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Cytokine dysregulation is believed to play a key role in the remodeling of the immune 
system at older age, with evidence pointing to an inability to fine-control systemic inflam-
mation, which seems to be a marker of unsuccessful aging. This reshaping of cytokine 
expression pattern, with a progressive tendency toward a pro-inflammatory phenotype 
has been called “inflamm-aging.” Despite research there is no clear understanding about 
the causes of “inflamm-aging” that underpin most major age-related diseases, including 
atherosclerosis, diabetes, Alzheimer’s disease, rheumatoid arthritis, cancer, and aging 
itself. While inflammation is part of the normal repair response for healing, and essential 
in keeping us safe from bacterial and viral infections and noxious environmental agents, 
not all inflammation is good. When inflammation becomes prolonged and persists, it can 
become damaging and destructive. Several common molecular pathways have been 
identified that are associated with both aging and low-grade inflammation. The age- 
related change in redox balance, the increase in age-related senescent cells, the senes-
cence-associated secretory phenotype (SASP) and the decline in effective autophagy 
that can trigger the inflammasome, suggest that it may be possible to delay age-related 
diseases and aging itself by suppressing pro-inflammatory molecular mechanisms or 
improving the timely resolution of inflammation. Conversely there may be learning from 
molecular or genetic pathways from long-lived cohorts who exemplify good quality aging. 
Here, we will discuss some of the current ideas and highlight molecular pathways that 
appear to contribute to the immune imbalance and the cytokine dysregulation, which is 
associated with “inflammageing” or parainflammation. Evidence of these findings will be 
drawn from research in cardiovascular disease, cancer, neurological inflammation and 
rheumatoid arthritis.

Keywords: aging, age-related diseases, inflamm-aging, redox, SASP, autophagy, cytokine dysregulation, 
inflammation resolution

iNTRODUCTiON

The inflammatory response must be tightly regulated to ensure effective immune protection. It is 
a dynamic network that is continuously remodeling throughout each person’s life as a result of the 
interaction between our genes, lifestyles, and environments (1–3). Infections and tissue damage from 
the external environment and our personal internal response to stress can act as triggers to initiate 
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the inflammatory defense response. While inflammation is part 
of the normal repair response for healing, and essential in keeping 
us safe from bacterial and viral infections and noxious environ-
mental agents, not all inflammation is good. When inflammation 
becomes prolonged and persists, it can become damaging and 
destructive (4). It is essential that inflammation is tailored to the 
initiating stress and resolves in a timely and controlled way, to 
avoid pathology associated with chronicity.

The cytokine network is a highly complex system of immune 
molecular messengers, with multiple layers of activation and 
control mediated through soluble receptors, receptor antago-
nists, diverse serum mediators, as well as gene polymorphisms 
(5). Proteomic methods measuring cytokine production and 
expression have demonstrated further layers of complexity and 
control in cytokine production and expression involving long 
coding RNAs, siRNAs, and miRNAs, which make for challeng-
ing interpretation of cytokine production and control in the 
inflammatory process (6). Many cytokines are able to act in 
more than one-way or paradoxically at different times and many 
act in feedback loops with the ability to auto-control their own 
production (7). Cytokine expression is also influenced by local 
cellular microenvironments, suggesting that multiple pathways 
exist to achieve homeostatic immunologic control and effective-
ness, or to conversely accentuate chronic immune activation. 
However, what seems clear is that mirroring other body systems, 
the homeostatic control, titration, and modulation of immune 
responsiveness becomes more fragile and less tightly focused with 
increasing age. This loosening of the cytokine balance between 
the pro-inflammatory and anti-inflammatory control or resolving 
mechanisms, or inflamm-aging (8, 9), is a characteristic feature of 
both aging and aging-related diseases. This kind of inflammation 
is similar to that originally described as “parainflammation” by 
Medzhitov (10).

Today there is increasing recognition that inflammation 
is a common molecular pathway that underlies in part, the 
pathogenesis of diverse human diseases ranging from infec-
tion, to immune-mediated disorders, cardiovascular pathology, 
diabetes, metabolic syndrome, neurodegeneration, and cancer, 
to aging itself (4, 11, 12). Although there is no exact understand-
ing about the causes of “inflamm-aging”, a common finding 
seems to involve a dysregulation of the cytokine network and 
its homeostasis. Several common molecular pathways have been 
identified that seem to be associated with both aging and low-
grade inflammation. Excess oxidative stress and DNA damage 
trigger the inflammasome, stimulating NF-κB and the IL-1β-
mediated inflammatory cascade. Autophagy, the cell machinery 
process that removes damaged proteins and large aggregates, is 
also slowed up at older age and in age-related disease, causing 
damaged material to accumulate and reduce cellular efficiency. 
Senescent cells increase with age and in age-related diseases, and 
the associated secretome or senescence-associated secretory phe-
notype (SASP) produces a self-perpetuating intracellular signal-
ing loop and inflammatory cascade involving the NF-κB, IL-1α, 
TGF-β, IL-6 pathway that participates in the pro-inflammatory 
milieu. The molecular processes that damp down inflammation 
include the resolvin family of bioactive molecules, which have 
been much less evaluated in aging or age-related disease, but 

are important participants in effective and timely inflammation 
resolution.

Here, we will discuss some of the current ideas and highlight 
molecular pathways that appear to contribute to the immune 
imbalance and the cytokine dysregulation, which is associated 
with “inflamm-aging” or parainflammation. Evidence of these 
findings will be drawn from research in several age-related dis-
eases, including cardiovascular and neurodegenerative disease, 
rheumatoid arthritis (RA), and cancers.

THe iNFLAMMATiON PATHwAY  
TO ReSOLUTiON

Inflammation is classically induced when innate cells detect 
infection or tissue injury. The pattern-recognition receptors 
(PRRs) on immune cells sense “danger” from protein-associated 
molecular patterns (PAMPs) associated with pathogens, or from 
danger-associated molecular patterns (DAMPs) triggered by a 
wide range of host-derived endogenous stress signals. DAMPs are 
molecules, such as ATP, the cytokine IL-1α, uric acid, and some 
cytoplasmic and nuclear proteins, which are released from dam-
aged cells during necrosis and contribute to sterile inflammation 
(Figure 1). There have been suggestions that the extended IL-1 
cytokine family (IL-1α, IL-1β, IL-18, IL-33, IL-36α, IL-36β, and 
IL-36γ) might also act as DAMPs and stimulate necrosis-initiated 
sterile inflammation, as well as amplify inflammation in response 
to infection-associated tissue injury (13).

Members of the toll-like receptor (TLR) family are the major 
PRRs. They are expressed on monocytes, macrophages, neutro-
phils, and dendritic cells, and on some lymphocytes and they 
respond rapidly to the “danger” response. The cyclooxygenase 
(COX) and 5-lipoxygenase (5-LOX) pathways of arachidonic acid 
(AA) metabolism (14, 15) produce highly pro-inflammatory lipid 
mediators responsible for the classical signs of inflammation—
redness, heat, pain, swelling, and loss of function, with the aim 
of removing the injurious and noxious stimuli. A third pathway 
involves the cytochrome 450 pathway of AA metabolism and 
P450 epoxygenases and hydroxylases that produce both vaso-
constrictor and vasodilatory effects in blood vessels and other 
tissues (Figure  2). The reactive biolipid molecules synthesized 
from AA are; the prostanoids—prostaglandins (PGs), prostacyc-
lins, and thromboxanes produced by the action of COX 1 and 2 
(COX 1 and 2); the leukotrienes (LTs), hydroxyeicosatetraenoids 
(HETEs), and lipoxins (LXs) produced by the action of the 5-, 12-, 
and 15-lypooxygenase (5/12/15-LOX) enzymes and; the P450 
epoxygenase generates HETEs and depoxyeicosatrienoids (epox-
ides) (16). PGs act to amplify the inflammatory response through 
enhancing the inflammatory cytokine cascade, upregulating the 
innate response to DAMPs and PAMPs, activating subsets of 
T helper cells, recruiting macrophages associated with chronic 
inflammation, and increasing cytokine expression from cytokine 
inflammatory genes. Additional factors, such as histamine, pro-
inflammatory cytokines, and chemokines amplify the response 
further and make the vascular endothelium increasingly leaky. 
The increase in vascular permeability combined with the expres-
sion of cellular adhesion molecules (i.e., selectins and integrins) 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


FigURe 1 | Inflammation pathway to resolution. An illustration of the sequence of key processes (in capitalized text), cells and molecules involved in reaction to 
injury or infection, and how the inflammatory episode is resolved over time (from left to right). Cells from the innate and adaptive immune system that are involved in 
cell recruitment, phagocytosis, and clearance processes are highlighted in blue text; key molecules are in italic text.
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allows neutrophils, the first responders, to transmigrate across 
post-capillary venules to the sites of injury or microbial invasion. 
Together this increases polymorphonuclear (PMN) neutrophil 
chemotaxis and allows PMNs to transmigrate along chemotactic 
gradients in order to maximize phagocytosis and killing of patho-
gens, and deal with the “danger” signal effectively.

As the acute inflammatory cascade develops to manage 
the  “danger” signal, it is essential that a controlled resolution 
commences, so that immune homeostasis returns in an organ-
ized manner. If the inflammatory response does not shut down 
in a timely way, the inflammation cascade becomes chronic and 
smoldering. Lipid mediators derived from polyunsaturated fatty 
acids are now recognized to orchestrate the resolution of inflam-
mation (17). At the peak of inflammation, the eicosanoids that 
initiated the inflammation undergo a class-switch so that they 
become the molecules that activate resolution, demonstrable 
through the clinical signs of removal of symptoms, relief of 
pain, restoration of function, regeneration of damaged tissues, 
and return to health. The so-called specialized pro-resolving 

mediators (SPMs) are key to resolving inflammation and include 
lipoxins derived from the 5-LOX arm of the AA pathway; the 
E-group of resolvins derived from dietary-derived eicosapentae-
noic acid (EPA); the D-group of resolvins from dietary–derived 
docosahexaenoic acid (DHA); and protectins (PD), and maresins 
(MaR) (17–19) (Figure 2). The lipid class-switch starts early in 
inflammation and is initiated by lipoxins LXA4 and LXB4, and 
considered to be produced by platelets when they begin to aggre-
gate with PMNs at the sites of inflammation (18).

