
March 2018 | Volume 9 | Article 5121

OpiniOn
published: 13 March 2018

doi: 10.3389/fimmu.2018.00512

Frontiers in Immunology | www.frontiersin.org

Edited by: 
Francesco Dieli,  

Università degli Studi  
di Palermo, Italy

Reviewed by: 
Sarina Ravens,  

Hannover Medical  
School, Germany  
Volker Kunzmann,  

Universitätsklinikum  
Würzburg, Germany

*Correspondence:
Dieter Kabelitz  

dietrich.kabelitz@uksh.de

†Present address: 
Jaydeep Bhat,  

Systems Biology Center,  
Division of Intramural  

Research, NHLBI, NIH,  
Bethesda, MD, United States

Specialty section: 
This article was submitted  

to T Cell Biology,  
a section of the journal  

Frontiers in Immunology

Received: 25 January 2018
Accepted: 27 February 2018

Published: 13 March 2018

Citation: 
Bhat J, Kouakanou L, Peters C,  

Yin Z and Kabelitz D (2018) 
Immunotherapy With Human  

Gamma Delta T Cells—Synergistic 
Potential of Epigenetic Drugs? 

Front. Immunol. 9:512.  
doi: 10.3389/fimmu.2018.00512

immunotherapy With Human Gamma 
Delta T Cells—Synergistic potential 
of Epigenetic Drugs?
Jaydeep Bhat1†, Léonce Kouakanou1, Christian Peters1, Zhinan Yin2 and Dieter Kabelitz1*

1 Institute of Immunology, University of Kiel, Kiel, Germany, 2 The First Affiliated Hospital, Biomedical Translational Research 
Institute, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, 
Guangzhou, China

Keywords: Bromodomain and ExtraTerminal domain, checkpoint inhibitors, DnA methylation, gamma delta 
T cells, histone acetylation, immunotherapy, natural-killer group 2 member D, programmed death 1

inTRODUCTiOn

Epigenetics has emerged as one of the fastest growing concepts, adding more than 45 new publications 
every day, spreading through various fields (1). Conrad Waddington coined the term “epigenetics” 
in 1942; however, a multitude of definitions has been endorsed by different researchers. In essence, 
Waddington’s definition of “epigenetics” and its redefinition by Holiday is at the heart of cellular 
function. Hence, it is obvious that epigenetic regulation plays a central role also in the specification, 
differentiation, and functional plasticity of T  lymphocytes (2). T-cell fate decision in progenitor 
cells, functional CD4 T-cell plasticity, CD8 T-cell differentiation, but also T-cell memory, are all 
substantially governed by epigenetic mechanisms (3–7). Here, we focus on the current development 
of drugs targeting major pathways of epigenetic regulation and their possible impact on γδ T-cell 
multifunctionality. We aim to develop concepts of how some of these approaches might help to 
improve the efficacy of γδ T-cell-based immunotherapies.

