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Immunodeficient mice transplanted with human cell populations or tissues, also known 
as human immune system (HIS) mice, have emerged as an important and versatile tool 
for the in vivo study of human immunodeficiency virus-type 1 (HIV-1) pathogenesis, treat-
ment, and persistence in various biological compartments. Recent work in HIS mice has 
demonstrated their ability to recapitulate critical aspects of human immune responses 
to HIV-1 infection, and such studies have informed our knowledge of HIV-1 persistence 
and latency in the context of combination antiretroviral therapy. The central nervous 
system (CNS) is a unique, immunologically privileged compartment susceptible to HIV-1 
infection, replication, and immune-mediated damage. The unique, neural, and glia-rich 
cellular composition of this compartment, as well as the important role of infiltrating cells 
of the myeloid lineage in HIV-1 seeding and replication makes its study of paramount 
importance, particularly in the context of HIV-1 cure research. Current work on the 
replication and persistence of HIV-1 in the CNS, as well as cells of the myeloid lineage 
thought to be important in HIV-1 infection of this compartment, has been aided by the 
expanded use of these HIS mouse models. In this review, we describe the major HIS 
mouse models currently in use for the study of HIV-1 neuropathogenesis, recent insights 
from the field, limitations of the available models, and promising advances in HIS mouse 
model development.

Keywords: human immunodeficiency virus, central nervous system, human  immune system mice, myeloid cells, 
Hiv-associated neurocognitive disorders

inTRODUCTiOn

Infection with human immunodeficiency virus-type 1 (HIV-1) results in CD4+ T cell destruc-
tion and progressive debilitation of the immune system (1). Although combination antiretroviral 
therapy (cART) can effectively suppress HIV-1 RNA to undetectable levels in the peripheral blood 
(2), the ability of replication-competent HIV-1 to persist in cellular and tissue reservoirs despite 
suppressive therapy is a barrier to cure (3–5). Penetration of the central nervous system (CNS) by 
HIV-1 occurs early in infection (6, 7). HIV is postulated to cross the blood–brain barrier (BBB) 
via the infiltration of infected monocytes, CD4+ T lymphocytes (8, 9), or as cell-free virus (10, 11). 
Resulting CNS immune activation; the infection and activation of monocytes, perivascular mac-
rophages, and resident microglia; and indirect mechanisms are all thought to play a critical role in 
the pathogenesis of HIV-1 in the CNS (12–16). Early neuropathological characterization of the CNS 

https://www.frontiersin.org/Immunology/
https://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2018.00649&domain=pdf&date_stamp=2018-04-04
https://www.frontiersin.org/Immunology/archive
https://www.frontiersin.org/Immunology/editorialboard
https://www.frontiersin.org/Immunology/editorialboard
https://doi.org/10.3389/fimmu.2018.00649
https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:tevering@adarc.org
https://doi.org/10.3389/fimmu.2018.00649
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.00649/full
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.00649/full
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.00649/full
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.00649/full
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.00649/full
https://loop.frontiersin.org/people/518505
https://loop.frontiersin.org/people/133306


2

Evering and Tsuji HIS Mice for CNS HIV-1

Frontiers in Immunology | www.frontiersin.org April 2018 | Volume 9 | Article 649

in those with advanced untreated HIV-1 and HIV-associated 
dementia (HAD) revealed encephalitis marked by inflammation, 
microglial activation, astrogliosis, and neuronal loss (17, 18).  
Use of highly effective cART has significantly reduced the 
incidence of HAD (19). Nonetheless, HIV-1-associated neuro-
cognitive disorders (HANDs) persist as an important clinical 
complication of HIV-1 infection in the cART era and can result 
in an array of cognitive, behavioral, and motor deficits (20). 
Murine models that mimic human immune systems (HIS) have 
been extremely valuable tools for the elucidation of a number 
of pathophysiological mechanisms responsible for HIV-1 CNS 
pathogenesis. However, no adjunctive therapies for HAND exist 
beyond cART, and a combination of novel and more physi-
ologically relevant HIS mouse models is now being evaluated 
to advance our knowledge of the complex immunological and 
pathological features of HIV-1 neuropathogenesis in the cART 
era (21, 22).