After class-switching of the lipid molecules has occurred, SPMs 
are produced. Pro-resolving monocyte-derived macrophages 
begin to clear PMNs from the site of injury by a process called 
efferocytosis that removes apoptotic neutrophils, microbes, and 
necrotic debris. As resolution progresses, monocytes and mac-
rophages, change from a pro-inflammatory (M1) to a pro-resolv-
ing phenotype (M2) by genetic and epigenetic reprogramming 
(20–22). Recent investigations suggest that SPMs, particularly the 
D-series resolvins (resolving D1 and resolving D2) and MaR 1 
modulate adaptive immune responses in human peripheral blood 
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FigURe 2 | The arachidonic acid (AA) pathway of inflammation mediators. In the simplified pathway for the eicosanoid metabolic pathway, AA is released from 
membrane stores by phospholipase 2 (PLA2). AA is metabolized to biological mediators by three enzymatic pathways: cyclooxygenase, lipoxygenase, and 
cytochrome P450. Each pathway contains enzyme-specific steps that result in a wide variety of bioactive compounds that drive the pro-inflammatory 
(prostaglandins) response. After lipid mediator class-switching at the height of inflammation, the pro-resolving mediators-lipoxins begin to drive inflammation 
resolution. Eicosapentaenoic acid and docosahexaenoic acid-derived from dietary sources produce the E-series of resolvins and D-series of resolvins, maresins, 
and protectins, respectively, which are important pro-resolving mediators in progressing the resolution of inflammation.
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lymphocytes. These lipid mediators reduce cytokine production 
by activated CD8+ T cells and CD4+ T helper 1 (TH1) and TH 
17 cells, but do no modulate T cell inhibitory receptors or reduce 
their ability to proliferate (23, 24). Other reports show an increase 
in plasma cell differentiation and antibody production that sup-
ports the involvement of SPMs in the humoral response during 
late stages of inflammation and pathogen clearance (25). The 
anti-inflammatory cytokines interleukin 10 (IL-10), and IL-37 a 
member of the IL-1 family, together with TGF-β that is released 
from monocytes and platelets, are important contributors to 
damping down the inflammation. The soluble receptors, TNFR 
and IL-1 receptor (IL-1R) also limit inflammation in acting as 
decoy receptors, by binding to and neutralizing their respective 
cytokines, and inhibiting the biological activity. Additional anti-
inflammatory mechanisms, include stress hormones, particularly 
corticosteroids and catecholamines and negative regulators, such 
as microRNAs—MiR-146 and MiR-125 (26).

The local environment and context also play an important 
role in the production and function of SPMs, which have both 
autocrine and paracrine actions. Inflammation resolution is 
likely to depend on prompt class-switching to pro-resolving 
lipid mediators, effective apoptosis, and efferocytic clearance 
of inflammatory cells and debris, timely damping down of pro-
inflammatory signals and integrated repair of collateral damage. 

An imbalance between pro-inflammatory and pro-resolving 
mediators has been linked to a number of chronic inflammatory 
diseases (27).

In normal inflammation SPMs do not compromise host 
immune competence with examples of pro-resolving mediators 
increasing survival from infections in mouse models (28, 29). 
The common mechanism by which this occurs appears to be 
through suppression of the NF-κB activation in a partly PPAR-
γ-dependent manner, with associated downstream signaling 
and alteration in transcriptomics pathways (30, 31). A maresin 
mediator has been shown to have potent anti-inflammatory and 
pro-resolving actions in a model of colitis, and attenuated inflam-
mation in vascular smooth muscle and endothelial cells (32, 33). 
In human studies, the role of SPMs are being explored in chronic 
inflammatory diseases, such as RA (34), atherosclerosis (27), 
and cancer (35). In Alzheimer’s disease, several SPMs promoted 
neuronal survival and β-amyloid uptake by microglia in “in vitro” 
models in Alzheimer’s disease (36, 37). However, little is known 
about the pro-resolving mediators in aging itself. Studies are 
needed to assess whether pro-resolving molecules, such as E 
and D-resolvins, and maresins decrease or are less effective in 
damping down inflammation with increasing age and whether 
they could contribute to the pro-inflammatory phenotype 
associated with aging. Already synthetic analogs are in process of 
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development, and so the design of pharmacological mimetics of 
naturally occurring pro-resolving mediators and their receptors 
offers new potential targets for drug design and the opportunity 
to investigate the underpinning molecular mechanisms of 
inflammation resolution.

Could life-style factors play a role in the epidemic of non-
communicable and age-related diseases and the associated 
pro-inflammatory phenotype? Evidence exists that suggests 
that the Mediterranean diet which includes olive oil and 
some omega-3 lipids, can ameliorate RA (38), may give some 
protection from atrial fibrillation and myocardial infarction 
(MI) (39), and improves diabetic control (40). Research has 
also demonstrated a protective role of the Mediterranean diet 
in gene/Mediterranean diet interactions for the risk TT allele 
of the TCF7L2-rs7903146 gene in stroke risk and mortality 
(41, 42). Improving knowledge about how inflammation shuts 
down in a timely way is crucial to the understanding of how 
chronic inflammation contributes to aging and age-related 
diseases. Further studies are likely to be needed to advise if 
dietary modifications with omega-3 lipids or whether synthetic 
resolving mimetics are part of the answer.

TRiggeRS OF THe iNFLAMMATiON 
PATHwAY

Several common molecular pathways have been identified that 
seem to be associated with both aging and low-grade inflam-
mation. These pathways trigger the inflammasome, stimulating 
NF-κB, and the IL-1β-mediated inflammatory cascade.

Age-Related Redox imbalance
A redox imbalance has long been associated with aging and 
led to the development of the redox stress hypothesis of aging 
(43). Redox stress is caused by an imbalance between unregu-
lated and overproduced reactive oxygen species (ROS) that are 
produced secondary to mitochondrial energy production, active 
immunological phagocytic processes, and the prostaglandin 
pathway through COX enzyme production. While ROS are 
important molecules regulating numerous physiological and 
pathological processes in the cell, there is now clear evidence 
that overproduction of ROS is involved in the development of a 
number of diseases, such as Alzheimer’s disease, rheumatoid, and 
cardiovascular diseases. Increasing evidence supports the notion 
that low concentrations of ROS or “primary ROS” are involved 
in well controlled processes (44), where their effect on reactive 
target molecules can be reversible, suggesting that “primary” 
ROS acts as an important intracellular signaling molecule (45). 
In contrast, the very active OH ROS is less effectively controlled 
and forms the main damaging type of ROS that is able to react 
with many macromolecules, such as lipids, proteins, and nucleic 
acids. This results in DNA oxidation and cell membrane damage, 
which contributes to the burden of damaged molecules related to 
aging and age-related diseases.

Mitochondrial ROS
Mitochondria are highly efficient producers of energy, but in 
doing so they produce ROS. It is estimated that about 90% of 

intracellular ROS is generated in the mitochondria through the 
mitochondrial transport chain. The chain of electron flow is 
considered to leak prematurely between complexes 1, 11, and 111 
leading to the formation of damaging oxidants like O2

−. This ROS 
has been considered to cause damaging mutations in the mito-
chondrial genes with increasing age (43). With increasing age, 
mitochondrial function becomes sluggish and this compromises 
energy production, which in turn further contributes to mito-
chondrial dysfunction (46). A vicious cycle develops with age-
reduced physical activity producing muscles that become weaker, 
are infiltrated with fat cells, and show less efficient mitochondria 
energy production (47). Ischemia and apoptosis can trigger O2

−, 
and mitochondria themselves can be damaged by ROS produc-
tion. Mitophagy, the removal of damaged mitochondria is also 
reduced as age increases (48). A reduced age-related capacity of 
the body’s anti-oxidative defense systems to mop up free radicals 
also plays an important role in maintaining the inflammatory 
background of chronic inflammation (49).

The Nicotamide Adenine Dinucleotide Phosphate 
(NADPH) Pathway of ROS
One of the other main producers of ROS is the specialized enzyme 
group of the NADPH oxidases of the NOX family—(NOX1, 
NOX2, NOX3 NOX4, NOX5, DUOX1, and DUOX2). The NOX 
family or NADPH oxidases’ generate O2

− or H2O2 radicals by 
transferring electrons from cytoplasmic NADPH or the “NOX” 
catalytic subunit to molecular oxygen (50). The ROS produced 
by these enzymes has an essential function in neutrophils and 
macrophages as a mechanism for effective bacterial killing and 
host defense (51, 52). When the phagocytes sense an endogenous 
or exogenous danger signal, the NADPH-oxidase unit translo-
cates to fuse with the plasma membrane to form the phagosome. 
This generates large amounts of highly reactive ROS called the 
phagocytic burst that is very effective in killing microbes, though 
phagosomal pH and ion concentration are also likely to be 
contributors.

Although NOX family of isoenzymes was initially associated 
with the ROS produced in phagocytes, other members of the 
NOX family are now known to be involved in a wide range of 
regulatory functions in many tissues and seem likely to play a role 
in aging and age-related diseases. Studies in the human vascular 
system suggest that NOX1, NOX2, and NOX5 promote endothe-
lial dysfunction, inflammation, and apoptosis in the vessel walls, 
whereas NOX4 by contrast is vasoprotective, by increasing nitric 
oxide bioavailability (53). NOX enzymes, therefore, appear to 
play a role in vascular pathology as well as in the maintenance 
of normal physiological vascular function. Activation of NOX2 
and NOX4 occurs in humans with atrial fibrillation and inhibi-
tion of NOX by angiotension converting enzyme inhibitor drugs 
or statins has proved helpful in preventing post-operative atrial 
fibrillation (54).

COX Pathways of ROS
The biolipids are highly reactive substances that contribute to both 
inflammation and healing and their pathways produce and use 
ROS signaling. The reaction that converts AA through COX2 into 
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prostaglandin H2 (PGH2) by a two-stage free radical mechanism 
(55) involves superoxide and can contribute to cellular oxidative 
stress as well as signaling. Other enzymes that generate ROS 
during AA metabolism include the arachidonic 12-lipoxygenase 
(LOX-12 or ALOX12) and arachidonic 5-lipoxygenase (LOX5 
or ALOX5), both of which also activate and induce NADPH-
oxidases (56).

