in almost all biological 
processes, including those essential in the pathology of MS (7). 
Many microRNAs are differentially regulated in response to MS 
in brain lesions (8, 9), whole blood (10, 11), isolated blood cells 
(12, 13), plasma and serum (14, 15), and cerebral spinal fluid (16, 
17). Still, the actual role of these differentially expressed miRNAs 
in MS pathology has been not extensively explored. One of the 
miRNAs that is differentially regulated in different tissues and 
cells in MS is miR-146a: it has been found to be upregulated in 
brain lesions (8), serum (18) and blood-derived immune cells 
(13, 19). The role of miR-146a as a negative regulator of immune 
activation is well established (20, 21). miR-146a is involved in a 
negative feedback loop: it is induced by NF-kB, but also inhibits 
the activation of NF-κB (22). miR-146a is involved in cell death 
and survival; in glioma cells: overexpression of miR-146a sup-
pressed cell survival, proliferation, and migration, whereas 
inhibition resulted in improved migration potential (23, 24). 
miR-146a amplified the effect of a G-actin-sequestering peptide 
to promote OPC differentiation in vitro, and its overexpression in 
neural progenitor cells increased their differentiation into OPCs  
(25, 26). Recently, infusion of miR-146a mimics into demyeli-
nated corpus callosum after 5-week administration of cuprizone 
(CPZ) promoted differentiation of OPCs into myelinating oligo-
dendrocytes (27).

Oral administration of the copper chelator bis-cyclohexanone- 
oxalyldihydrazone (CPZ) leads to demyelination most pro-
nounced in the corpus callosum, whereas discontinuation 
of CPZ results in rapid remyelination (28). The mechanism 

of CPZ-induced demyelination is not fully understood but 
mitochondrial dysfunction and oxidative stress to which oli-
godendrocytes are particularly sensitive is suspected (29, 30). 
The blood–brain barrier remains intact, and the absence of 
T and B  cells do not affect CPZ-induced demyelination (31). 
Therefore, de- and remyelination can be examined as relatively 
separated processes unmasked from the contribution of adap-
tive immune responses, in contrast to another commonly  
used MS model, experimental autoimmune encephalomyelitis 
(EAE) (28, 30).

Considering the differential expression of microRNAs in dif-
ferent tissues and compartments of patients with MS, here we 
used the CPZ mouse model of MS to identify and investigate 
miRNAs involved in de- and remyelination. By using microar-
ray, we identified three miRNAs differentially expressed during 
experimental de- and remyelination that were also reported to be 
differentially expressed in MS lesions (8). One of these miRNAs, 
miR-146a can have both pro- anti-apoptotic effect in different 
cells, including OPCs (26, 32), and had a unique expression 
profile during de- and remyelination in our experiments. This 
miRNA has been recently investigated in the CPZ model, and 
its injection promoted differentiation of OPCs into myelinating 
oligodendrocytes during remyelination in wild-type (WT) mice 
(27). Here, we investigated, if the absence of miR-146a influences 
demyelination in the CPZ model by using miR-146a-deficient 
(KO) mice.

MaTerials anD MeThODs

mir-146a KO Mice
miR-146a knockout (KO) mice were purchased from the Jackson 
Laboratory (ME, USA). This mouse strain was generated on 
a C57BL/6 background in Dr. David Baltimore’s laboratory, 
California Institute of Technology (33). Mice were bred at the 
Biomedical Laboratory, SDU according to protocols and guide-
lines approved by the Danish Animal Health Care Committee 
(2014-15-00369). All animal experiments complied with the 
EU Directive 2010/63/EU for animal experiments. Female KO 
mice aged 7–8 weeks were included in the experiments. At this 
age, miR-146a KO mice do not display a visible autoimmune or 
inflammatory phenotype (33).
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cuprizone-induced Demyelination and 
remyelination
Cuprizone (Sigma Aldrich, MO, USA) was delivered orally: pow-
dered standard chow was mixed with 0.2–0.4% CPZ. To induce 
demyelination, CPZ was administrated to 7- to 8-week-old mice 
for 4  weeks (4  weeks demyelination: 4wd). Remyelination was 
examined at two time-points: acute remyelination induced by 
4 weeks CPZ feeding followed by 2 days of regular diet (2 days 
remyelination: 2dr), and full remyelination induced by 4 weeks 
CPZ feeding followed by 2  weeks of regular diet (2  weeks 
remyelination: 2wr). Control mice were kept on a normal diet. 
During experiments, mice were weighed every second day to 
control that mice lost no more than maximum 20% of their 
body weight. Experiments were terminated by euthanizing mice 
with an overdose of pentobarbital (Glostrup Apotek, Glostrup, 
Denmark) followed by perfusion with 4% paraformaldehyde 
(PFA) for staining applications, or phosphate buffered saline for 
all other experiments.

extraction of Whole rna and Quantitative 
Pcr (qPcr)
For the removal of the corpus callosum, the brains were removed 
from the skull, immediately frozen, and cut into coronal 
serial sections (section thickness 200  µm). By using a stere-
omicroscope, the corpus callosum was cut out of the sections 
with a fine Graefe-knife, along its rostro-caudal extension. The 
sam ples were collected in ice-cold Eppendorf-tubes and stored 
frozen until used. RNA was extracted by the miRNeasy micro Kit 
(Qiagen, Valencia, CA, USA). The quantity and quality of total 
RNA was assessed by NanoDrop ND-1000 spectrophotometer 
(NanoDrop Technologies, Wilmington, DE, USA) and Agilent 
2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA), 
respectively. Only those samples were used for microarray 
experiments that gave >8.0 for RNA integrity number, showed 
a clear gel image, and no DNA contamination was observed on 
the histogram.