AniMAL MODeLS FOR STUDieS OF Hiv-1 
CnS PATHOGeneSiS

Animal models provide an important complementary approach 
to the study of HIV-1 pathogenesis (23). To varying degrees, 
these in vivo models replicate the intricacies of complex immu-
nological interactions between multiple cell types to an extent 
not possible in vitro. In addition, they are free from many of the 
experimental constraints imposed by the inaccessibility/limited 
availability of human tissue (24). Commonly used non-human 
primate (NHP) animal models include rhesus, pigtail, and 
cynomolgus macaques that can be infected with a simian or 
chimeric simian/human immunodeficiency virus. NHP models 
have provided great insight into HIV-1 neuropathogenesis. 
In particular, rhesus macaques have been shown to develop 
HIV encephalitis (HIVE) and microglial infection (25), and 
a highly neurovirulent (although not physiologic) challenge 
model has been developed in pigtail macaques (26). However, 
studies using NHPs are limited by high cost, special housing 
requirements, and small experimental groups. In response to 
these constraints, small animal models of human disease have 
been developed and widely employed (27). However, their 
ability to recapitulate human disease can be limited as some 
important human pathogens (including HIV) display tropism 
unique to humans (28, 29). The transgenic expression of select 
HIV-1 proteins such as HIV-1 envelope and trans-activator of 
transcription, human receptors and co-receptors in mice result 
in animals with a broad range of HIV-1-related pathologies 
(30–34). These include a spectrum of neurotoxicity, defective 
neurogenesis, and glial abnormalities in mouse CNS that 
resemble those seen in the brains of HIV-1-infected humans 
(35–39). Although these transgenic models mirror specific 
components of the pathophysiological effects of select HIV-1 
proteins on the CNS (40), as well as some of the cognitive and 
behavioral features of HAND (41), they are unable to model 
critical aspects of HIV-1 CNS infection in the human host, such 
as viral CNS invasion (42). For these reasons, the use of small 
animal models that can more accurately mimic the HIS is of 
great value.