While mitochondrial ROS are traditionally seen as the main 
source of intracellular ROS and, therefore, major mediators of 
ROS-induced damage, the relative contribution of mitochondrial 
and non-mitochondrial sources of ROS to induction of cel-
lular senescence remain unclear. Both mitochondrial ROS and 
NADPH-produced ROS appear to be able to cross signal between 
each other and mitochondria have significant antioxidant capac-
ity, which may act as a cellular redox buffer for NADPH-produced 
ROS, suggesting there is tight control and integration of ROS 
signaling within the cell.

The cellular systems that protect against ROS, include the anti-
oxidative defense enzymes, superoxidase dismutase, glutathione 
peroxidase, and catalase (57), oxidant scavengers (vitamin E,  
vitamin C, carotenoids, uric acid, and polyphenols), and mecha-
nisms to repair oxidant damage to lipids, proteins, or DNA. 
Despite these protective mechanisms, uncontrolled ROS 
can overwhelm the antioxidant capacity of the cell causing 
mitochondrial dysfunction (49). Increased ROS production 
from the various cellular sources stimulates intracellular danger-
sensing multi-protein platforms called inflammasomes (58–60). 
Through the inflammasome, the ROS activates NF-κB which sets 
in motion the transcription of a cascade of pro-inflammatory 
cytokines—tumor necrosis factor-alpha (TNF-α), IL-1β, IL-2, 
and IL-6, chemokines—IL-8 and RANTES, and adhesion mol-
ecules, such as ICAM-1, VCAM, and E-selectin, that are central 
mediators in the inflammatory response.

Autophagy Slowing and Aging
Approximately a third of all newly synthesized proteins are formed 
in the endoplasmic reticulum (ER), where they are folded, modi-
fied, sorted, and transported to sites where they perform special-
ized roles. Stressors, such as low glucose as in fasting, alterations 
in calcium levels, low oxygen states, viruses, cytokines, and 
nutrient excess or deficiency can trigger the autophagy pathway 
with the aim of returning normal homeostasis to the cell.

Autophagy is a cellular process whereby cellular waste, such 
as modified proteins, protein aggregates, and damaged organelles 
are removed from the cell. It is a tightly controlled process that 
plays a role in growth and development and maintains a balance 
between the synthesis, degradation, and subsequent recycling of 
cellular products. Autophagy can be considered a protein and 
organelle quality control mechanism that maintains normal cel-
lular homeostasis.

Two major pathways degrade cellular proteins. The ubiquitin-
proteasome system (UPS) degrades 80–90% of denatured and 
damaged proteins. In the ATP-dependent UPS, damaged or mis-
folded proteins are tagged with a small protein called ubiquitin. 
Three different sets of enzymes—E1, E2, and E3, identify and cat-
egorize proteins in order to link ubiquitin or ubiquitin complexes 
to the damaged proteins. The ubiquitin-protein complexes pass 

through the proteasome, where they are degraded and discharged 
as free amino acids into the cytoplasm (Figure 3A).

The other main pathway is the autophagy system that degrades 
cystolic components, including larger aggregated proteins and 
cellular organelles, such as mitochondria, peroxisomes, and 
infectious organisms (61). This process involves membrane for-
mation, fusion, and degradation (Figure 3B). When autophagy 
is induced, a small separate membrane structure called a phago-
phore arises in the cytoplasm, which gradually expands to form 
the autophagosome. The outer membrane of the autophagosome 
fuses with the lysosome and the autophagosome contents are 
degraded by lysosomal hydrolases (62). Like the proteasome, 
the macroautophagy system is stimulated by intracellular and 
extracellular stress-related signals, including oxidative stress. 
Both proteasome and autophagy produce small polypeptides that 
help maintain a pool of amino acids and control energy balance 
in starvation, since recycling amino acids is more energy efficient 
than de novo amino acid synthesis.

In aging and age-related disease there are gradual reductions 
of cellular repair mechanisms that lead to the accumulation of 
damaged molecules, proteins, DNA, and lipids leading to loss of 
efficient cellular function. The cell’s capacity for autophagic deg-
radation also declines with age and this in itself may contribute to 
the aging process (63). While both major systems for intracellular 
protein degradation are slowed up with increasing age, a physical 
reduction of autophagy-related proteins also contributes to the 
accumulation of misfolded proteins and damaged macromol-
ecules in the cell. Diseases associated with increased oxidative 
stress, such as cardiovascular and Crohn’s disease and obesity also 
slow up cellular clearing and reduce autophagy, further contrib-
uting to disease (64–66).

The lysosome–autophagy system carries out a wide range of 
non-specific intracellular degradation and cleaning processes, 
which include managing pathogens, damaged intra-cellular 
macromolecules, and surface receptors (67–69). Lysosomal 
dysfunction is associated with age-related pathology that reduce 
lifespan, such as Parkinson’s and Alzheimer’s diseases (70, 71). 
Senescent cells accumulate abnormal protein aggregates in the 
cytoplasm, and contribute to neurodegenerative disease (72).

The dysregulation in autophagy has important effects in the 
innate immune response, in aging and age-related diseases by 
influencing inflammasome activity, cytokine secretion, antigen 
presentation, and lymphocyte function (73, 74). Under normal 
circumstances the nod-like receptor 3 (NLRP3) inflammasome 
fine-tunes the progression of the innate immune response that 
it has initiated, by upregulating autophagy activity so that the 
removal of immune mediators is expedited (74). In aging and 
age-related diseases, the autophagy response becomes blunted, 
the immune mediators remain active and prolong the inflamma-
tory response (75).

The UPS and autophagy act synergistically and cooperatively 
to maintain cellular homeostasis (76). Effective autophagic 
uptake of dysfunctional mitochondria and efficient lysosomal 
degradation of damaged aggregated proteins and macromol-
ecules are crucial elements in maintaining tissue homeostasis 
and good health (77). The decline in the autophagy capacity, 
that impairs cellular housekeeping in aging, seems to be an 
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attractive molecular pathway to target to improve the quality 
of aging.

Two groups of drugs, the mammalian target of rapamycin 
(mTOR) inhibitors and AMP-activated protein kinase (AMPK) 
activators are promising pharmacological agents which stimulate 
autophagic degradation (78–80). Other drugs, such as the dia-
betic drug metformin and the oncology agent 5-aminimidazole-
4-carboxamide ribonucleoside are pharmacological activators of 

AMPK, which are soon planned for clinical studies in relation 
to aging (81–83). A number of substances, such as curcumin, 
berberine, and quercetin, regularly available in normal diets, 
appear able to mimic the action of AMPK and upregulate 
autophagy. The action of AMPK has important anti-inflammatory 
and immunosuppressive effects (83). By upregulating autophagic 
activity, AMPK promotes effective clearing of DAMPs and 
by preventing the activation of the inflammasome, it reduces 
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the triggering of the inflammatory cascade. Further evidence 
of the anti-inflammatory role comes from research with the 
AMPK agonist A-769662 that mimics AMPK activity (84). This  
AMPK mimetic has been shown to suppress inflammatory arthri-
tis in mice and reduce IL-6 expression in serum and arthritic 
joints, suggesting that targeted AMPK activation could be an 
effective therapeutic strategy for IL-6-dependent inflammatory  
arthritis (85).

Non-pharmacological life-style changes also upregulate 
autophagy. One of the best researched is the effect of exercise 
which improves mitochondrial mitogenesis and stimulates 
mitogeny, so improving the quality of muscle function and 
exercise performance, with improvement in the quality of aging 
(86, 87). Furthermore in animal model studies, both modulated 
caloric restriction and exercise increase autophagy, downregulate 
endotoxin-induced IL-1β production, improve the aging-related 
pro-inflammatory profile, and reduce disease symptoms (78, 88).

Further understanding of molecular pathways of the signaling 
networks underpinning autophagy should help to identify other 
novel drug targets. Important research areas include those that 
could improve the sensitivity of degradation inhibitors useful 
to improve anticancer treatment, or new drugs to upregulate 
autophagy to maintain good cellular housekeeping, with the 
potential for improving the quality of aging and the management 
of age-related degenerative diseases.

Senescent Cells
Senescent cells increase with age and are considered important 
contributors to the pro-inflammatory phenotype (89). The two 
major hallmarks of cellular senescence are an irreversible arrest 
of cell proliferation and production of the pro-inflammatory 
secretome, called the SASP. When replicative senescence was 
first identified in serial cell passage studies (90), telomere attrition 
was considered to cause the cellular growth arrest that acted as 
a mechanism to stop damaged or transformed cells from pro-
liferation and transiting to tumor initiation. Today senescence 
is considered to have much broader role as both a contributor 
to damage protection and in the control of cellular growth, or 
as both a “friend and foe” depending on the cellular context. 
Senescence together with apoptosis is recognized to play an 
important physiological role in normal embryonic development, 
in ongoing tissue homeostasis throughout life (91, 92), but is 
increasingly considered to have a role in causing or exacerbating 
aging and age-related diseases (91, 93–95).

Senescence is a stress response triggered not only by telomere 
attrition as originally described (90, 96), but also by stress insults, 
such as genomic instability, DNA damage, protein misfold-
ing and/or aggregation, and ROS. There is also an association 
between senescent cells and the dysregulated mitochondrial 
network and associated metabolic dysfunction that is seen with 
increasing age (97). Through the SASP, the senescent cell has an 
important influence on the extrinsic microenvironment, which 
suggests a link between senescence and alterations in intracellular 
and intercellular communications (93).

Cells that express senescence markers accumulate with age 
in some tissues in studies in mice and man (98–100). Senescent 
cells are found in association with age-related diseases, such as 

atherosclerosis, RA, neurodegenerative diseases, and cancer 
(101–104). In RA patients T-cells are described as showing a 
pre-aged phenotype with apparent loss of CD28 expression that 
reduces T-cell activation and this in association with reduced 
RA-related NK surveillance, could allow senescent cells and 
the associated SASP to persist. In cancer, SASP factors promote 
angiogenesis, cell proliferation, and cancer invasiveness. Cells 
attracted by SASP influence the local microenvironment with 
the potential to promote tumor invasion and cancer progression 
(105). Senescent cells have been seen in atherosclerotic plaques 
(101). Recent data from several laboratories has suggested that 
both aging and age-related neurodegenerative diseases show an 
increase in SASP-expressing senescent cells of non-neuronal 
origin in the brain, which correlated with changes in neurode-
generation (103).