The dynamic construction of chromatin organization exists in two principal states, i.e., tran-
scriptionally repressive “heterochromatin” and active “euchromatin.” The heterochromatin forma-
tion (Figure 1A) is mediated by SET domain, the chromodomain, and plant homeodomain finger, 
found in the heterochromatin protein 1 (HP1)/chromobox, and the chromodomain helicase-
DNA-binding subfamilies, recognizing histone methylation (e.g., H3K9 di- and tri- methylation) 
(8). Histone deacetylase (HDAC) associates with HP1, then recognize histone methyltransferases 
and methylated DNA via methyl-binding proteins such as MeCP2. HDACs also interact with 
DNA methyltransferases (DNMTs; the enzymes catalyze DNA methylation), thus forming the 
regulatory axis of a multiprotein complex responsible for transcriptional repression (9–11). 
DNA demethylation can be achieved “actively” by the hydroxylation of 5-methylcytosine to 
5-hydroxymethyl cytosine mediated by the ten-eleven translocation (TET) enzymes (12, 13). In 
contrast, the “euchromatin” formation is a complex, multistep process involving post-transla-
tional modifications (PTM) of histones and also chromatin-remodeling complex (Figure  1B). 
In addition to other PTM, the acetylation of histone leading to the “euchromatin” formation 
has already been reported during the 1990s (14). This process of histone lysine acetylation is 
mediated by HAT and is recognized by the bromodomain (Brd) proteins, additionally recruiting 
proteins. The Brd proteins are thus categorized as components of HAT complexes, components 
of chromatin-remodeling complexes, and Brd and ExtraTerminal domain (BET) proteins. BET 
proteins, particularly Brd2 and Brd3, play a multifaceted role by maintaining euchromatin status 
and simultaneously “reading” both acetylated histones and transcription factors. By recruiting 
and coupling the transcriptional machinery to the target gene promoter and/or enhancer sites, 
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FiGURE 1 | An overview of epigenetic mechanisms governing cellular processes and the drugs targeting respective epigenetic processes. There are two possible 
states of chromatin organization: (A) the “closed” chromatin associated with heterochromatin formation and transcriptional repression drives gene silencing. (B) The 
mechanistic organization of euchromatin maintains the “open” chromatin confirmation and allows active gene expression. (C) Examples of how epigenetic drugs 
modulate the γδ T-cell/Treg/tumor interaction. In the circle (left part), the epigenetic drugs (on the right-hand side) that are either in pre-clinical development or 
clinically approved are listed along with the respective target proteins (on the left-hand side). These are the key proteins for diverse epigenetic processes. The effect 
of the listed epigenetic drugs on immune cells (γδ T cells and Treg) and tumor cells are shown in the rectangles (right part). As marked by asterisk (*), the epigenetic 
drugs are proposed to synergize, leading to increased efficacy of γδ T cell-based immunotherapy. HDAC, histone deacetylase; HP1, heterochromatin protein 1; 
MeCP2, methyl-CpG binding protein 2; HAT, histone acetyltransferase; BET, Bromodomain and ExtraTerminal; TF, transcription factor; TAF, transcription-associated 
factors; RNA polII, RNA polymerase II; TET, ten-eleven translocation; VPA, valproic acid; NKG2D, natural-killer group 2, member D receptor protein; NKG2DL, 
ligands for NKG2D receptor protein; PD-L1, programmed death ligand 1; FoxP3, forkhead Box P3; Treg, regulatory T cells.
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BET proteins further release paused RNA polymerase II for the 
respective gene activation (15–19). Additionally, the proteins 
involved in the principal states of chromatin organization have 
multiple functions including enzymatic activity. Such an impor-
tant complexity in protein/enzyme function provides a leverage 
for the epigenetic drugs.

Nonetheless, it is important to realize (but currently not yet 
a major focus of epigenetic research) that any enzymatic activity 
(and thus epigenetic regulation) depends on the appropriate cel-
lular metabolism. While the central role of the cellular metabolism 
for the maintenance of stem cell pluripotency (which is drastically 
influenced by epigenetics) is well known, the respective roles of 
metabolic pathways and nutrients availability versus epigenetics 
for the differentiation and plasticity of immune cells have only 
recently been appreciated (20, 21).

EpiGEnETiC DRUGS

In view of the central role of epigenetic regulation for devel-
opmental biology and cellular activation, proliferation, and 
differentiation, it comes as no surprise that many drugs target-
ing specific steps of epigenetic regulation have been developed 
(Figure  1C). If suitable for clinical application, such drugs 
might have broad applications for the treatment of (certain 
types of) cancer but also autoimmune and chronic inflamma-
tory diseases.

Currently, two hypomethylating agents targeting epigenetic 
“erasers,” decitabine (5-aza-2′-deoxycitidine) and azacitidine  
(5-azacitidine) are approved by the US Food and Drug Admini-
stration (FDA) for the treatment of myelodysplastic syndromes, 
but are also used in other clinical conditions (22). The major 
effect of such agents is to induce hypomethylation of CpG islands 
thereby allowing re-expression of suppressed genes including 
tumor suppressor genes. Not unexpectedly, hypomethylating 
drugs have major effects on immune cells including the stabi-
lization of FoxP3 expression and Treg activity (23). In addition, 
numerous studies have investigated effects of hypomethylating 
agents on NK  cells, dendritic cells, and T  cells [see Ref. (22)]. 
It is difficult to draw general conclusions as the reported effects 
may be linked to specific experimental conditions or treatment 
regimens, but immunomodulatory effects are quite obvious (22). 
Immunogenicity of tumors might increase due to re-expression 
of tumor-associated antigens. However, hypomethylating agents 
might also promote tumor resistance through upregulation of 
inhibitory molecules like PD-1 and/or PD-L1 (24, 25). Obviously, 
the complexity of the effects of epigenetic drugs needs to be 

carefully evaluated. A major breakthrough in cancer immuno-
therapy has been the introduction of checkpoint inhibitors into 
clinical practice. Currently, several trials have been initiated where 
azacitidine is combined with PD-1/PD-L1 or CTLA-4 checkpoint 
inhibitors in hematological malignancies and colorectal cancer 
(26). Another regulator of DNA methylation is Vitamin C (VC). 
In addition to its antioxidant activity, VC also activates TET 
enzyme activity and thereby promotes 5-hydroxymethylation of 
DNA (27, 28).