HUMAn iMMUne SYSTeM (HiS) MOUSe 
MODeLS FOR THe STUDY OF Hiv-1

In contrast to transgenic or chimeric mice, the creation of mice 
with human immune system components (HIS mice) provide 
an in vivo environment that allows for the study of HIV-1 and 
its interaction with cells of the human immune system (24). HIS 
mouse production initiates with the choice of an immunodeficient 
mouse strain that can accommodate the engraftment of human 
cells and tissues without rejection (43). Early immunodeficient 
mice used for human tissue or cell xenografts included “nude” 
mice, which lack mature CD4+ and CD8+ T cells (44) and severe 
combined immunodeficiency (SCID) mice, which harbor a muta-
tion in the protein kinase, DNA-activated, catalytic polypeptide 
gene (Prkdcscid) and lack mature T and B cells (45). The ability of 
these strains to support long-term, systemic reconstitution with 
human cells were, however, limited by relatively high residual 
levels of innate immune responses, such as those mediated by 
natural killer (NK) cells resulting in the rejection of human bone-
marrow allographs (46). Improved levels of immunodeficiency 
were found in strains lacking mature B and T  lymphocytes 
due to disruptions in the recombination-activating genes Rag1 
and Rag2 (47, 48), that were further augmented in mice also 
harboring a complete null mutation of the common cytokine 
receptor γ chain (IL2Rγ, or γc), resulting in the absence of 
mouse NK cells (49–51). As a result, modern HIS mouse models 
are typically produced by engrafting human hematopoietic 
stem cells (hHSCs), human peripheral mononuclear cells, and/
or human tissues into these highly immunodeficient strains 
following their preconditioning with sublethal irradiation or 
chemotherapy. The main platforms in use include NSG (NOD-
scid IL2Rγnull and NOD.Cg-PrkdcscidIL-2Rγtm1Wjll/Sz) (52), 
NRG (NOD-Rag1−/−IL2RγC-null), NOG (NOD.Cg-Prkdcscid 
IL-2Rγtm1Sug), and BRG (BALB/c-Rag2null IL-2Rγnull) strains 
(24, 53). Although important differences in the extent of humani-
zation and functional quality of the populating human cells exist 
between models, multilineage reconstitution with hHSCs can 
include all major human lymphocyte classes (CD4+ and CD8+ 
T  cells, B  cells, and NK  cells) as well as various myeloid cells 
(monocytes, macrophages, and dendritic cells). In those strains of 
mice that support human T-cell development when transplanted 
with human CD34+ hHSCs, T  cell maturation occurs in the 
murine thymus (52, 54, 55). When humanized mice are engi-
neered by implanting human thymus and liver tissue, developing 
T cells are educated on human thymic epithelial cells, allowing 
for restriction by human leukocyte antigens (HLAs) I and II 
(56, 57). The bone marrow–liver–thymus (BLT) mouse model, 
which combines the implantation of fetal liver and thymus under 
the kidney capsule of NOD/SCID, NSG, or C57BL/6 Rag2−/− 
IL2γ−/− mice, along with the transplant of autologous CD34+ 
hHSCs is the most complete and well explored (58–60). The 
technical demands of this system are associated with considerable 
expense, and the need to surgically implant each mouse can result 
in significant variation in HIS repopulation (61). However, with 
their strong lymph node and intestinal reconstitution, BLT mice 
are particularly useful for the study of HIV-1 infection at mucosal 
surfaces (62–64). Modern HIS mouse models provide stable 
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TAbLe 1 | HIS mouse models with published studies of human immunodeficiency virus-type 1 (HIV-1) infection of the central nervous system (CNS).

HiS mouse model (reference) Method of generation Salient CnS findings in response to Hiv-1 infection

Severe combined immunodeficiency  
(SCID)–HIV encephalitis (HIVE) (79–84)

Direct injection of HIV-1-infected human 
microglia or macrophages into the brain 
of SCID mice

Measurable HIV-1 brain viral load and neuropathological features of  
HIVE including astrogliosis and microgliosis. Reduction in CNS pathology  
in response to combination antiretroviral therapy (cART).

NSG-huPBL (93) Intraperitoneal injection of human donor 
PBMCs into non-irradiated NSG mice

HIV-1-infected human CD4+ T cells present in meninges and cortex of  
infected animals. Appearance of neurodegeneration, microgliosis, and  
astrogliosis dependent on infecting viral strain.

CD34+-NSG (85, 86, 89–91, 105) NSG mice transplanted with human 
CD34+ hematopoietic stem cells 
(hCD34+)

Low CNS viral burdens, transmigration of HIV-infected human monocytes and 
macrophages into the mouse CNS, regional activation of resident murine microglia 
and astrocytes, neuroinflammation, and neurodegeneration. Reduction in CNS 
pathology with long-acting nanoparticle-based cART. Increased blood–brain 
barrier integrity in acutely infected CD34+-NSG mice and decreased leukocyte 
extravasation into CNS following treatment with a novel sonic hedgehog mimetic.

CD34+-NSG (+hNPC) (133) NSG mice transplanted with  
hCD34+ combined with intraventricular 
injection of neural progenitor cells

Detection of human glia in diverse brain regions of HIS mice including 
periventricular areas, white matter tracts and brain stem. Mice infected  
with HIV-1 display glial transcriptional signatures and viral defense signaling 
pathways that mirror human disease.

Myeloid-only mice (60) NOD/SCID mice transplanted with 
hCD34+

HIV-1 DNA and RNA as well as macrophages expressing HIV-1 p24 detected  
in the brains of infected animals.