To measure miRNA expression, primer sets for specific miRNA 
assays and sno135 endogenous control and the MicroRNA 
Reverse Transcription Kit (Life Technologies, Thermo Scientific, 
CA, USA) were utilized following the manufacturer’s protocol. 
Briefly, 10  ng of each total RNA sample were transcribed by 
MultiScribe Reverse Transcriptase. qPCR was carried out using 
Applied Biosystems 7000 Real-Time PCR System. Specific 
TaqMan chemistry primers for reverse transcription and qPCR 
were acquired from Life Technologies (Thermo Scientific) (miR-
146a ID: 000468, snoRNA135 ID: 001230, CA, USA). Reverse 
transcription was conducted under the following conditions: 
30 min at 16°C, 30 min at 42°C, 5 min at 85°C, cool down to 4°C; 
and for qPCR analyses the following conditions were applied: 
2 min at 50°C, 10 min at 95°C, 40 cycles of 15 s at 95°C followed 
by 1 min at 60°C according the manufacturer’s instructions. The 
relative expression of each miRNA was calculated from the equa-
tion 2-ΔCt, where ΔCt = mean Ct(miRNA)—mean Ct(internal 
control) (where Ct is the threshold cycle for a sample). All rea-
gents and instruments for qPCR were purchased from Applied 
Biosystems Inc. except when otherwise indicated.

mirna Microarray
For microRNA profiling, the Agilent Mouse miRNA Microarray 
Kit (G4472A, 8 × 15k) was applied according to the manufac-
turer’s instruction (version 1.0) with 100–100 ng quality-checked 
total RNA. The labeled samples were hybridized for 20 h at 55°C. 
The arrays were scanned with an Agilent DNA Microarray 
Scanner BA, the signal quantification was carried out by Feature 
Extraction 10.7 Image Analysis Software and data were further 
analyzed by Genespring GX10.0. The microarray data are 
deposited in NCBI Gene Expression Omnibus with accession 
GSE100662.

Meso scale Discovery Multiplex 
electrochemiluminescent assay
Cytokine levels in the corpus callosum were measured by the 
Meso Scale Discovery (MSD, USA) electrochemiluminescence 
proinflammatory mouse V-Plex Plus Kit (IL-1β, IL-4, IL-6, IL-10, 
TNF), a MULTI-SPOT 4 spot cytokine costume plate (MIP1α, 
VEGF, and MMP9) and a MULTI-SPOT 2 spot cytokine costume 
plate (TNF-RI and TNF-RII). We used a SECTOR Imager 6000 
(Meso Scale Discovery) Plate Reader, and data were analyzed 
using the MSD Discovery Workbench software according to the 
manufacturer’s instructions. Results are presented relative to the 
total protein concentration of the individual samples.

elisa
SMAD4 and SNAP25 protein levels in the corpus callosum were 
examined and compared between miR-146a KO mice and WT by 
ready-made Sandwich ELISA kits according to the manufacturer’s 
instructions (Nordic Biosite, OKEH03425 and EKM1284, res-
pectively). A Molecular Devices, Vmax kinetic microplate reader 
was used to analyze the results, and results are presented relative to 
the total protein concentration of the individual samples.

histopathology
Brains were postfixed in 4% PFA overnight before they were 
embedded in paraffin. Then, 8 µm coronal sections were obtained 
at the levels of 161, 181, 209, and 221 (34). Demyelination was 
evaluated using Luxol fast blue staining with cresyl violet. Axonal 
pathology was examined by Bielschowsky staining. The sections 
in the corpus callosum were overlaid by a 100-point grid at a mag-
nification of 20× in the microscope and the number of points, 
each representing 2.5 mm2, located within the lesion was counted. 
First, the size of the entire lesion was determined (total lesion). 
Next, the size of the area, which showed remyelination (evenly 
thin myelin sheaths) was measured. Immunocytochemistry was 
performed on paraffin sections as described before (35) without 
antigen retrieval using antibodies against Iba1 (WAKO #019-
19741), Mac3 (Becton & Dickinson #553322), NG2 (Millipore 
AB 5320), and CNP (Sternberger Monoclonals SMI 91). Stained 
cells were counted in sections overlaid with a morphometric grid 
in the ocular lens. The cell count values represent cells/mm2.