Like hypomethylating agents, HDAC inhibitors (HDACi) have 
multiple effects on tumor cells but also on immune cells. In fact, 
their therapeutic efficacy against cancer is likely to depend on 
the simultaneous modulation of the immune system (29). Several 
structural classes of HDCAi have been developed. While some 
HDACi inhibit all HDACs, others are specific for class I and class 
IIa HDACs (e.g., valproic acid, VPA) or only class I HDAC (e.g., 
entinostat). Some HDACi including VPA upregulate the expres-
sion of NKG2D ligands on tumor cells and thereby augment the 
susceptibility to recognition and lysis by NK cells and γδ T cells 
(30, 31). As of today, several HDACi have been approved by the 
FDA either as monotherapy or in combination with other drugs, 
such as with PD-1 or CTLA-4 checkpoint inhibitors (26), for the 
treatment of hematological malignancies and some solid tumors 
[see Ref. (26)].

Epigenetic drugs which target epigenetic “readers” are BET 
inhibitors. The inhibition of BET proteins has a broad impact 
on gene regulation and may have a therapeutic effect in cancer 
(18). JQ-1, a pan-BET inhibitor blocks Th17 differentiation and 
thereby suppresses Th17-related inflammatory diseases in mouse 
models (19, 32). Importantly, recent studies point to a selective 
effect of JQ-1 on PD-L1 expression. PD-L1 is a direct target gene 
of the BET family member Brd4, and BET inhibition by JQ-1 has 
been found to enhance anti-tumor immunity by suppressing the 
PD-L1 expression on tumor cells and antigen-presenting cells 
but also through upregulation of NKG2D ligand MICA on tumor 
cells (33–35). BET inhibition also affects T-cell differentiation. 
A recent study reported superior in  vivo persistence and anti-
tumor activity of tumor antigen-specific murine T  cells upon 
adoptive transfer (36). Moreover, BET proteins appear to be 
interesting targets for synergistic anti-tumor effects in combina-
tion with other inhibitors targeting, e.g., PI3-kinase (37), Bcl-2 
(38), PARP (39), or HDAC (40). Last but not least, BET inhibi-
tors like JQ-1 might also synergize with checkpoint inhibitors to 
facilitate efficient anti-tumor immune responses (41). Based on 
promising pre-clinical results, BET inhibitors have entered clini-
cal trials. However, many details of how BET inhibitors work at 
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the molecular level and which cells and tissues are differentially 
affected, are not yet precisely known; therefore, the adverse side 
effect profile of various BET inhibitors needs to be studied in 
detail (42).

pLASTiCiTY OF γδ T CELLS

γδ T cells are considered to link innate and adaptive immunity 
because they can be rapidly activated via their T-cell receptor 
(TCR) in an MHC-independent manner (e.g., recognition 
of pyrophosphates in the case of human Vγ9Vδ2 T  cells) 
but also express functional innate receptors such as toll-like 
receptors (43). Importantly, human Vγ9Vδ2 T  cells cannot 
only differentiate into different cytokine-producing subsets, 
but also may acquire regulatory activity and “professional” 
antigen-presenting capacity (44). Moreover, γδ T  cells are 
usually potent cytotoxic effector cells which kill various tumor 
target cells independent of HLA restriction. Human Vγ9Vδ2 
T cells recognize pyrophosphates accumulating in tumor cells 
exhibiting a dysregulated mevalonate metabolic pathway in a 
butyrophilin 3A-dependent manner (45). However, most γδ 
T  cells also express the activating NKG2D receptor, which 
endows them with a TCR-independent second activation 
pathway via recognition of NKG2D ligands (e.g., MICA/B) on 
tumor cells. Based on their HLA-independent mode of target 
cell recognition, γδ T cells have recently attracted substantial 
interest as potential effector cells in cell-based cancer immuno-
therapy (46). This includes the perspective of using allogeneic 
γδ T cells from healthy donors since γδ T cells from the blood 
of tumor patients are sometimes difficult to expand in  vitro. 
The experience of one of us (Zhinan Yin) with over 140 adop-
tive γδ T-cell transfers in more than 45 patients with different 
malignancies indicates that such γδ T-cell transfers are safe and 
are well tolerated.