DRAG (121) NRG mice expressing human leukocyte 
antigen (HLA) class II (DR4) transplanted 
with HLA-matched hHSC

HIV-1 replication in brain following mucosal infection.
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human cellular reconstitution that can support HIV-1 replication 
in the peripheral blood and multiple organs (27), allowing them 
to provide insights into many aspects of HIV-1 biology including 
viral life cycle and innate and adaptive immune responses to 
HIV-1 (59, 62, 65–68). Viral suppression with clinically relevant 
cART (69–73) has been demonstrated in HIS mice, and they have 
proven effective for the investigation of multiple immune-based 
approaches for the in vivo control of viral replication and elimina-
tion of HIV-infected cells (74–78).

HiS MODeLS FOR THe STUDY OF Hiv-1 
neUROPATHOGeneSiS AnD ReSPOnSe 
TO TReATMenT

Early neuroAIDS mouse models involved the generation of 
HIVE through the direct injection of human microglia or mac-
rophages into the brain of SCID mice (79, 80). While the resultant 
SCID-HIVE model recapitulates some of the neuropathological 
features of human HIVE, these approaches are traumatic and 
result in xenoreactivity induced-inflammation through the 
artificial insertion of human cells into a foreign mouse cellular 
environment (81). Despite these caveats, studies investigating the 
impact of cART in this model have demonstrated reductions in 
neuropathological features of HIVE including decreased astro- 
and micro-gliosis and reductions in HIV-1 brain viral loads 
(82–84). Subsequent development of the humanized mouse 
model, in which NSG mice are engrafted with CD34+ hHSCs 
(CD34+-NSG mice), has allowed for more detailed, prolonged 
studies of HIV-1 CNS infection and neurodegeneration in the 
context of unchecked HIV-1 replication (85). Systemic HIV-1 
infection in this model is characterized by low CNS viral burdens 

and the transmigration of HIV-infected human monocytes and 
macrophages into the mouse CNS. These human cells localize 
predominantly to the meninges, perivascular spaces, and, to a 
lesser extent, brain parenchyma (85–88). Regional activation of 
resident murine microglia and astrocytes, neuroinflammation, 
and neurodegeneration are also among the salient findings in 
this model (85, 86, 89). Some of these changes were reversible by 
long-acting nanoparticle-based cART (90). More recently, pre- 
and post-infection dosing with a novel sonic hedgehog mimetic 
was found to increase BBB integrity in acutely infected CD34+-
NSG mice, resulting in decreased leukocyte extravasation into 
CNS during and pathologic evidence of neuroprotection (91). 
Finally, a simplified HIS model generated by the intraperitoneal 
(IP) injection of human PBMCs into non-irradiated NSG mice 
(NSG-huPBL) has recently been described (92). In this model, 
IP challenge with HIV-1 resulted in systemic viral infection 
and CNS invasion with infected CD4+ T cells. The presence of 
neuropathology—characterized by neurodegeneration, activated 
microglia, and astrocytes—was found to be dependent on the 
infecting viral strain (93). A brief summary of currently available 
HIS mouse models with published data on HIV-1 CNS infection 
can be found in Table 1.