Proteomics
The proteomic analysis was performed in pentaplicate. The 
corpus callosum was dissected from fresh-frozen brain obtained 
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from mice during demyelination, acute remyelination (2 days), 
full remyelination (2  weeks), and controls (five mice in each 
group). The samples were treated with protease and phosphatase 
inhibitors, ultracentrifuged to remove cell debris and nano-
structures and subsequently the total protein content was esti-
mated by amino acid composition analysis. The proteins in the 
supernatant were reduced with DTT, alkylated with iodoaceta-
mide and digested with trypsin as described elsewhere (36). The 
purified peptides from each pool were labeled with one of the 
iTRAQ reagent according to the manufactures protocol and 
respective labeled samples were mixed in 1:1 proportion (based 
on the amino acids composition analysis). In order to enrich for 
phosphopeptides and glycosylated peptides, the TiSH protocol 
was applied (37). Peptide samples were fractioned and analyzed 
by LC-MS/MS using a nano-Easy LC (Thermo Fisher Scientific) 
coupled with either a Q-Exactive or Velos mass spectrome-
ters (Thermo Fisher Scientific, Bremen, Germany). All peptides 
fractions were resuspended in 0.1% FA and loaded onto a 2-cm 
100  µm inner diameter pre-column using the nano-Easy LC. 
Peptides were eluted directly onto the analytical column using 
a gradient of 0–34% buffer B (90% Acetonitrile, 0.1% FA) over 
30–120  min depending on the UV intensity of the individual 
HILIC fractions. All LC-MS/MS runs were performed using an 
analytical column of 20 cm × 75 µm inner diameter fused silica, 
packed with C18 material (Dr. Maisch, Ammerbuch-Entringen, 
Germany). The MS settings for Q-Exactive instrument were as 
follows: full MS: resolution at 60,000, AGC target 1e6, Maximum 
IT 100 ms, and for data-dependent MS/MS of the top 12 most 
intense ions: resolution at 15,000, AGC target 2e4, Maximum 
IT 100 ms, isolation window 1.2 m/z, fixed first mass 110.0 m/z, 
NCE: 30, Intensity threshold 1e4. For the analysis on Velos 
instrument, the settings were similar, but top 7 most intense 
ions were selected for MS/MS fragmentation at 7,500 resolution, 
NCE 35. The MS raw files were processed and search in Mascot 
and SEQUEST through the Proteome Discoverer 2.1 software 
(Thermo Fisher Scientific). Database searches were performed 
using the following parameters: Precursor mass tolerance of 
10 parts per million (ppm); MSMS mass tolerance of 0.05 Da; 
Enzyme: trypsin and up to two missed cleavages were allowed.

experimental Design and statistical 
analysis
If not otherwise stated, statistical tests were performed using 
Prism 7 software (GraphPath, USA, CA, USA) and quantitative 
data are presented as mean ± SEM. Exact p-values are specified 
for all ANOVA tests when p > 0.0001, and p < 0.05 is considered 
significant. Each ANOVA test is followed by an appropriate 
post hoc test.

Raw miRNA expression data were obtained from 3 to 4 
mice pr. group. The microarray data were normalized to the 
75th percentile signal intensity and entities showing present 
call in all samples of a condition were filtered out. Differentially 
expressed genes were selected when passing the signal inten-
sity filter (entities where at least 100% of samples in any one 
out of four conditions have values within cutoff) and showing 
at least twofold statistically significant change (ANOVA and 

Tukey HSD post hoc test, with Benjamini–Hochberg multiple 
testing correction p-value <0.05) between any of the groups. 
Validation of miRNA expression by qPCR included five to eight 
mice in each group and data were analyzed by one-way ANOVA 
followed by LSD post hoc tests. Body weight, thymus and spleen 
weight, and lesion size analysis included 4–16, 4–8, and 4–7 
mice at each time-point, respectively, and data were analyzed 
using two-way ANOVA followed by Bonferroni post hoc tests.

For the analysis of the proteome, five mice were included. 
The ratio (r) for each protein, in any of the three comparisons 
(any condition to the control) was compared to its SE, such that 
if r ≤ 1/(1 + 2SE) or if r ≥ (1 + 2SE), the protein has changed. If 
the protein could be measured only in one or two of the five mice, 
they were not encountered in this analysis.

ELISA analyses of SMAD4 and SNAP25 and Meso Scale 
Discovery multiplex analysis of cytokines, chemokines, and 
TNF receptors included four to eight mice in each group, and data 
were analyzed using two-way ANOVA followed by Bonferroni 
post hoc tests.

resUlTs

Differential expression of Micrornas  
in the corpus callosum During  
cPZ-induced Demyelination and 
remyelination
In order to identify microRNAs involved in the pathology of 
de- and remyelination, we isolated the corpus callosum from 
mice exposed to CPZ and conducted an Agilent microarray 
analysis for 627 miRNAs (data are deposited in NCBI Gene 
Expression Omnibus with accession GSE100662). We identi-
fied three miRNAs, miR-146a, miR-181b, and miR-193a, which 
were differentially expressed compared to controls confirmed 
by qPCR (Figure  1). The expression of miR-146a increased in 
response to CPZ exposure, and continued to increase during the 
remyelination phase (p < 0.001, one-way ANOVA, LSD post hoc 
test) (Figure 1A). By contrast, the expression level of miR-193a 
and miR-181b decreased in response to CPZ-induced demyelina-
tion and had returned to baseline in the full remyelination phase 
(p  <  0.001 and p  <  0.01, respectively, one-way ANOVA, LSD 
post hoc test) (Figures 1B,C).