In the murine system, genome-wide histone (H3) acetylation 
and methylation profiling have identified distinct molecular pro-
grams in interferon-γ versus IL-17 producing γδ T cells (47). It 
is also well established that epigenetic mechanisms regulate the 
chromatin accessibility of the TCR γ locus during intrathymic 
T cell development (48, 49). Currently, however, there is only 
limited information available as to how epigenetics contributes 
to the multifunctionality of human γδ T  cells. We have per-
formed a comprehensive analysis of peripheral blood αβ T cell 
subsets (CD4+, Treg, CD8+) and γδ T cells. In this ongoing work, 
we expect to obtain information on how γδ T cells differ from 
(subsets of) αβ T cells at the transcriptome and epigenetic level 
(Bhat et al., unpublished). Moreover, we have investigated the 
effects of the HDACi VPA on the Vγ9Vδ2 subset of human γδ 
T cells upon in vitro culture. VPA differentially modulated the 
expression of certain surface markers (notably CD86, CD54, 
and NKG2D) on γδ T cells compared with αβ T cells (50). For 
instance, NKG2D receptors on γδ T cells and their respective 
ligands on tumor cells were even more affected after VPA 
treatment (Bhat et al., under revision). We also observed that 
VPA induced the expression of a non-secreted isoform of IL-4 
(IL-4δ13) which is known to have regulatory properties (51). 
Ongoing studies in our laboratories analyze the effects of VC 

on the in vitro differentiation of human γδ T cells. VC increases 
and stabilizes the expression of FoxP3 in transforming growth 
factor-β (TGF-β)-treated Vγ9Vδ2 T  cells and augments the 
proliferative capacity of Vγ9Vδ2 T cells upon pyrophosphate-
induced growth arrest (Kouakanou et  al., to be published). 
RNA-seq and reduced representation bisulfite sequencing 
analyses of VC-treated human γδ T cells will provide insights 
how VC globally affects human γδ T-cell plasticity at the tran-
scriptional and DNA methylation level. Though our study has 
been focused on the Vγ9Vδ2 subset, the effect of epigenetic 
drugs needs to be addressed in the context of distinct subsets 
of γδ T cells. Hence, the implication of epigenetic modulation 
needs to be investigated using different settings. Interestingly, 
we also found that TGF-β, usually considered as an immuno-
suppressive cytokine (52), can actually increase the cytotoxic 
activity of purified γδ T cells activated by pyrophosphate anti-
gens in the presence of TGF-β (Peters et al., submitted). Thus, 
a variety of strategies are available to modulate the plasticity of 
human γδ T cells.

HOW TO MODULATE THE AnTi-TUMOR 
pOTEnTiAL OF MULTiFUnCTiOnAL γδ  
T CELLS?

Based on the outlined principles, we can envisage a multitude 
of approaches to enhance the cytotoxic anti-tumor activity 
of human γδ T  cells, or to modulate their subset phenotype 
(Bhat et  al., under revision), or to revert their detrimental 
activity (e.g., regulatory activity and/or high-PD-L1 expression 
of tumor-infiltrating γδ T  cells) (53). DNMT inhibitors and 
HDACi already in clinical use modulate antigens relevant for γδ 
T-cell activation including NKG2D receptor and ligands (22, 26) 
and thus may increase the efficacy of adoptive γδ T-cell immu-
notherapy. Of special interest, however, are established and 
emerging new BET inhibitors. It will be important to find out 
whether BET inhibitors like JQ-1 can increase the functionality 
of in vitro expanded γδ T cells and eventually their persistence 
and anti-tumor activity similar to what has been described for 
tumor-reactive CD8+ T  cells (36). BET inhibitors might also 
augment γδ T-cell immunotherapy via increasing the expres-
sion of NKG2D ligands on tumor cells (35). Furthermore, the 
recently reported BET inhibitor-mediated inhibition of PD-L1 
expression on tumor cells [associated with improved anti-tumor 
immunity; Ref. (33)] might also extend to the inhibition of 
PD-L1 expression on tumor-infiltrating γδ T  cells, which has 
been shown to restrain effective αβ T-cell responses in pancre-
atic oncogenesis (54). Last but not least, novel inhibitors have 
been developed selectively inhibiting the Brd interaction of 
CBP/EP300, which plays a crucial role in Treg biology (55). By 
dampening Treg activity, such small molecule inhibitors might 
also increase the efficacy of γδ T-cell immunotherapy in cancer 
patients. Overall, we have a plethora of strategies at hand to 
potentially increase the efficacy of γδ T-cell immunotherapy. 
The challenge is to design the best possible (pre-clinical and 
clinical) studies to identify efficacious synergistic strategies with 
acceptable adverse risk profile.
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