The SASP consists of a complex combination of growth fac-
tors, proteases, chemokines, matrix metalloproteinases, and is 
particularly enriched in pro-inflammatory cytokines, especially 
IL-6 (106–108). The SASP-secreting cells respond by switching 
on a self-perpetuating intracellular pro-inflammatory signaling 
loop, centered around the NF-κB, TGF-β, IL-1α, IL-6 pathway 
(109–111), with suggested mechanisms related to higher basal 
phosphorylation and altered threshold signaling (112) or alterna-
tive splicing (113). Senescent cells influence other cells by parac-
rine and bye-stander effects (114). There appears to be multi-level 
control of senescence and the SASP secretome, which includes the 
tumor suppressor pathways involved in the cell cycle arrest and 
the NF-κB and persistent damage response (DAMP) pathway, 
involved in triggering transcription of the SASP-related factors 
(115). Several pathways of investigation suggest that senescent 
primary human CD8+ T cells use anaerobic glycolysis to generate 
energy for effector functions and that p38 mitogen-activated pro-
tein kinase (p38 MAPK) blockade may reverse senescence via the 
mTOR-independent pathway (116). Low doses of glucocorticoid 
suppress elements of the SASP in patients with RA and improve 
clinical symptoms (117). Senescent cells effectively recruit the 
immune system to organize their removal, but with increasing 
age, removal becomes sluggish or otherwise impaired (118, 119).

It can be argued that the increase in senescent cells with aging 
reflects either an increase in their rate of generation or a decrease in 
their rate of clearance because the immune response is attenuated 
or weakened with aging and less capable of clearing senescent cells 
(120–122). Senescent cells express ligands for cytotoxic immune 
cells, such as natural killer (NK) cells, and have been shown to 
be able to be specifically eliminated by the immune system  
(123, 124). Through a proteomics analysis of senescent cell chro-
matin, the NF-κB pathway appeared to act as a master regulator of 
the SASP, with NF-κB suppression causing escape from immune 
recognition by NK cells (125). Other studies show that processes 
which eliminate senescent cells with p16(Ink4a)-positive mark-
ers, delay age-related pathologies in the mouse model of aging 
though side-effects can be problematical (126, 127). Therapies that 
specifically recognize and trigger the elimination of senescent cells 
would seem important to enhance the immune system in older 
people. New methods are in the process of being developed to 
enhance the immune clearance and autophagy of the increased 
senescent cell burden in aging and age-related disease (128).
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inflammasome NLRP3
The inflammasomes, intra-cellular multiprotein sensors that 
recognize danger signals, are likely key players in initiating and 
maintaining the pro-inflammatory phenotype found associated 
with aging. The NLRP3 is a major inflammasome sensor for 
intracellular stress molecules called DAMPs, which together with 
damaged aggregated proteins that are released from destabilized 
lysosomes and damaged mitochondria contribute to the cellular 
stress (ROS) and trigger NLRP3 activation (129). Once activated, 
the NLRP3 inflammasome initiates the inflammatory response 
cascade by stimulating caspase-1 (casp-1) that acts to induce 
the active precursors of pro-inflammatory cytokines, such as 
IL-1β, IL-1α, and IL-18, and on-going interaction with NF-κB 
(130, 131) (Figure 4). Although the baseline activity of NLRP3 is 
low, the initiation process of the inflammatory cascade requires 
a complex oligomerization-priming phase that includes associa-
tion with NF-κB and so contributes several layers of regulatory 
control.

Nod-like receptor 3 has been shown to be able to activate 
NF-κB and induce cytokines in response to sterile signals, 
such as monosodium urate crystals and aluminum adjuvant, 
suggesting that NLRP3 could initiate NF-κB activation to both 
pathogen-induced and sterile inflammation (132). Conversely 
NF-κB, which primes the NLPR3 inflammasome for activation 
also prevents excessive inflammation and restrains NLRP3 
activation by enhancing the NF-κB-p62 mitophagy pathway. 
By self-limiting the host response, the NF-κB-p62 mitophagy 
pathway maintains homeostasis which under normal conditions 
leads to tissue repair (75). It is, however, unclear if this layer of 
control of NF-κB function remains as tightly controlled in aging 
and age-related disease.

The NLRP3 inflammasome is a key component of the innate 
inflammatory response to pathogenic infection and tissue 
damage. It responds to a wide range of cellular stress and is 

considered to contribute to the aging process and to age-related 
diseases (133). Zhou and colleagues identified that mitochondrial 
ROS was involved in the activation of NLRP3 (58). This study 
emphasized the important role of mitochondria in maintaining 
a correct balance between cellular energy production and ROS 
production and that effective clearance of damaged mitochon-
dria through autophagy was an important regulatory activity. 
Damaged mitochondria increase with aging and age-related 
diseases (134). Mitochondrial dysfunction drives mitochondrial 
mutagenesis, affecting respiratory chain genes, and compromis-
ing the efficiency of oxidative phosphorylation, which may lead 
to further mt-DNA mutations and more cell damage. The subse-
quent mitochondrial impairment leads to more ROS that further 
reduce ATP generation and increases the chance of cell death. 
Mitochondria have been identified as a key source of DAMPs, 
the so-called mito-DAMPs, which have been considered to play 
a role in DAMPS-modulated inflammation in diseases, such as 
RA, cancer, and heart disease (135–138) as well as in the aging 
process (139). Degraded mt-DNA has also been reported in 
neuroinflammation (140). Dysfunctional mitochondria seem to 
be able to initiate an auto-feedback loop to increase autophagy, so 
that damaged mitochondria or misfolded proteins are degraded 
which reduces inflammasome activation and risk of further tissue 
injury, though this system is less efficient in aging (141).

Lyosomal destabilization is also associated with NLRP3 activa-
tion and can be induced by a number of molecules, including 
cholesterol crystals in macrophages linking atherosclerosis pro-
gression with inflammation (142). There is deposition of other 
harmful intra- and extracellular material in several age-related 
diseases. The aggregates compromise cellular homeostasis and 
can provoke the activation of the NLRP3 inflammasome. Research 
has shown that amyloid fibrils and Alzheimer’s amyloid-β can 
trigger NLRP3 inflammasomes and in that way stimulate inflam-
mation and enhance pathogenesis and association between type 
2 diabetes and Alzheimer’s disease, respectively (143). Palmitate, 
a saturated fatty acid has been shown to activate NLPR3, whereas 
oleic acid did not initiate the same inflammatory response (144). 
The inflammasome has been implicated in the development of 
the metabolic syndrome through impairment of adipose tis-
sue sensitivity. Evidence showed that obesity triggered NLRP3 
activation, and that the secreted IL-1β impaired insulin signaling 
which promoted insulin resistance in mice (145). Other research 
has shown that obesity was associated with the activation of the 
NLRP3 in adipose tissues (146, 147).

A number of intracellular processes seem likely to work 
together to stimulate and augment the inflammasome pathway 
and contribute to pro-inflammatory cytokine upregulation 
associated with increased age and age-related diseases. Both the 
redox-sensitive inflammatory pathway and the senescent cell-
related SASP activate the inflammasome through the NF-κB and 
IL-α cascade, causing persistence of the inflammatory response 
that delays resolution and healing (125, 138). Similarly, reduced 
autophagy processes allow the accumulation of damaged intra-
cellular proteins and senescent cells that further perpetuate and 
amplify the pro-inflammatory milieu that is found with increased 
age and is associated with age-related diseases.
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PRO-iNFLAMMATORY AND ANTi-
iNFLAMMATORY CYTOKiNe 
DYSRegULATiON

Pro-inflammatory Cytokines in Aging  
and Age-Related Disease
Various biomarkers and biochemical indices are used in medicine 
and age-related diseases as a way of improving diagnosis, beyond 
the well-recognized clinical signs. Modest increases in concentra-
tion of C-reactive protein, a circulating marker of inflammation, 
have been widely reported to be associated with a large number 
of age-related conditions and lifestyles felt to be associated 
with poor health; these conditions represent or reflect minor 
metabolic stresses. Alongside C-reactive proteins, cytokines have 
come under investigation as the molecular processes and path-
ways underpinning inflammation have become better identified.  
A common finding in aging and age-related diseases is “inflamm-
aging,” a dysregulation of the cytokine network and its homeo-
stasis. Downstream from NF-κB signaling, the pro-inflammatory 
cytokines play a central role in the remodeling of the immune 
system with age (Figure 5).

The major pro-inflammatory cytokines, such as IL-6, TNF-
α, and IL-1α contribute significantly to the phenomenon of 
inflamm-aging in healthy elderly individuals (8), while also play-
ing a major role in many age-related diseases (11, 27, 148–151). 
The key to healthy aging must lie in the ability to maintain a 
balanced response to these immune messengers and a prompt 
and integrated return to inflammation resolution and immune 
homeostasis (17). A summary of the changes that have been 
described in pro-inflammatory and anti-inflammatory cytokines 
in aging and some age-related diseases are outlined in this section.

Interleukin-1 (IL-1) Family
IL-1α and IL-1β, known as IL-1, and IL-18 are important cytokine 
initiators of the stress-induced inflammatory cascade (152). IL-1β 

and IL-18 are cleaved to active forms by Casp-1, whereas IL-1α is 
activated by calpain protease. All bind to and activate the IL-1R 
that is downregulated by the receptor anatagonist IL-1Rα, which 
blocks IL-1-mediated signal transduction.

Studies in elderly people, including centenarians have 
reported an age-related rise in the IL-1R antagonist, (IL-1Rα), 
whereas IL-1β showed no detectable age-related trend. The age-
related rise is associated with increased co-morbidity, age-related 
disease, and mortality (153–156).

Certain IL-1 haplotype-carriers produce increased IL-1β, 
and IL-1 gene variations associate with earlier onset or more 
severe progression of cardiovascular and Alzheimer’s disease, 
but not with osteoporosis (157–161). In centenarians, no single 
IL-1 gene polymorphism showed a survival advantage, but in 
Swedish elderly males an IL-1 gene polymorphism shortened life 
expectancy (153, 162, 163). IL-1 gene variants appear to increase 
the risk of age-related diseases and recombinant drugs, such as 
IL-1Rα-blockers may have a role in the clinical control of inflam-
mation (164).