Observing (i) a continuous increase in the expression level of 
miR-146a in contrast to the two other miRNAs, (ii) considering 
its biological function, and (iii) also the differential expression 
in brain lesions, body fluids, and cells obtained from MS patients 
(8, 13, 18, 19, 25–27), we further investigated the role of miR-
146a in CPZ-induced de- and remyelination.

expression of mir-146a in response  
to cPZ in Different Organs
In addition to analyzing the expression level of miR-146a in the 
corpus callosum, we also analyzed the expression level in thymus, 
liver, spleen, and muscle tissue. In contrast to the corpus callo-
sum, we did not see a CPZ-induced increase of miR-146a in any 
of these organs. The highest expression level of miR-146a among 
the examined organs was found in the spleen (Figure 2A).
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FigUre 2 | Expression of miR-146 in different organs during cuprizone (CPZ) treatment and during physiological postnatal myelination. (a) The relative expression 
of miR-146a was determined by qPCR in different organs of individual animals. Abbreviation: C: un-manipulated controls, 4wD: 4 weeks demyelination. 2dR: 2 days 
(acute) remyelination, 2wR: 2 weeks (full) remyelination. (B) The expression of miR-146a in the corpus callosum during physiological myelination (on postnatal days 
1–14, P1–P14). The relative expression of miR-146a was determined by qPCR and the results are presented relative to sno135 (n = 4 in each group, one-way 
ANOVA, mean ± SEM).

FigUre 1 | Differential expression of microRNAs (miRNAs) in the corpus callosum of mice during experimental demyelination and remyelination. Using microarray 
and validation by quantitative PCR (qPCR), three miRNAs, miR-146a (a), miR-193a (B) and miR-181b (c) were differentially regulated in response to CPZ exposure 
in the corpus callosum. *p < 0.05, **p < 0.01, ***p < 0.001, n = 5–8 in each group, one-way ANOVA, mean ± SEM. Abbreviation: C: un-manipulated controls 
covering ages of mice used in the de- and remyelinating experiments, 4wD: 4 weeks demyelination. 2dR: 2 days (acute) remyelination, 2wR: 2 weeks (full) 
remyelination.
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expression of mir-146a in the Brain 
During Physiological Myelination in 
Postnatal Mice
In order to investigate, if the level of miR-146a is also increased 
during physiological myelination, we examined its expression in 
the corpus callosum isolated from postnatal mice aged 1 –14 days 
(P1–P14); this is the most critical period for physiological 

myelination in mice (38). We found no change in the expres-
sion of miR-146a, which indicates that the observed increase 
in response to CPZ exposure is associated with demyelination 
pathology (Figure 2B).

To further examine the effect of miR-146 on de- and remyelina-
tion in vivo, we used a miR-146a-deficient (KO) strain compared 
to WT mice in additional experiments (33).
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FigUre 3 | Systemic effects of cuprizone in miR-146a-deficient mice. (a) Body weight in response to CPZ exposure in miR-146a KO and WT mice. *p < 0.05, 
**p < 0.01, ***p < 0.001, n = 16–4 in each group at each time-point (30 mice altogether), two-way ANOVA, mean ± SEM. (B) Weight of thymus and (c) weight  
of spleen in response to CPZ exposure in miR-146a KO and WT mice. *p < 0.05, **p < 0.01, ***p < 0.001, n = 4–8 in each group, mean ± SEM. Abbreviations: 
1wD: 1 week demyelination, 2wD: 2 weeks demyelination, 3wD: 3 weeks demyelination, 4wD: 4 weeks demyelination. 2dR: 2 days remyelination, 1wR: 1 week 
remyelination, 2wR: 2 weeks remyelination.
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systemic effects of cPZ exposure  
in mir-146a-Deficient Mice
Weight loss is a characteristic systemic effect of CPZ exposure 
in mice (29). As expected, both WT and miR-146a KO mice lost 
weight in response to CPZ exposure, but miR-146a KO mice 
lost significantly less weight than WT mice during the period of 
demyelination (Figure 3A).

Recently, we observed thymus atrophy as an additional sys-
temic effect of CPZ exposure (39). We, therefore, examined the 
effect of miR-146a deficiency on thymus weight in response to 
CPZ exposure. The spleen weight was also examined, since the 
highest expression level of miR-146a outside the CNS was found 
in this organ (Figure 2A). We observed atrophy of the thymus 
and spleen in the WT mice, whereas atrophy of both organs 
was less severe or absent in the miR-146a KO mice (p < 0.0001, 
spleen, and thymus, respectively) (Figures 3B,C). To determine, 
if this observation was an artifact of the more pronounced 
weight loss observed in the WT mice, we also analyzed the 
organ weight as a percentage of bodyweight, but these analyses 
showed similar results (p < 0.00001, spleen; p = 0.001, thymus, 
data not shown). These data indicate that miR-146a KO mice 
are protected against systemic effects of CPZ exposure, and this 
becomes evident after 2 weeks of treatment.

effect of mir-146a Deficiency on cPZ-
induced Demyelination and axonal loss
Next, we quantified demyelination in the brain of miR-146a 
KO and WT mice exposed to CPZ. In the miR-146a KO mice, 

demyelination and axonal damage was significantly reduced 
(p  =  0.0001, two-way ANOVA, Bonferroni post  hoc test) 
(Figures 4A,B).

