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introduction: To reduce the pertussis disease burden, nowadays several countries rec-
ommend acellular pertussis (aP) booster vaccinations for adults. We aimed to evaluate 
the immunogenicity of a first adult aP booster vaccination at childbearing age.

Methods: In 2014, healthy adults aged 25–29 years (n = 105), vaccinated during infancy 
with four doses of whole-cell pertussis (wP) vaccine, received a Tdap (tetanus, diphtheria, 
and aP) booster vaccination. Blood samples were collected longitudinally pre-booster, 
2 and 4 weeks, and 1 year and 2 years post-booster. Tdap vaccine antigen-specific 
antibody levels and memory B- and T-cell responses were determined at all time points. 
Antibody persistence was calculated using a bi-exponential decay model.

results: Upon booster vaccination, the IgG levels specific to all Tdap vaccine antigens 
were significantly increased. After an initial rapid decline in the first year, PT-IgG antibody 
decay was limited (15%) in the second year post-booster. The duration of a median 
level of PT-IgG ≥20 IU/mL was estimated to be approximately 9 years. Vaccine antigen- 
specific memory B- and T-cell numbers increased and remained at high levels although 
a significant decline was observed after 4 weeks post-booster. However, Th1, Th2, and 
Th17 cytokine production remained above pre-booster levels for 2 years.

Conclusion: The Tdap booster vaccination in wP-primed Dutch adults induced robust 
long-term humoral and cellular immune responses to pertussis antigens. Furthermore, 
PT-IgG levels are predicted to remain above the presumed protective cut-off for at least 
9 years which might deserves further attention in evaluating the current recommendation 
to revaccinate women during every new pregnancy.

Keywords: pertussis, adult immunization, antibody decay, memory B-cells, memory T-cells

inTrODUCTiOn

The incidence of clinical pertussis cases strongly declined after the introduction of whole-cell pertus-
sis (wP) vaccines in infant national immunization programs (NIP) in the 1940 and 1950s (1). Despite 
a consistently high vaccination coverage, an increase in numbers of pertussis cases is observed 
in many countries and in all age groups (2–5). Consequently, in addition to pre-school acellular 
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pertussis (aP) booster vaccinations, several countries have imple-
mented aP booster vaccinations for adolescents and adults (6–8). 
Furthermore, to protect unvaccinated infants against pertussis, 
pregnant woman are advised to receive maternal aP booster vac-
cination in more than 25 countries (9–11).

Waning immunity after vaccination and natural infection as 
well as the switch from wP to aP vaccines in the primary infant 
vaccination series are thought to have contributed to the pertus-
sis resurgence (12–14). The switch from wP to aP vaccines for 
infants occurred in January 2005 in the Netherlands, which is 
rather late compared with other high-income countries. After 
an aP vaccination in adults, low pertussis antibody levels, and 
in particular low anti-pertussis toxin (PT) antibodies, that are 
considered the most protective against clinical B. pertussis symp-
toms, have been observed already within 1 year (15, 16). These 
studies were, however, conducted in a period with a presumed 
lower circulation of B. pertussis (late 1990s) in comparison to the 
past decades (17, 18).

Nowadays, increased circulation of B. pertussis might allow for 
more natural boosting of the immune system, and affect antibody 
kinetics as well as cellular immunity after an adult aP booster 
vaccination. We aimed to evaluate the long-term immunogenic-
ity of a first adult aP booster vaccination at childbearing age.  
A bi-exponential antibody decay model was used to predict the 
duration of antibody persistence to PT after vaccination. This 
study provides valuable information for the improvement of adult 
and maternal pertussis vaccination programs.

MaTErialS anD METHODS

Study Design and Participants
In this phase IV, longitudinal intervention study, healthy Dutch 
adults 25–29  years of age were recruited to receive a tetanus, 
diphtheria, and acellular pertussis (Tdap) booster vaccination. 
Exclusion criteria were pregnancy at the start of the study; present 
severe disease or medical treatment that might interfere with 
study results; an adverse event after previous vaccinations; other 
pertussis vaccinations than those given according to the Dutch 
NIP; diphtheria and/or tetanus vaccination in the past 5 years; 
plasma products received in the past 6 months; any vaccination 
in the last month and/or antibiotic use or fever (≥38°C) in the 
2 weeks before study enrollment. Written informed consent was 
obtained at the start of the study. The study was approved by the 
Medical Ethics Review Committee North Holland (METC-NH, 
Alkmaar, the Netherlands) and registered at the European clini-
cal trials database (2013-005355-32) and the Dutch trial register 
(www.trialregister.nl; NTR4494).