Interleukin-18 (IL-18)
Interleukin-18, a linked IL-1 pro-inflammatory cytokine, signals 
in a complex with IL-18 receptors α (Rα) and β (Rβ) chains and 
induces IFN-γ that is essential for defense against infections 
(165). IL-18’s multiple pro-inflammatory effects are modulated 
through IL-18 binding protein (166).

Higher levels of IL-18 have been found in centenarians, associ-
ated with heart failure, ischemic heart disease, and type 1 diabetes 
in patients, and in the Alzheimer’s disease brain (167–172). IL-18 
levels associate with physical functioning and with a frailty index 
in the English longitudinal study of aging, where carriers of IL-18 
gene polymorphism that reduced IL-18 levels, showed improved 
walking speed (173–175). Evidence consistently shows that IL-1 
and IL-18 are mediators of inflammation and associated with 
the aging process (168). Drugs blocking binding between IL-18 
and the receptors are currently in development and may provide 
benefit in the treatment in diabetes, macular degeneration, and 
autoimmune disease (176).

Interleukin-6 (IL-6)
Interleukin-6 has been long recognized as important in aging 
and age-related disease and has been called the “gerontologist’s 
cytokine” (177, 178). IL-6 plays a key role in the acute phase 
response, in the transition from innate to acquired immunity, 
in metabolic control, and in the pathogenesis many chronic dis-
eases (11, 148–151, 179). It has both pro- and anti-inflammatory 
activities, and modulates the acute inflammatory response by 
producing IL-1 Rα and soluble tumor necrosis factor receptor 
p55 (sTNF-R55), which suppresses TNF-α and IL-1.

Interleukin-6 is normally present in low levels in the blood, 
but is increased in aging and in subjects with markers of frailty 
and chronic disease, where it tracks with mortality (180–183). 
IL-6 is a risk factor associated with cardiovascular disease and is 
associated with sarcopenia and muscle loss (184, 185).

The G allele of IL-6-174C/G polymorphism shows higher IL-6 
levels and associates with cognitive decline and mortality in age-
related vascular disease, whereas CC allele carriers show decreased 
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Alzheimer’s risk (186–191). In a meta-analysis of longevity in a 
large cohort of European nonagenarians and centenarians there 
was longevity benefit for carriers of the lower cytokine producing 
IL-6 allele, with similar supporting findings for this IL-6 allele in 
a case control study (192, 193). IL-6 or IL-6 receptor blockers are 
already used successfully in the treatment of RA, and are proof 
of concept that damping down IL-6, a product of the NF-κB pro-
inflammatory cascade, can improve clinical symptoms. Studies 
are either in progress or planned to assess the outcome of block-
ing IL-6-related inflammation in other age-related diseases with 
the potential for contributing to more successful aging (194, 195).

Tumor Necrosis Factor Alpha
Another major player in the immune response is the pro-
inflammatory cytokine TNF-α, which increases with age and is 
associated with age-related disease (196). It is a pro-inflammatory 
mediator that can be beneficial when it acts locally in the tissues, 
but can be highly harmful when released systemically.

Tumor necrosis factor-α has been reported to be increased 
in intracellular aging studies in elderly people, in centenarians 
and octogenarians with atherosclerosis, and associated with 
mortality (197–202). In post-MI patients, a rise in TNF-α 
increased risk of recurrent cardiac events and in renal patients 
TNF-α receptors predicted cardiovascular disease (203–205). In 
genetic studies, the A allele of TNF-α 308 G/A gene associated 
with risk for MI, whereas TNF-α polymorphisms and TNF-α 
itself, have been variably associated with increased Alzheimer’s 
disease risk (206–210). TNF-α mediates metabolic changes and 
increased TNF-α was found in type 2 diabetes mellitus and 
was associated with lower muscle mass and strength in older 
groups (211).

In studies in nonagenarian/centenarian groups from three 
European countries, there was no attrition of the TNF-α-308 A/G 
polymorphism in centenarians (162, 212, 213). With increasing 
evidence of an association between increases in TNF-α and age-
related diseases, research re-purposing anti-inflammatory drugs 
are under development. Research has demonstrated that TNF-α 
inhibitors may have possible prophylactic or ameliorating roles 
in cardiovascular and Alzheimer’s disease in animal models 
(214, 215).

Other Pro-Inflammatory Cytokines
Other pro-inflammatory cytokines are increasingly being recog-
nized as dysregulated in association with aging and age-related 
disease.

Interleukin-2
Interleukin-2 plays a pivotal role in the immune response. It is a 
growth factor that promotes NK cell activity and the differentia-
tion of naïve T cells into Th1 and Th2 cells (216). Conversely, IL-2, 
acting via STAT5 pathway negatively regulates interleukin 17 
(IL-17) production (217). Most studies show that lymphocytes in 
elderly people produce significantly less IL-2, compared to young 
people (218–220). Intracellular cytokine studies have shown 
variable results for IL-2, whereas mitogen-induced stimulation 

of mononuclear cells from elderly subjects showed significant 
decreases in IL-2 and IFNγ production (197, 221).

The IL-7/IL-7R
The IL-7/IL-7R network is essential at various stages in T-cell 
development and survival (222). It has an important role in the 
maintenance of a vigorous health span and higher IL7R gene 
expression is associated with long life (223–225). Serum IL-7 is 
increased in some age-related diseases, including osteoarthritis 
and genetic variation in the IL7RA/IL7 pathway increased sus-
ceptibility to multiple sclerosis (226, 227). Research has suggested 
that silencing of the IL-7R gene may be an important mechanism 
underpinning an aging-related loss of binding to NK-κB (228), 
linking IL-7R gene to the NF-κB pathway and inflammation 
control.

Interleukin-12
Interleukin-12, a pro-inflammatory member of the IL-6 fam-
ily has an active role in the development of cardiovascular 
diseases, such as atherosclerosis, MI, and stroke (229). Patients 
with cardiovascular disease show increased levels of IL-12, 23, 
and 27 with higher IL-12 predicting poorer long-term outcome 
after acute MI (230). Other research shows variable results for 
IL-12 and its receptor antagonist, with increased IL-12 (total) 
and IL-12p40 in apparently healthy nonagenarians, lower 
IL-12p70 and IL-23 production in association with frailty and 
IL-12/23p40 ameliorating Alzheimer’s disease in animal models 
(231–233).

Interleukin 17
Interleukin 17 is a key pro-inflammatory cytokine that belongs 
to a family of six cytokine members (A–F). IL-17A (referred to as 
IL-17) plays a central role in host defense against invading patho-
gens and is produced by a subset of CD4+ cells (234, 235). Elderly 
people (age ≥65) have shown a decreased frequency of IL-17-
producing cells in memory subset of CD4+ T cells compared to 
healthy younger people (236). IL-17 enhances production of IL-6, 
TNF-α, the acute phase reactants, C-reactive protein, and serum 
amyloid A and activates the induction of IL-6, IL-8, and G-CSF 
in non-immune cells, such as fibroblasts and epithelial cells, in 
part through activation of the NF-κB transcription factor (237). 
IL-17 promotes inflammation and is overexpressed in many 
autoimmune diseases, such as RA, systemic lupus erythematosus, 
inflammatory bowel disease, and psoriasis and its effects are sta-
bilized by IL-23 (238–241). An IL-17 expressing CD8+ T subset 
of cells has also been reported to be involved in psoriatic arthritis 
and some other autoimmune diseases (242, 243).

Interleukin-8
Interleukin-8 (or CXCL8) is a chemokine secreted by monocyte/
macrophages whose key role in the inflammation process is 
the recruitment and activation of neutrophils. IL-8 has been 
implicated in a number of inflammatory conditions, such as 
cystic fibrosis, asthma, chronic pulmonary disease, inflammatory 
bowel disease, and some autoimmune diseases, including RA and 
psoriasis.
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Increased levels of IL-8 have been detected after LPS-
stimulation of leukocytes from elderly individuals (244). In one 
small study of centenarians, IL-8 was proposed as a possible lon-
gevity factor (245). A single study of IL-8 polymorphisms found 
no significant difference in IL-8 -251 A/T polymorphisms in 
nonagenarians compared to young controls (212). IL-8 signaling 
occurs via the MAPK and PI3K pathways, by binding to the IL-8 
receptors-CXCR1/2. Several agents that block IL-8-CXCR1/2 
signaling have been developed in an attempt to target inflamma-
tory pathways in cancer, asthma, chronic obstructive pulmonary 
disease, psoriasis, and RA (246).

Anti-inflammatory Cytokines in Aging  
and Age-Related Disease
The anti-inflammatory cytokines play a key role in balancing the 
immune response, and in preventing the tipping of the steady state 
of immune homeostasis across into inflamm-aging and a disease-
inducing state. Anti-inflammatory cytokines are an important 
arm of inflammation resolution. They block or modulate the 
synthesis of IL-1α, TNF, and other major pro-inflammatory 
cytokines and damp down the inflammatory response, so that 
inflammation resolution can begin. Specific cytokine recep-
tors for IL-1, TNF-α, and IL-18, together with soluble receptor 
antagonists, chemokines, microRNA, siRNAs, also function as 
inhibitors for pro-inflammatory cytokines. The anti-inflamma-
tory cytokines and families of soluble receptor antagonists work 
within a complex network of control of immune regulation. They 
are critical for balancing the inflammatory outcome and together 
with pro-resolving lipoxins are critical to resolving inflammation 
in an integrated and organized manner.

As age increases and in age-related diseases, a chronic inflam-
matory state predominates, which is not properly contained or 
resolved and the anti-inflammatory side of the immune system 
seems to be similarly dysregulated, and unable to damp down the 
inflammatory episode in a timely effective manner. The following 
cytokines are the major players in the anti-inflammatory pathway 
of the control of inflammation and changes in their production 
and expression have been quite widely reported in aging and age-
related disease. Where increases in anti-inflammatory cytokines 
have been reported, one interpretation would be that increases 
might reflect the immune system’s attempt to suppress the persis-
tent pro-inflammatory response and support a return to immune 
homeostasis.

IL-10 Family
Interleukin 10 is one of the key anti-inflammatory cytokines, which 
suppresses the actions of IL-6, TNF-α, and IL-8 (247, 248). Higher 
IL-10 serum levels and production by both lymphocytes and 
monocytes have been reported in elderly people (155, 244, 249).  
Conversely an age and gender-related decline in cellular stimula-
tion studies has been reported (250).