The number of CNP+ myelinating oligodendrocytes was higher 
in miR-146a KO mice compared to WT mice during demyeli-
nation (p =  0.01) (Figure  5), while the number of NG2+ oligo-
dendrocyte precursors was not different. In addition, we found a 
decreased number of Mac3+ (p < 0.05) (Figure 5) and a tendency 
of fewer Iba1+ cells in the corpus callosum in the KO mice during 
demyelination (43% less, p = 0.06). Two weeks after suspending 
CPZ, the demyelinated lesions were to a large extent remyelina-
ted, contained Iba1+ cells, but only a minority of these cells was  
Mac3+. There was a modest increase of CNP+ cells and decrease 
of NG2+ during remyelination; no difference have been observed 
between KO and WT mice in CNP+ oligodendrocytes at this 
time-point, but we observed a trend of reduced number of NG2+ 
oligodendrocyte precursor cells (p = 0.06) (Figure 5).

expression of experimentally Validated 
mir-146a Target genes and Protein 
Products in response to cPZ exposure
We extracted a list of experimentally validated miR-146a target 
genes from the database miRTarBase (40), and compared this list 
of genes with our transcriptome and proteome datasets during 
CPZ-induced de- and remyelination. We identified 13 upregu-
lated and 4 downregulated miR-146a target genes among 1,239 
differentially expressed genes in the corpus callosum in response 
to CPZ exposure determined by a 4 × 44K Agilent Whole Mouse 
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FigUre 4 | Cuprizone (CPZ)-induced demyelination and remyelination in miR-146-deficient mice. (a) Demyelination and axonal loss after 4 weeks of CPZ exposure 
in miR-146a KO and WT mice determined by Luxol fast blue (LFB) and Bielschowsky staining (Biel). (B) Quantification of demyelination after 4 weeks CPZ treatment 
(4wD) and remyelination after 2 days (2dR) and 2 weeks remyelination (2wR) in the corpus callosum of miR-146a KO and WT mice (**p < 0.01, ***p < 0.001, 
n = 4–7 in each group, two-way ANOVA, mean ± SEM).

FigUre 5 | Cellular infiltration in the corpus callosum in miR-146a-deficient mice during cuprizone (CPZ)-induced demyelination and remyelination. (a) Myelin-
producing oligodendrocytes (CNP), oligodendrocyte precursor cells (OPCs; NG2), microglia (Iba1), and macrophages (Mac3) in the corpus callosum of WT and 
miR-146a KO mice exposed to CPZ for 4 weeks demyelination (4wD) or exposed to CPZ for 4 weeks followed by CPZ suspension for 2 weeks remyelination (2wR). 
(B) Quantification of Mac3+ and Iba1+ macrophages/microglia, CNP+ myelinating oligodendrocytes and NG2+ OPCs in the demyelinating (4 weeks on CPZ, 4wD) 
and remyelinating (2 weeks on CPZ, 2wR) corpus callosum of WT and miR-146a KO mice. *p < 0.05, **p < 0.01.
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Genome Microarray (unpublished, NCBI Gene Expression 
Omnibus with accession GSE100663) (Figure  6A). Based on 
a PANTHER GO enrichment analysis (41) of the differentially 

regulated miR-146a target genes, inflammatory pathways were 
highly enriched (Table  1). We also identified 2 downregulated 
protein products of miR-146a target genes in our proteome dataset 
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FigUre 6 | Expression of experimentally validated miR-146a target genes and proteins in response to CPZ exposure in wild-type and miR-146-deficient mice.  
(a) Expression of miR-146a target genes (miRTarBase) among 1,239 differentially expressed genes in the corpus callosum in response to CPZ exposure determined 
by a 4 × 44K Agilent Whole Mouse Genome Microarray (NCBI Gene Expression Omnibus with accession GSE100663). (B) The protein expression of validated 
miR-146a target genes SMAD4 and SNAP25 were downregulated in the corpus callosum of miR-146a KO mice compared to WT mice by liquid chromatography 
mass spectrometry in response to CPZ. (c) SNAP25 and (D) SMAD4 in corpus callosum lysates of miR-146a KO and WT mice in response to CPZ examined by 
ELISA. *p < 0.05, **p < 0.01, ***p < 0.001, n = 8–4 in each group, mean ± SEM. Abbreviations: C: un-manipulated controls, 4wD: 4 weeks demyelination. 2dR: 
2 days (acute) remyelination, 2wR: 2 weeks (full) remyelination.

TaBle 1 | Overrepresented biological processes of experimentally validated 
miR-146a target genes differentially expressed in WT mice during cuprizone-
induced demyelination.

gO biological process Fold enrichment p-Value

Negative regulation of viral genome replication 93.01 0.037
Leukocyte cell–cell adhesion 90.74 0.04
Positive regulation of nitric oxygen  
biosynthetic process

84.55 0.049

Positive regulation of NF-kappaB  
transcription factor activity

45.09 0.014

Defense response to virus 36.47 0.032
Innate immune response 14.47 0.019
Intracellular signal transduction 7.85 0.022
Regulation of apoptotic process 7.28 0.039

Pathway analysis was performed using PANTHER online software. The fold enrichment 
is the number of genes in our dataset representing the given biological process relative 
to the number of genes expected by change in a random list of genes.
GO, gene ontology.

8

Martin et al. miRNA-146a in the CPZ Model

Frontiers in Immunology | www.frontiersin.org March 2018 | Volume 9 | Article 490

neurotransmitter release (44). We used ELISA assays to examine 
if SMAD4 and SNAP25 were differentially expressed among miR-
146a KO mice and WT mice in the corpus callosum in response 
to CPZ exposure. As expected, we observed an increased protein 
level of SNAP25 in the corpus callosum of KO mice compared 
to WT mice in the control group. In the KO mice, the protein 
level of SNAP25 was reduced during de- and remyelination,  
while there was no change in the WT mice (p < 0.01, two-way 
ANOVA, Bonferroni post hoc test) (Figure 6C). The SMAD4 pro-
tein level was not significantly changed in any of the two strains  
of mice, and SMAD4 protein was not differentially regulated at 
any of the examined time-points (Figure 6D).