HiS MODeLS in eLUCiDATinG THe  
ROLe OF MYeLOiD CeLLS in Hiv-1  
CnS PeRSiSTenCe

Monocytes and macrophages can be infected with HIV-1 both 
in vitro and in vivo (94–96). However, the question of whether 
cells of myeloid lineage serve as true HIV-1 reservoirs in the 
context of suppressive cART remains of great interest (97). This 
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question is central to the study of HIV-1 persistence in the CNS as 
perivascular monocyte-derived macrophages and parenchymal 
microglia are the most important cellular targets of HIV-1 in the 
CNS (98), and infection of these cell types is critical to HIV-1 
CNS pathogenesis and HAND (99). Recent evidence suggesting 
that macrophages may become positive for viral DNA through 
the capture and phagocytosis of infected CD4+ T cells implies 
a mechanism of infection distinct from virological synapse for-
mation and furthers the debate (100, 101). Recent study in the 
T cell only mouse in which implantation of autologous human 
fetal liver and thymus under the kidney capsule of an NSG mouse 
results in systemic reconstitution almost exclusively with human 
T cells predictably demonstrates the development of latent T cell 
reservoirs of HIV-1 (102). Complementary studies by Honeycutt 
et  al. in myeloid-only mice (MoM) in which NOD/SCID mice 
transplanted with CD34+ hHSCs are reconstituted with human 
myeloid and B cells in the absence of human T cells have proven 
informative. Using this novel HIS model, Honeycutt et al. demon-
strated that macrophages can support efficient HIV-1 replication 
in vivo in multiple compartments in the absence of T cells follow-
ing infection with certain macrophage-tropic (M-tropic) HIV-1 
strains such as HIV-1 ADA. HIV-1 DNA and RNA as well as 
macrophages expressing HIV-1 p24 were detected in the brains of 
infected MoM (60). In addition, cessation of suppressive cART in 
MoM resulted in measurable in vivo viral rebound after 7 weeks 
(103) supporting infection of long-lived tissue macrophage 
populations (104). Another recent study in CD34+-NSG mice 
infected with M-tropic HIV-1 found evidence for CD14+CD16+ 
monocyte/macrophage cells with HIV-1 RNA and integrated 
proviral DNA in the spleen and bone marrow. Consistent with 
previous reports in this model, viral RNA was detected in the 
brains in a few animals at low copy numbers (105). As a result, 
HIS mouse models have proven utility in defining cellular sites for 
HIV-1 infection and hold promise for further elucidating the viral 
dynamics of the establishment and recrudescence of potential 
CNS-based HIV-1 reservoirs.

CURRenT CHALLenGeS AnD ADvAnCeS 
in HiS MODeLS FOR THe STUDY OF 
Hiv-1 in THe CnS

Although they represent powerful research tools, limitations to 
the use of HIS mice for the in vivo study of HIV-1 exist. HIS mod-
els do not perfectly recapitulate human hematopoiesis and can 
display a relatively short lifespan, particularly after the approxi-
mately 8- to 18-week period needed for appropriate engraftment 
(43). Variability in the efficiency of human cell engraftment is 
an important challenge to robust experimentation. In addition, 
despite the fact that most HIS mouse models have demonstrated 
highly effective adaptive T-cell immune responses, the majority 
of models display an absence of species-specific human cytokines 
and impaired B-cell function and humoral immune responses  
(55, 106–108). This is important, as one proposed mechanism for 
the pathology induced in the CNS in response to HIV-1 infec-
tion is an abnormal cytokine/chemokine response (16). Another 
important limitation of currently available HIS mouse models is 