In age-related disease, IL-10 has been reported to be associated 
with vascular protection in atherosclerosis and improved endothe-
lial dysfunction (251–253). However, at variance, the authors 
from the ERA (254) and PROSPER (255) studies, concluded 
that elevated IL-10 increased cardiovascular risk among elderly 

groups, and suggested that IL-10 blockers merited investigation. 
In male Sicilian centenarians, male carriers of the high producing 
GG 1,082 allele of the IL-10 promoter polymorphism showed a 
survival advantage, suggesting that IL-10 anti-inflammatory 
activities might be a marker for male longevity (213). This result 
was not replicated in Sardinian, Irish, or Finnish nonagenarian/
centenarians (162, 212, 256). It has been argued that an enhanced 
anti-inflammatory phenotype could be beneficial and contribute 
to longevity by controlling the pro-inflammatory milieu that 
predominates in later life and contributes to increased morbidity 
and mortality (9, 11, 257).

TGF-β
TGF-β, another important anti-inflammatory cytokine limits 
both the acute phase response, and is involved in tissue repair 
post-damage or infection (258). Several authors have reported 
that TGF-β was increased in octogenarians and centenarians 
(148, 259). It is also involved in aging-related disease, such as in 
obesity, in vascular wall integrity, in muscle loss and sarcopenia, 
in osteoarthritis, and with frailty in the Newcastle longitudinal 
study (260–264). In stroke, TGF-β signaling was increased in 
microglia and macrophages suggesting that increased TGF-
β likely regulated glial scar formation (265). Reports have 
linked TGF-β or its polymorphisms with atherosclerosis and 
Alzheimer’s disease (266–268). Other research found TGF-β 
genotypes associated with longevity in Italian centenarians, a 
finding not replicated in BELFAST nonagenarians (212, 269). 
Context-specific environmental factors, epigenetic regulation, 
and non-coding RNAs are suggested to play a role in TGF-β’s 
paradoxical pro-and anti-inflammatory functions (7, 270, 271), 
but important uses have been found for TGF-β in fibrosis man-
agement and oncology (272).

Interleukin-37
Interleukin-37, formerly an IL-1 cytokine, limits innate inflam-
mation via suppression of pro-inflammatory cytokine production 
(273). Carriage of an IL-37 haplotype that decreases IL-37 levels 
contributes to increased inflammation. Research demonstrates 
that IL-37 reduces TNF-α and IL-1β cytokine production from 
human macrophages, is increased in chronic heart failure patients 
and attenuated the production of inflammatory cytokines in 
serum or synovial joints in RA, suggesting IL-37 may have a role 
in clinical disease (274–276).

Age-ReLATeD DiSeASeS

Cancer
Cancer increases with aging, with one in two people likely to 
develop malignant tumors in their lifetime. Probable reasons for 
this age-related increase include exposure to environmental tox-
ins, declining immune surveillance, and increasingly ineffective 
DNA repair mechanisms. Inflammation is involved at different 
stages of tumor development, at initiation, promotion, malignant 
conversion, invasion, and metastasis, has a paracrine bystander 
role and is an essential part of the tumor micro-environment. 
Inflammation also affects immune surveillance and responses to 
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therapy (277). Thus, malignancy is a major threat to successful 
aging.

While inflammatory pathways are vital to promote immune 
homeostasis, over-activation or dysregulation can be pathologi-
cal and lead to malignant progression. Prolonged inflammation, 
either as a result of chronic infections, or reduced homeostasis in 
the inflammatory response, plays a role through the production 
of pro-inflammatory cytokines that may be directly or indirectly 
implicated in the oncogenesis (278, 279). More recent investiga-
tions have focused on the role of the inflammasone pathway, 
whose biochemical function is to activate casp-1, which leads to 
the activation of the IL-1β and IL-18 pathways and induction of 
pyroptosis, a form of cell death. Although inflammasomes have 
an important role in inhibiting cancer, through the triggering of 
the programmed-death pathway, they both initiate and maintain 
carcinogenesis, dependent on tumor type and the tumor environ-
ment (280, 281).

Bacterial and viral infections are associated with malignancies. 
For example, Helicobacter pylori (H. pylori) infection of the gut is 
associated with both gastric cancer and mucosa-associated lym-
phoid tissue (MALT) lymphoma (282). Epstein–Barr virus (EBV) 
is a causative agent in Hodgkin’s disease (HD), where chronic 
inflammation is considered a major contributory factor (283), 
human papilloma virus is implicated in most cases of cervical 
cancer (284), while human T-lymphotrophic virus 1 (HTLV-1) 
is a causative agent in adult T-cell leukemia lymphoma (285).  
A common factor is the association of infection with oncogenesis, 
with chronic inflammation a contributory factor.

In H. pylori chronic infection, elevated levels of IL-1β are 
detected and recognized as important in the development of 
gastric carcinoma. Normally gastric acid in the stomach does not 
permit bacterial survival, but in circumstances of low stomach 
acidity, H. pylori grow vigorously in the mucosa and induces 
caspase-mediated cleavage of pro-IL-1β and pro-IL-18 in associa-
tion with the NLRP3 inflammasome. The overexpression of IL-1β 
induces NF-κB activation and the transcription and expression 
of IL-6, TNF-α, and IL-10. The proinflammatory cytokine milieu 
increases the risk for developing both gastric carcinoma and 
MALT lymphoma (286). Persistently high levels of IL-1β and 
IL-18 suppress acid secretion, allow hypoacidity in the stomach, 
loss of parietal cells, gastric atrophy, metaplasia, and eventually 
gastric cancer. In addition, IL-1β inhibits gastric acid secretion 
and carriers of IL-1β polymorphisms producing higher IL-1β 
carry increased gastric cancer risk (287, 288). H. pylori infection 
of gastric mucosa can cause a monoclonal B  cell proliferation, 
with a histological diagnosis of MALT lymphoma. This tumor-
like proliferation of gastric mucosal cells and clonal B cells can 
regress after eradication of the H. pylori infection with combined 
antibiotic therapy and proton pump inhibitor treatment (289).

Viral infections strongly stimulate inflammatory responses 
and may lead to malignant transformation of the host cell 
(290). Although the activation of the inflammasome benefits 
the clearance of viruses and the regression of cancer, there are 
several examples of viruses, such as EBV and HTLV-1 developing 
strategies to evade detection, triggering the inflammasome, and 
high-jacking the inflammatory cascade to induce, and amplify 
the cancer spread. For example, when EBV infects B-lymphocytes 

and nasopharyngeal cells through its receptor CD21 (291), this 
leads to a proliferation of infected B cells, followed by an increase 
in CD8+ T cells, that controls the infected cells by lysis. However, 
where the normal infection-limiting response is “exhausted” or 
dysregulated, B cell proliferation continues unabated leading to 
chromosomal damage, which drives cell proliferation outside 
normal control mechanisms and may result in an aggressive 
non-Hodgkin’s or Burkitt’s lymphoma (292). NLRP3 activation 
has been demonstrated in EBV-associated cancerous tissues 
(293). Furthermore, EBV has been shown to be able to overcome 
the immune response by means of EBV miRNA binding to the 
3′-untranslated region of NLRP3 (294), so preventing effective 
immune activation and control mechanisms.

Retro-viruses stimulate inflammatory responses and are 
associated with malignant transformation of host cells. They 
reverse transcribe their RNA into the host cell’s DNA, leading 
to dysregulation of cellular proliferation and programmed cell 
death responses, and elicit a pro-inflammatory response. HTLV-1 
causes adult T-cell leukemia by targeting CD4+ T  cells that 
express CD25 (IL-2Rα) and FoxP3, similar to Tregs (295, 296).  
The persistent activation of the NF-κB pathway in HTLV-1-
infected T  cells and the associated NF-κB oncoprotein Tax 
contribute to the oncogenic transformation (297). The resulting 
hijacking of the NF-κB pathway, allows uncontrolled upregula-
tion of cellular genes that govern growth-signal transduction, 
amplify the pro-inflammatory cytokines (IL-2, IL-6, IL-15, TNF), 
together with increasing expression of proto-oncogenes (c-Myc), 
and antiapoptotic proteins (bcl-xl) Hiscott Rayet (298, 299). 
Inter-individual susceptibility to HTLV-1 infection has been 
associated with allele carrier status of the NLRP3 gene (300).

In summary, the interaction of infective agents, host cells, adap-
tive immune cells, cytokine production, and the inflammasome 
response is complex and incompletely understood. Many cancers 
arise from sites of infection, chronic irritation, and inflammation, 
which although sometimes reversible in the pre-malignant phase 
by eradicating the causative virus or bacterium, often treatments 
are too delayed to prevent the cancer development. There needs 
to be improved understanding about the roles of inflammation, 
the inflammatory cells, and the paracrine effects that allow tumor 
cell proliferation, survival, and migration. Does the pro-inflam-
matory environment found in aging enhance and facilitate cancer 
cell proliferation or does it alternatively represent an upregulated 
immune surveillance mechanism to deal with increased dam-
aged and dangerous cancer cells? Improved understanding of the 
pathways involved should begin to provide insights that could 
contribute to new anticancer and anti-inflammatory therapeutic 
approaches through manipulation of autophagy for cancer treat-
ment regimes or conversely tagging cancer cells for destruction 
through proteasome or autophagy upregulation (301).

Rheumatoid Arthritis
Chronic tissue inflammation has an important role in the etiology 
and immunopathogenesis of RA (302), with genetic and envi-
ronmental factors contributing to a predilection to develop the 
disease. In the pre-clinical asymptomatic phase of RA disease, the 
immune system is characterized by reduced self-tolerance and 
production of autoantibodies, whereas in the clinical phase (303) 
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innate and adaptive immune cells infiltrate the synovial joints and 
produce symptoms of joint pain and stiffness (304, 305). As RA 
progresses, immune cells and synovial fibroblasts produce a pro-
inflammatory environment in the joint (306, 307) leading to joint 
destruction (302). Cell-specific cytokines, include TNF-α, IL-1, 
and IL-6 from macrophages, IL-6, IL-7, and IL-15 from memory 
T-cells, IL-1 and IL-17 from helper T-cells, and IL-1, IL-6, IL-18, 
GM-CSF, and TGF-β from synovial fibroblasts (303, 308). This 
complex cytokine milieu attracts further immune cells, promotes 
abnormal angiogenesis and osteoclastogenesis, poorly formed 
leaky vasculature and leads to systemic effects (309).