expression of cytokines, chemokines, 
and TnF receptors in response  
to cPZ exposure
Based on the role of miR-146a in the regulation of inflammatory 
responses, and the observation that inflammatory pathways were 
highly enriched among the miR-146a target genes differentially 
regulated in response to CPZ exposure, we analyzed and com-
pared the expression level of TNF receptor 1 (TNF-RI) and 
TNF receptor 2 (TNF-RII) in addition to several inflammatory 

(403 differentially regulated proteins, unpublished) (Figure 6B): 
SMAD4 (mothers against decapentaplegic homolog 4), which 
is known to be involved in OPC migration and differentiation  
(42, 43), and SNAP25 (synaptosomal-associated protein 25), 
which is important in the signal transduction of neurons and 
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FigUre 7 | Expression of cytokines, cytokine receptors, and chemokines in the corpus callosum during experimental demyelination and remyelination  
in miR-146-deficient mice. Expression levels of TNF-RII (a), TNF-RI (B), TNF (c), and CCL2 (D) measured by MSD-electrochemiluminescent assay in the  
corpus callosum of WT and miR-146a KO mice exposed to CPZ. *p < 0.05, **p < 0.01, ***p < 0.001, n = 8–4 in each group, mean ± SEM. Abbreviations:  
C, un-manipulated controls, 4wD, 4 weeks demyelination. 2dR, 2 days (acute) remyelination, 2wR, 2 weeks (full) remyelination.
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cytokines and chemokines (CCL2, CCL3, CXCL1, IFN-gamma, 
IL-1beta, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12p70, MMP-9, TNF, 
and VEGF) in KO versus WT mice.

Both TNF-RI and TNF-RII were significantly upregulated 
in the WT mice in response to CPZ exposure, but not in the 
miR-146a KO mice (p < 0.001, respectively, two-way ANOVA, 
Bonferroni post hoc test) (Figures 7A,B). In fact, during demy-
elination, the expression level of TNF-RII was significantly lower 
in the miR-146a KO mice compared to the WT mice (p < 0.01) 
(Figure 7A).

TNF expression was significantly lower during remyelination 
compared to demyelination in the WT mice (p < 0.01). In miR-
146a KO mice, the highest expression of TNF was found in the 
control group, which was significantly higher than the expression 
during acute remyelination (p < 0.05). There was no significant 
difference in TNF expression level at any time-point between the 
two groups of mice (Figure 7C).

We also observed a significant elevation in the protein levels of 
chemokine CCL2 in response to CPZ exposure in the WT mice, 
but not in the miR-146a KO mice (p < 0.001, two-way ANOVA, 
Bonferroni post  hoc test). In addition, the level of CCL2 was 
significantly lower in miR-146a KO compared to the WT mice 
during demyelination (p < 0.01) (Figure 7D).

For the additional cytokines and chemokines, we found that 
IL-1β was upregulated and IL-2, IL-5, IL-6, and IL-12p70 were 

downregulated in miR-146a KO mice, whereas IL-10 and VEGF 
were downregulated in both miR-146a KO mice and WT mice 
in response to CPZ exposure (Table 2). However, there was no 
significant difference in expression levels of any of these cytokines 
and chemokines between miR-146a KO mice and WT mice 
at the examined time-points (demyelination, acute, and full 
remyelination).

DiscUssiOn

Here, we used the CPZ mouse model of experimental de- and 
remyelination to mimic de- and remyelination pathology of MS 
(30), and examine differentially expressed miRNAs during de- 
and remyelination. Based on a microarray analysis followed by 
verification with qPCR, we identified three miRNAs, miR-146a, 
miR-181b, and miR-193a that were differentially expressed in 
response to CPZ exposure. All three miRNAs have previously 
been found to be differentially regulated in MS lesions: miR-
146a and miR-193a were upregulated in active MS lesions, 
whereas miR-181b was found to be down regulated in inactive 
MS lesions (8). So far, four studies investigated expression 
and effect of miRNAs in the CPZ model, but all used different 
experimental setups. One study investigated the expression 
of miR-124 in hippocampal demyelination using dietary CPZ 
combined with intraperitoneal injection of rapamycin (9).  
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In two recent studies, miR-219 recombinant retrovirus injec-
tion into the corpus callosum attenuated demyelination in the 
CPZ model (45), and injection of miR-146a mimics into the 
demyelinated corpus callosum promoted remyelination (26). 
Only one recent study examined miRNA expression during 
CPZ-induced demyelination by microarray, but miRNAs were 
only evaluated in sorted CNPase-EGFP+ cells with an OPC 
phenotype; only part of the differentially expressed miRNAs 
were presented, and those did not show miR-181b, miR-146a, 
or miR-193a (46).