the frequent development of graft-versus-host disease (GVHD), 
characterized by multiorgan lymphocytic infiltration and sclerosis 
in the weeks following hHSC transplant (109). This is an impor-
tant limitation to the study of HIV-1 in the CNS in particular, as 
longer-term experiments are necessary to demonstrate produc-
tive infection of the CNS by HIV-1 and CNS pathology in animals 
naïve to and under cART and/or putative adjunct therapeutics. 
Several research groups are working to improve the functionality 
of HIS mouse models in response to these limitations. Lavender 
et  al. have described the evaluation of GVHD-resistant triple 
knockout (TKO) mice, which lack CD47 in addition to Rag 1 
and IL2rg. These TKO-BLT mice reportedly remained healthy for 
45 weeks post-humanization and could be virally suppressed on 
cART (110). Additional efforts to improve HIS mouse platforms 
have included the depletion of endogenous mouse macrophages 
(111) and the development of strains expressing human cytokines 
for improved human NK-cell development (112, 113). HIS 
models with improved development of HLA-restricted human 
T cells have been achieved through engraftment of HLA-matched 
hHSC into immunodeficient mice with transgenic expression of 
human HLA molecules (114). Huang et  al. have reported the 
development of a novel HIS mouse model utilizing recombinant 
adeno-associated virus-based gene transfer technologies (115) 
to introduce genes encoding HLA-A2/DR and selected human 
cytokines into NSG mice. The ability of this resultant HIS mouse 
model to endogenously encode for human MHC constitutively 
during its lifespan and key human cytokines during develop-
ment of lymphoid and myeloid progenitor cells allows for an 
accurate recapitulation of many aspects of the human immune 
system. This is reflected in highly functional human CD4+ 
and CD8+T-cell and B-cell responses (116, 117) as well as the 
successful reconstitution of human monocytes (CD14+) and 
macrophages (CD14+/CD11b+) (117). These HIS mice can be 
productively infected with HIV-1 (118) and have the ability to 
secrete measurable human IFN-γ, IL-2, CCL3, and IL-1β in vivo 
in response to parasitic and viral pathogens (117–120). With high 
rates of engraftment and low rates of GVHD, this model can be a 
useful tool for the study of potentially important viral reservoirs 
of HIV-1 in the CNS. In a similar vein, Kim et al. have recently 
reported the use of immunodeficient mice expressing HLA class 
II (DR4) (DRAG mice) engrafted with HLA-matched hHSCs to 
study early HIV-1 infection. The authors report HIV-1 replica-
tion in various tissues, including bone marrow, lymph nodes, and 
the brain, which on day 21 following mucosal infection, was the 
last tissue examined to become HIV-1 viral RNA positive (121). 
Finally, infiltrating human myeloid cells and lymphocytes have 
been demonstrated in the brains of HIV-1 infected HIS mice 
(85).  However, the generation of models harboring functional 
human myeloid cells in percentages approximating those seen in 
humans has been challenging. In several HIS platforms, strate-
gies to improve human myeloid cell reconstitution include the 
administration of exogenous human Flt3 ligand (122), exogenous 
delivery of human granulocyte-macrophage colony-stimulating 
factor (GM-CSF) and IL-4 (123, 124), and human GM-CSF and 
IL-3 knock-in (125, 126).

Limitations of HIS mouse models that are of unique interest 
to the study of HIV-1 in the CNS exist as well. Common to all 
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HIS mouse models is the absence of human microglia in the 
CNS (127)—a major deficiency as microglia represent one of 
the most important cellular targets of HIV-1 in the brain (98). 
Unfortunately, engrafted CD34+ hHSCs are unlikely to repopu-
late human microglial cells within the brains of HIS mice, as 
microglial cells are derived early during development from yolk 
sack precursors (127). Additionally, human glia (astrocytes and 
oligodendrocytes)—the most abundant cell types in the human 
CNS—are absent in the majority of HIS mouse models (128). As 
a result, these platforms are unable to recapitulate innate glial 
cell responses resulting from the complex interactions between 
human glia and infected mononuclear phagocytes during pro-
gressive HIV-1 infection (129, 130). In response, several groups 
have attempted to reconstitute HIS mouse brain with neonatally 
transplanted human glial progenitor cells (131, 132). Following 
such interventions, Li et al. reported the detection of human glia 
in diverse brain regions of HIS mice including periventricular 
areas, white matter tracts, and brain stem. RNA-sequencing in 
the selected brain regions of such mice infected with M-tropic 
HIV-1 reportedly display glial transcriptional signatures and viral 
defense signaling pathways that mirror human disease (133–136). 
Although this approach does not repopulate the brain with 
human microglia, such experimental improvements are welcome 
and will allow for the improved modeling of human HIV-1 CNS 
neuropathological disease.

COnCLUSiOn

Human immune system (HIS) mouse models have proven to 
be extremely valuable tools for the study of HIV-1 infection 

of the CNS, its resulting neuropathology and the potential for 
HIV-1 persistence in this immunologically privileged com-
partment. As with all model systems, experimental and bio-
logic limitations exist. These include the absence of human 
CNS cell types that in response to HIV-1 invasion play key 
roles in the development of the neuroinflammatory milieu and 
impaired immune, glial, and neural cell functions leading to 
HAND. However, model improvements are ongoing, with the 
general aims of preventing GVHD and enhancing the levels, 
reproducibility, and quality of human immune cell reconsti-
tution. The rational evolution of these models will continue 
to foster authentic human immune responses in HIS mouse 
models and will further facilitate development of diagnostic, 
novel therapeutic, and viral eradication strategies for HIV-1 
in the CNS.
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