There is evidence to suggest that activation of the NLRP3-
inflammasome contributes to the inflammatory processes in 
RA. Active RA subjects have increased expression of NLRP3 and 
NLRP3-mediated IL-18 secretion in whole blood upon stimula-
tion via TLR3 and TLR4, but not TLR2 receptors (310, 311).  
Functional polymorphisms in the genes coding for NLRP3 and 
its component parts, including CARD8 has been shown to con-
tribute to higher disease activity at diagnosis and for response in 
the early months of treatment (312, 313).

Patients with RA show premature immune aging and 
accumulation of CD28− pre-aged effector T cells that associate 
with disease activation and prognosis (314, 315). A novel T-cell 
subset CD28− Treg-like cell has been described that produce 
pro-inflammatory cytokines, mirroring the SASP associated with 
senescent cells (316). RA patients who show CD28− senescent 
Treg-like cells in blood seem to demonstrate earlier and more 
severe osteoporosis (317).

Limiting inflammation before damage occurs is central to 
successful RA management and the use of specific monoclonal 
antibodies has been a key therapeutic strategy. The central roles 
of TNF and IL-6 in RA have been corroborated by clinical trials 
of biologic drugs, which can specifically target and neutralize 
these cytokines. Evidence from RA clinical subgroups stratified 
by responses to specific biologic drugs strongly suggest that for a 
particular individual, inflammation is coordinated by a predomi-
nant cytokine pathway, such as TNF or IL-6 (318).

Anti-TNF biologics, such as adalimumab, etanercept, and inf-
liximab reduce inflammation, pain, neovascularization, lympho-
cyte infiltration, and increase macrophage apoptosis (318–321). 
Anti-IL-6R biologics, such as tociluzimab and anti-IL-6, such as 
sirukumab, strongly reduce disease activity and erosive progres-
sion (322, 323). Evidence suggests that the predominant cell 
cytokines seen in synovial histopathology may act as prognostic 
biomarkers for stratification of RA patients (324–326).

Studies of TNF and IL-6 gene polymorphisms further support 
their role in RA risk and severity. SNPs in IL-6 and IL-6R genes 
associate with increased RA risk and joint damage (327–329), and 
the TNF 308 G gene polymorphism with RA disease severity and 
poor response to anti-TNF treatment (330–334). In the elderly 
person with RA, there is difficulty in distinguishing whether 
chronic inflammation or genetic “predisposition” initiates 
disease or if late-onset RA is hastened by the pro-inflammatory 
phenotype associated with aging. TNF-α inhibitors used as 
disease-modifying agents in RA improve not only the clinical 
symptoms of RA, but also decrease the associated vascular risk 
(335), suggesting that a stratified biologic approach may be of use 

to therapeutically dampen chronic systemic inflammation related 
to aging and other age-related diseases.

Like other age-related diseases and aging itself, there is evi-
dence for dysregulation in both the autophagy–lysosomal and the 
ubiquitin–proteasomal systems in RA (102). Autophagy seems to 
be activated in RA in a TNFα-dependent manner and regulates 
osteoclast differentiation and bone resorption, emphasizing a 
central role for autophagy in joint destruction (336). Gene and 
allele frequency population differences seem also to contribute to 
how effectively cellular autophagy processes work within the cell 
in removing damaged proteins and other necrotic cellular debris. 
Polymorphisms of the ubiquitn E3 ligase gene that directly influ-
ence autophagy have also been identified and have been associated 
with the etiology and response to drug treatment in RA (337, 338). 
Both are likely important contributors to the action and effective-
ness of disease modifying and monoclonal biological drugs used 
in RA treatment. The role of the NLPR3 inflammasome may give 
opportunities for developing other disease-modifying drugs by 
targeting upstream triggers of the NLPR3 pathway.

Atherosclerosis
Atherosclerosis is recognized as a chronic inflammatory condi-
tion (339) and atherosclerotic plaques show cellular senescence 
(340, 341). Cytokines are involved in all stages of the pathogenesis 
of atherosclerosis, having both pro- or anti-atherogenic effects 
(342, 343). In response to increased low-density lipoprotein 
(LDL), hypertension, and subsequent shear stress, cytokines 
modulate endothelial cell permeability and recruit monocytes 
and T-lymphocytes (344, 345). The continuous monocyte recruit-
ment, foam cell and fatty steak formation eventually result in 
unstable plaque development, thrombosis, and a cardiac event 
(345, 346).

Chronic unresolved inflammation is a key feature in athero-
sclerosis and the levels of SPMs, particularly resolvin D1, and the 
ratio of SPMs to pro-inflammatory leukotriene B4 (LTB4), are 
significantly decreased in the vulnerable plaque regions (27). 
Vulnerable atherosclerotic plaques are recognized as having 
distinct features; increased inflammation; oxidative stress; areas 
of necrosis overlain by a thin protective layer of collagen (fibrous 
cap). In advanced atherosclerotic plaques, macrophages have 
more abundant nuclear 5-LOX, which is suggested to lead to 
conversion of AA to proinflammatory LTs, with the potential to 
contribute to plaque rupture (27).

The NLRP3 inflammasome, a central regulator of inflamma-
tion (58), is activated by cholesterol crystals and oxidized LDL 
(347, 348) that drives the IL-1β inflammation pathway. Recent 
research targeting IL-1β inflammation in atherosclerosis using 
cannakinumab, a therapeutic monoclonal antibody, has shown up 
to 15% lower rates of recurrent cardiovascular events, which was 
independent of lipid lowering (349). As well as playing a major 
role in chronic inflammation, NLRP3 is also upregulated dur-
ing endothelial cell senescence (350) via ROS, and is negatively 
regulated by autophagy (351, 352). The NLRP3 inflammasome, 
therefore, appears to warrant further investigation as a potential 
target for inflamm-aging related to atherosclerosis given that 
such mechanisms are now of well known importance in athero-
sclerosis (353).
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The gut microbiome has been implicated in age-related 
inflammation (354) with numerous studies reporting bacterial 
organisms in arterial plaque (355–357). Emerging research 
reports bacterial DNA in blood associated with a personal 
microbiota fingerprint as a predictor of cardiovascular events 
and stool microbiome as a signature of cardiovascular disease 
(358, 359). Similarly, bacterial DNA has been noted in cell-free 
plasma in cardiovascular and chronic renal disease patients  
(360, 361). Altered gut microbiota composition or dysbiosis is 
also seen in elderly people, and is associated with inflammatory 
markers (354). Aging leads to changes in intestinal permeabi-
lity in gut bacterial milieu (362), and the increased circulatory 
bacterial DNA observed associated with atherosclerosis support 
further investigation of the microbiome as a contributory factor 
to age-related inflammation and atherosclerosis.

Neuroinflammation and 
Neurodegenerative Disease
Inflammation has been well established as a major component of 
neurodegenerative disorders, but it has never been clear if this was 
a direct cause of the disease or a consequence of the progressive 
degenerative process that was occurring (363, 364). The central 
role of cytokines in regulating the immune response has been 
implicated in neurodegeneration, but over the past decade, there 
has been a revolution in our understanding of how cytokines con-
tribute to the etiology of the leading neurodegenerative disorders, 
including Alzheimer’s (AD) and Parkinson’s disease (PD).

In AD, central events seem to include the inflammasome, the 
NF-κB pathway, and the activation of microglia by a variety of 
factors, including beta amyloid and pro-inflammatory cytokines 
(172). Microglia, the primary components of the CNS innate 
immune system (365), produce cytokines and monitor the integ-
rity of CNS. Together with astrocytes, microglia are the primary 
effectors of neuroinflammation and express PPRs that allow early 
recognition of PAMPs and DAMPs. When the NLRP3 inflamma-
some is activated, the inflammation cascade begins with casp-1 
that facilitates the processing of IL-1β and IL18. These proin-
flammatory cytokines drive the inflammatory cascade through 
downstream signaling pathways and lead to neuronal damage 
and death (366). The activated microglia release proinflammatory 
cytokines, such as IL-1β, IL-6, TNF-α, and IL-18, that contributes 
to neuronal death and dysfunction.

There is interest in the role of sphingolipid metabolites, such 
as ceramide and sphingosine-1-phosphate, which regulate a 
diverse range of cellular processes that are important in immu-
nity, inflammation, and inflammatory diseases (367). Growing 
evidence suggests that ceramide may play a critical role in NLRP3 
inflammasome assembly in neuroinflammation. Research has 
shown that microglia treated with sodium palmitate (PA) induce 
de novo ceramide synthesis, triggering the expression of NLRP3 
inflammasome assembly and resulting in release of IL-1β (368), 
linking neuroinflammation with dietary lipids. Recent insights 
into the molecular mechanisms of action of sphingolipid metabo-
lites suggest roles in altering membrane composition, with effects 
on cellular interactions and signaling pathways with potential 
causal relationships to neuroinflammatory disease.

Dysregulated autophagy has been considered to play a role 
in neurodegenerative diseases, particularly AD, and is felt to 
be a key regulator of Aβ abnormal protein generation and 
clearance (369). In AD the maturation of autophagolysosomes  
(i.e., autophagosomes that have undergone fusion with lys-
osomes) and their clearance are hindered. Evidence suggests 
that Aβ peptides are released from neurons in an autophagy-
dependent manner and that the accumulation of intracellular 
Aβ plaques is toxic to brain cells leading to AD pathology (370). 
Furthermore, lysosomal and autophagocytic dysfunction has 
been associated with both Alzheimer’s and Parkinson’s diseases 
(71, 72). Senescent cells too, accumulate abnormal protein 
aggregates in the cytoplasm that contribute to neurodegenera-
tive disease (72). Cellular senescence has been reported in the 
aging brain with an increase in SASP-expressing senescent cells 
of non-neurological origin that are likely to contribute to the 
pro-inflammatory background (103, 371).