We chose to further investigate the role of miR-146a in 
experimental demyelination, because (i) the expression levels 
of this miRNA was continuously increasing during de- and 
remyelination, which is in line with the finding of others (27);  
(ii) pre vious data indicated differential expression in different  
tissues and compartments of patients with MS, i.e., in brain 
lesions, body fluids, and cells (7, 8, 13, 18, 19); and (iii) miR-
146a is known to be involved in regulation of the inflammatory 
response and survival processes of cells, including OPCs, which 
are relevant to MS demyelination (20–26, 32, 33).

miR-146a is highly expressed in microglia in the brain (47, 48).  
However, the observed increase in miR-146a in response to CPZ 
exposure in the corpus callosum cannot be solely explained by 
an increase in infiltrating microglia and macrophages, because 
the number of infiltrating microglia cells declines already 1 week 
after CPZ suspension (49, 50), and we found the highest level 
of miRNA-146a in the full remyelination phase, i.e., 2  weeks 

after suspending CPZ. Despite the increasing levels of miR-146a 
expression in the CNS, CPZ did not induce increased expression 
in a number of other organs, including the liver and the thymus, 
organs also affected by CPZ. This may indicate that the increased 
expression of miR-146a is unique to the CSN in response to CPZ-
induced de- and remyelination. Therefore, we also examined the 
level of miR-146a in response to physiological myelination in 
mice at early postnatal days, but we did not observe an increase 
in the expression level. These data suggest that the observed 
increase in miR-146a levels in the corpus callosum in response 
to CPZ exposure is a regulated process related to pathological 
demyelination and remyelination.

In order to further investigate the role of miR-146a during 
experimental de- and remyelination, we used a miR-146a KO 
strain (33). We compared the systemic and CNS effects of CPZ 
exposure between KO and WT mice. Mice are known to lose 
weight in response to CPZ exposure, and we have recently rec-
ognized thymus atrophy with loss of double-positive thymocytes 
as an additional systemic effect of CPZ exposure (39). Here, 
we found that CPZ also induced atrophy of another immune 
organ, the spleen. Previous data suggested that administration 
of CPZ ameliorates EAE and delays the progressive course of 
Theiler’s murine encephalomyelitis (51, 52). It is possible that 
the additive effect of CPZ on primary and secondary immune 
organs may contribute to a deficiency of immune responses. 
We also found that miR-146a KO mice were protected against 
these systemic effects of CPZ: the atrophy of the thymus, spleen, 
and loss of body weight were all reduced in the KO mice. The 
most significant loss of weight was observed after 2  weeks of 
CPZ administration, and the protection was significant after 
3 weeks. These data suggest that miRNA-146a may be involved 
in regulation of toxic responses and mitochondrial dysfunction, 
considering the mitochondrial effect of CPZ. Indeed, recent 
data indicate that differential expression and single nucleotide 
polymorphism of miR-146a can be related to drug-induced 
hepato- and cardiotoxicity (53, 54). In addition, miR-146a is one 
of the mitochondria-enriched miRNAs with potential targets  
on mitochondrial mRNAs, and it is most upregulated in senes-
cent cells with mitochondrial dysfunction, altered fission, and 
fusion (55, 56).

Absence of miR-146a also reduced demyelination and 
axonal loss. The observed decrease in lesion size in miR-146a 
KO mice was accompanied by lower numbers of Mac3+ and 
Iba+ macrophages/microglia, and a higher number of CNP+ 
myelinating oligodendrocytes in the corpus callosum during 
demyelination. Protective effects of miR-146a deficiency have 
been also shown in other degenerative experimental models. 
In a rat model for temporal lobe epilepsy (57) and in a mouse 
model for Alzheimer’s disease (58), miR-146a was found to be 
upregulated in the brain, and inhibition by antagomiR-146a 
in these models led to decreased episodes of seizures and 
partly restored memory function, respectively. A very recent 
paper suggested that administration of miR-146a mimics into 
the corpus callosum of mice during remyelination enhanced 
remyelination and promoted OPC differentiation (27). In our 
study, miR-146 deficiency had no effect on remyelination and 
did not influence the number of OPCs during remyelination. 

TaBle 2 | Expression of cytokines and chemokines in the corpus callosum 
during cuprizone-induced de- and remyelination in wild-type (WT) and  
miR-146a KO mice.