In AD and PD, the application of genome-wide association 
studies (GWAS) has demonstrated a number of key genes, relat-
ing to immunity, including the human leukocyte antigen (HLA) 
complex on chromosome six that regulates the immune and 
inflammatory response (372, 373). In the most recent Parkinson’s 
disease GWAS a locus containing the IL-1R2 gene was identified 
as significantly associated with disease risk and awaits further 
investigation (372). There is some evidence that carriage of cer-
tain pro-inflammatory cytokine gene alleles may confer increased 
Alzheimer’s disease risk. Single studies have reported that car-
riers of the A allele of the TNF-α 308 G/A gene were variably 
associated with increased risk of Alzheimer’s disease (207–210) 
and that carriage the higher IL-6 producing allele of IL-6 (174 
G/C) may confer increased risk (186, 190, 191). Animal studies 
have provided some clearer understanding of the role of TNF-α in 
Alzheimer’s disease with evidence of disease modulation with the 
use of anti-TNF agents (215). Three studies, published in 2013, 
confirmed a role for the immune response in AD identifying the 
microglia-related gene TREM2 as harboring an intermediate 
effect size variant in risk of AD that has also been implicated in 
other related neurodegenerative diseases (374–376). A recent 
study of rare variants has also implicated a role for microglial-
mediated innate immunity in AD (377).

A better understanding of the molecular pathways involved in 
the use of established drugs, such as non-steroidal anti-inflamma-
tory or statin drugs in risk and progression of neurological disor-
ders may provide further opportunities to treat earlier or prevent 
disease onset (378–380). It has been considered that downregula-
tion of the type and magnitude of the pro-inflammatory immune 
response in neurodegeneration might be a key to earlier and more 
successful targeting of these pathways. However results, to date, have 
been disappointing and anti-TNF-α therapies and targeted treat-
ment of TNF-α levels that are elevated in cerebrospinal fluid and 
in patients’ serum, have produced, at best, modest results (381). 
Multiple sclerosis patients have benefited from treatment with 
fingolimod (FTY720) that has been reported to attenuate neuro-
inflammation, by regulating the activation and neuroprotective 
effects of microglia, by modulating the sphingosine-1-phosphate 
receptor (S1P receptor) (382). Given the success of FTY720 for 
treatment of multiple sclerosis, it is hoped that next-generation 
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S1PR1 modulators will find wider therapeutic uses in other inflam-
matory disorders. Fingolimod is now under a phase 2 clinical trials 
for acute stroke and phase 4 for neurodegeneration (383).

FUTURe CONSiDeRATiONS

Aging is heterogeneous among people and highly variable 
between different organs and tissues. Our genes, our lifestyles, 
and our response to stress are infinitely individual and variable, 
so that the immunobiography of each life tells a different story of 
how each will respond to the internal and external environmental 
stressors (1–3, 384). But evidence is accumulating that the aging 
process may be malleable.

Because aging is the major risk factor for age-related diseases, 
understanding age better and maintaining the health of older peo-
ple and societies is highly important personally and for societies 
and governments. Knowledge about the underlying molecular 
pathways and the genetic and life-style processes associated with 
age-related disease and aging itself is increasing. Evidence from 
centenarian and nonagenarian studies suggests that these oldest 
members of populations have had the ability to delay aging and 
age-related disease (385, 386). Other studies suggest that cente-
narians may demonstrate optimized cardiovascular risk factors 
(387, 388), or have either intuitively or through social example, 
adopted lifestyles which have interacted with their genes to facili-
tate a successful aging phenotype (3, 389, 390).

Population studies across the world show that the age-specific 
incidence of cardiovascular disease, stroke, and dementia is decreas-
ing (391–395). This suggests that better blood pressure and diabetic 
control and statin use may directly or indirectly link into and 
downregulate molecular pathways associated with inflammation 
(396–399). Research into how carriage of certain gene alleles, such 
as TCF7L2 or IL-6 can increase inflammation or stroke risk, respec-
tively, and can be ameliorated by following a Mediterranean-type 
diet (42, 400, 401), or how gene splicing and features of senescence 
may be modulated by resveratrol in food (402), herald research into 
how gene, diet, and lifestyles can interact, with positive or negative 
effects on the immune system and health. Increased knowledge is 
emerging as to how epigenetic modulation can affect cytokine genes 
with reports linking cytokine epigenetic change to neuroinflam-
mation (403–405). Obesity, smoking, and malnutrition have been 
shown to have next generational epigenetic effects, and seem likely 
to contribute to the predilection of offspring developing age-related 
disease or conversely the longevity phenotype (406–409).

Other strategies should be adopted which link with public health 
messages and encourage people to adopt behavioral changes in 
lifestyles. Modifications should include: changes in diets to include 
more omega-3 containing foods or fruits and vegetables as in the 
Mediterranean diet (410–413); engagement in regular moderated 
exercise routines (414–417); continued engagement with social 
connections and intellectual activities in daily lives (418–420); or 
best of all a combination of life-style factors (3, 421, 422), all of which 
have been shown to reduce the inflammatory profile and improve 
the quality of aging. Although the role of diet on human health and 
connections through nutrition, inflammation, and cancer are not as 
linear as those between tobacco, smoking, and lung cancer, obesity 
is linked to chronic inflammation through several mechanisms, 

including the dysregulation of autophagy, whereas fasting has anti-
inflammatory effects, similar to the effect of exercise (423–426), and 
may downregulate inflammatory biomarkers (427–429). There is, 
therefore, considerable interest in the role of the intestinal micro-
biota and health and the so-called immune-relevant microbiome 
(324, 354), with important correlations between inflammation 
and neurodegenerative disease (430), bacterial β-hydroxybutyrate 
metabolites (431), and the role of vagal stimulation (432).

Increasing evidence shows that many signaling pathways 
are activated in a stress-type-dependent fashion, and all appear 
to converge with nuclear factor (NF)-κB signaling, which is a 
central controller of the immune response, and inflammatory 
cascade (110, 433–436). With increasing age, immune homeo-
stasis loosens, NF-κB signaling becomes less tightly controlled 
or is more readily triggered, cytokine dysregulation occurs, and 
a pro-inflammatory phenotype predominates that underpins 
most major age-related diseases from atherosclerosis to cancer, 
and aging itself (Figure 5). Understanding how different factors 
trigger the NF-κB cascade is an important pathway of research 
(434). In animal models, miRNA-based regulatory networks 
involving miR-155 and miR-146a, finely regulate NF-κB activity, 
with miR-146a downregulating and miR-155 upregulating NF-κB 
expression (435). There is an important temporal separation of 
miR-155 and miR-146a cellular expression that allows finely 
controlled NK-κB signaling and enables a precise macrophage 
inflammatory response, which merits further research.

Therapeutic opportunities may arise through better under-
standing of the molecular mechanisms that induce senescent 
cells and SASP in the cellular environments of chronic disease or 
whether senescent cells can be removed by upregulating autophagy 
and using sophisticated tagging mechanisms (110). There will be 
increased opportunities to use the knowledge gained from clini-
cal studies in autoimmune disease, about the roles and actions of 
monoclonal antibodies in modulating inflammation, which may 
be able to be utilized in treatments for other age-related diseases 
involving inflammation (436). The formulations of new and more 
specific drugs are likely to become available as the modes of action of 
kinases, such a AMPK and mTOR which control the senescence and 
inflammation pathways, become better understood (81, 84, 437).  
Old drugs, such as metformin, still used in diabetes control, are 
being repurposed and have been shown to have exciting new 
uses through their ability to modify epigenetic gene expression. 
Clinical studies are underway to assess any modulating effect of 
metformin in aging and age-related diseases (81). The use of his-
tone deacetylating drugs is likely to increase as the clinical use of 
deacetylation and methylation agents is evaluated in cancer with 
improved knowledge of their effects and safety criteria (438). The 
current interest in diet and modified diets will encourage further 
studies assessing how nutrachemicals modify gene expression, 
for example, through the regulation of intracellular receptors that 
bind the promoters of certain genes, and may help to design more 
specific drugs to modify metabolism and benefit health (439).

Turning research to focus on improved understanding of the 
mechanisms of inflammation resolution in aging and age-related 
disease, should also be prioritized, since it is an under researched 
area. Developing synthetic resolvins for use in inflammation 
resolution may have advantages over the use of single biological 
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anti-inflammatory blockers in autoimmune disease clinical man-
agement, since cytokine networks are highly interactive and com-
plex (440), with many auto-regulatory feedback loops. All these 
molecular pathways are, or have the potential for being developed 
as drug targets toward clinical interventions useful in damping 
down and modulating inflammation (441, 442) and may have a 
role in delaying the onset or treatment of age-related diseases.

Evidence from on-going global studies of the oldest members of 
our societies, such as centenarians and nonagenarians (443–454) 
suggests that it may be possible to delay age-related diseases and 
that aging may be a potentially modifiable risk factor (455). Further 
investigation has shown that centenarians and super-centenarians 
also have an enhanced pro-inflammatory background (9, 456, 457), 
which at first seems surprising, given their long lives. However, 
studies have demonstrated that the pro-inflammatory background 
is accompanied and perhaps modulated, by an enhanced anti-
inflammatory status in some centenarians. Some have argued that 
an enhanced anti-inflammatory phenotype could be beneficial 
as a contributor to longevity by effectively controlling the pro-
inflammatory background (9, 11, 257). Others suggest that some 
inflammation is good, in the same way as hormetic stress triggers 
systems, and upgrades them but does not overwhelm them (458). 
Regular exposure to pro-inflammatory stressors could train the 
immune system to upregulate and fine-tune its cellular processes, 
so that it responds better and provides better outcomes, when faced 
with real life-threatening pathogenic threats.

Genome-wide association studies have proved a powerful 
methodology to assess the influence of common variation in AD 
and PD disease susceptibility, but by their nature have reflected 
low effect size variants that likely have a cumulative effect on risk 
(459). As next-generation sequencing technology becomes more 
cost-effective, the ability to identify variants that are less com-
mon (<1% minor allele frequency) will become more achievable. 
These unbiased approaches should aid the identification of key 
players in the inflamm-aging pathway and will play a critical 
role in the development of therapeutic intervention strategies in 
neurodegenerative and age-related diseases.

There is the increasing opportunity to link large global 
datasets with the technologies of genomics, transcriptomics, and 

proteomics through bioinformatics and artificial intelligence 
methods to unlock the physiological, genetic, and molecular 
pathways that underpin the pro-inflammatory aging-phenotype. 
Using systems biology methods has the potential to lead to the 
generation of novel therapeutic approaches for old diseases and 
modern health challenges. Improving knowledge about how to 
delay or modify the pro-inflammatory aging-phenotype, the hall-
mark of aging and age-related disease, will give hope of a better 
quality aging and the longevity dividend for all.
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