4wd 2dr 2wr 4wd 2dr 2wr

il-1beta il-12p70
WT 1.76 2.03 1.06 WT 0.89 0.76 0.71
miR-
146aKO

1.92* 1.21 0.91 miR-146a 
KO

0.75 0.59* 0.70

il-2 ccl3
WT 0.85 0.78 0.76 WT 1.3 1.24 0.78
miR-146a 
KO

0.71* 0.60** 0.62* miR-146a 
KO

0.82 0.65 0.64

il-5 cXcl1
WT 0.83 0.78 0.74 WT 1.29 1.01 0.86
miR-146a 
KO

0.69** 0.58*** 0.60** miR-146a 
KO

1.02 0.74 0.71

il-6 MMP-9
WT 1.02 0.82 0.79 WT 1.08 1.27 1.35
miR-146a 
KO

0.80 0.72* 0.74 miR-146a 
KO

1.03 0.73 1.39

il-10 VegF
WT 0.82 0.70 0.66* WT 0.79 0.72 0.64*
miR-146a 
KO

0.72* 0.63* 0.62* miR-146a 
KO

0.74* 0.57** 0.64*

Results are presented relative to the control levels of the particular strain. The 
expression level of these cytokines and chemokines were not significantly different 
between WT mice and miR-146a KO mice at any of the examined time-points. 
*p < 0.05, **p < 0.01, ***p < 0.001, n = 8–4 in each group.
4wd: 4 weeks demyelination. 2dr: 2 days (acute) remyelination,  
2wr: 2 weeks (full) remyelination.
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Nevertheless, it reduced demyelination and axonal loss along 
with increased number of oligodendrocytes during demyelina-
tion. Since we did not find an increase of NG2+ OPCs in the KO 
mice during demyelination, the higher number of myelinating 
oligodendrocytes in the demyelinating corpus callosum may 
indicate increased survival of oligodendrocytes. This may also 
be related to change in the oligodendrocyte environment and 
in function of other resident cells due to the general absence 
of miR-146a. Interestingly, we observed a trend of reduced 
number of oligodendrocyte precursors in the KO mice dur-
ing remyelination that may suggest that miR-146a may be 
beneficial during remyelination as previously suggested (27). 
These data may indicate a complex role of miR-146a in de- and 
remyelination, when examined at tissue level. The reduced 
axonal damage may be related to less demyelination, but axonal 
damage may be partly independent of demyelination in the 
CPZ model (59). Since mitochondrial alterations are important 
in axonal damage in MS, some of the protective effect in the KO 
mice may be related to the mitochondrial miR-146a pathways 
in the axons.

Next, we searched for proteins of validated target genes in 
our proteome database obtained during CPZ-induced de- and 
remyelination. We found two proteins to be downregulated dur-
ing demyelination: SMAD4 and SNAP25. SMAD4 is involved 
in OPC migration and differentiation (42, 43), and SNAP25 is 
important in signal transduction of neurons and in neurotrans-
mitter release (44). We, therefore, examined the levels of these 
two proteins in lysates of the corpus callosum dissected from the 
WT and miR-146a KO mice during de- and remyelination. The 
concentration of SNAP25 was increased in the miR-146a KO 
mice, as expected. SNAP25 was downregulated during demyeli-
nation in the miR-146a KO mice, but was not different from those 
in the WT mice during demyelination. Thus, ELISA results did 
not suggest differential regulation of SMAD4 and SNAP25 in the 
KO mice during demyelination.

miR-146a is a well-known negative regulator of the immune 
system which has been thoroughly investigated both in  vivo 
and in vitro (21). We found that CCl2 was upregulated in WT 
mice in response to CPZ treatment, which is in line with results 
obtained by others (60). However, miR-146a KO mice expressed 
CCL2 in significantly lower levels during demyelination. CCL2 
is a chemokine that is highly expressed by astrocytes in response 
to inflammatory events leading to attraction of immune cells, 
especially monocytes, to the inflammatory site (61). In the EAE 
model, conditional knockdown of CCL2 in astrocytes reduced 
the clinical score and infiltration by inflammatory microglia 
and macrophages, and delayed axonal damage in the spinal cord 
(62). This finding is in line with our observation that Mac3+ 
cells were reduced in the miR-146a KO mice during demyeli-
nation along with decreased levels of CCL2. In addition, we 
found that TNF-RI and TNF-RII levels were increased in the 
WT mice, but not in the miR-146a KO mice, and that there 
was a significant difference in the expression levels of these 
proteins between WT mice and miR-146a KO mice during 
demyelination. Previous data showed that TNF facilitated the 
toxic effect of CPZ on oligodendrocytes in vitro, and induced 
the depletion of microglia in vivo, the main source of cytokine 

and chemokine expression in the brain. This in turn resulted in 
protection against CPZ-induced demyelination (63). Therefore, 
it is likely that the reduction of TNF-RI, TNF-RII, and CCL2 
in the miR-146a KO mice contributed to the protection against 
CPZ-induced demyelination. In this study, we did not examine 
the cellular source of these dysregulated molecules in the KO 
mice. The reduced levels of TNF-RI, TNF-RII, and CCL2 may 
reflect differential expression by different cells in the demyeli-
nating corpus callosum, and this can influence the ultimate 
protective versus detrimental effect; the observed protection 
from CPZ-induced demyelination is a combinatory effect of 
miR-146a deficiency in all cell types, and we cannot exclude the 
possibility that lack of miR-146a in particular cell types could 
be harmful. We hypothesize that pro-apoptotic properties of 
miR-146a (23, 24, 32, 64) may also contribute to decreased 
demyelination, increased number of myelinating oligodendro-
cytes and reduced axonal loss during the demyelination phase 
induced by CPZ in KO mice.

In summary, here we used a comprehensive and unbiased 
approach to identify three miRNAs, miR-146a, miR-181b, and 
miR-193a, which were differentially regulated in the corpus 
callosum in response to CPZ exposure. We further investigated 
the effect of absence of miR-146a, and found that the number 
of oligodendrocytes was higher during demyelination in miR-
146a KO mice, and demyelination and axonal loss were reduced.  
In addition, there was no increase of CCL2 in the demyelinating 
corpus callosum of the KO in contrast to the WT mice, and 
CCL2 levels were lower in the KO mice; this may explain the 
observed fewer number of infiltrating macrophages/microglia. 
Contrary to WT mice, there was no increase in the levels of TNF 
receptors in the corpus callosum of the KO mice in response 
to CPZ, indicating reduced inflammatory changes that may 
be related to the reduced number of macrophages/microglia. 
Altogether, these findings may suggest increased survival of 
oligodendrocytes, reduced production of CCL2 by astrocytes, 
less microglia/macrophage activation and TNF receptor expres-
sion in the KO mice, which result in reduced demyelination 
and axonal loss. We also observed a mild increase in NG2+ 
OPCs during remyelination in the KO mice that may support 
previous data indicating the beneficial role of miR-146a during 
remyelination (33). Additional studies should address the cel-
lular source of the altered molecules in the corpus callosum, and 
if administration of antagomirs in WT mice results in similar 
changes.
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