Vaccination Background
All participants had received the Dutch diphtheria, tetanus, 
whole-cell pertussis, and inactivated poliovirus combination 
vaccine (National institute for Public Health, Bilthoven, the 
Netherlands) according to the then NIP at 3, 4, 5, and 11 months 
of age. In this study, the participants received a Tdap booster 
vaccine (Boostrix™, GlaxoSmithKline, Rixensart, Belgium). 
The vaccine contained 8 µg PT and filamentous hemagglutinin 

(FHA), 2.5 µg pertactin (Prn), ≥2 IU diphtheria toxoid (Dd), and 
≥20 IU tetanus toxoid (Td).

Blood Samples
Serum samples were collected just before, 14  days (±2  days), 
28  days (±2  days), 1  year (±2  weeks), and 2  years (±2  weeks) 
after the Tdap booster vaccination. Sera were stored at −20°C 
until analysis. From a randomly selected subset of 60 participants, 
additional blood was sampled in vacutainer cell preparation tubes 
containing sodium citrate (Becton Dickinson (BD) Biosciences, 
San Jose, CA, USA). PBMCs were isolated within 16 h, and stored 
at −135°C as described previously (19).

Serological analysis
PT-, FHA-, and Prn-specific IgG and IgA, and Dd- and tetanus 
toxin (TT)-specific IgG antibody concentrations were quanti-
fied using the fluorescent-bead-based multiplex immunoassay 
(MIA) as described (20–22). To express pertussis-IgG and IgA 
concentrations in international units (IU) per mL, the WHO 
international standard (pertussis antiserum first international 
standard, 06/140, NIBSC) was used. A PT-IgG concentration of 
20 IU/mL was used as an arbitrary cut-off for protection (23) and 
50 IU/mL to indicate an infection with pertussis in the preced-
ing years (17, 20). An IgA concentration ≥1 IU/mL was used as 
seropositive.

From 42 longitudinal samples, the PT- and Prn-IgG avidity 
was determined using the MIA with minor modifications (24), 
using 1.5 M (for PT) and 2.5 M (for Prn) ammonium thiocyanate 
(NH4SCN). The geometric mean avidity index (GMAI) was 
expressed as the percentage of antibodies that remained bound to 
PT- or Prn-conjugated beads after NH4SCN treatment in compa-
rison to untreated (PBS) samples.

Flow Cytometry
The absolute numbers of circulating B-cells and B-cell subsets 
were determined in 60 paired samples before and 2 weeks after 
the booster vaccination with a lyse-no-wash protocol using 
TruCOUNT tubes (BD Biosciences). The fluochrome-conjugated 
antibodies CD19(J3-119)-PE-Cy7 (Beckman Coulter, Fullerton, 
CA, USA), CD27(M-T271)-BV421, IgD(IA6-2)-FITC (both 
from Biolegend, San Diego, CA, USA), and CD38(HB7)-
APC-H7 (BD Biosciences) were used. Samples were measured 
using a LSRFortessa flow cytometer (BD Biosciences). The B-cell 
population in PBMCs before and after culture was determined 
using CD19-PerCPCy5.5 (BD Biosciences), and samples were 
measured on a FacsCanto flow cytometer (BD Biosciences). 
Data were analyzed using FACSDiva™ v8 (BD Biosciences) and 
FlowJo v10 (FlowJo company, Ashland, OR, USA) with a gating 
strategy as described (25).

antigen-Specific B- and T-cell responses
From 30 participants, vaccine antigen-specific B- and T-cell 
responses were determined. For B-cell responses, PBMCs were 
polyclonally stimulated for 5  days after which the number of 
specific IgG memory B-cells/105 CD19+ cells was determined 
in PT-, FHA-, Prn-, and Td-specific ELISpot assays (19). Per 
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FigUrE 1 | Flow-chart of study enrollment. Schematic overview of the recruitment, enrollment, and the follow-up of the study participants. At the start of the study, 
Dutch participants 25–29 years of age received a tetanus, diphtheria, and acellular pertussis booster vaccination. Blood samples were collected before (T0), 
2 weeks (T1), 4 weeks (T2), 1 year (T3), and 2 years (T4) after the booster vaccination. *143 potential participants were excluded because the target for inclusion 
was achieved.
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participant, samples of different time points were determined 
simultaneously. Lower limit of quantification was 0.5 spots/105 
CD19+ cells.

For T-cell responses, PBMCs were stimulated for 5 days with 
PT (heat inactivated), FHA, Prn, Dd, or Td after which super-
natants were collected and stored at −80°C (26). Unstimulated 
and pokeweed mitogen-stimulated cells served as negative and 
positive controls, respectively. The cytokines interferon-gamma 
(IFN-γ) (Th1), interleukin-13 (IL-13) (Th2), IL-17 (Th17), and 
IL-10 (Treg) were quantified in the supernatants using an in-house 
MIA developed according to de Jager et al. (27) and calibrated 
against the Bio-Plex cytokine assay kit (Bio-Rad Laboratories, 
Hercules, CA, USA).

Statistical analysis
Geometric mean concentrations with corresponding 95% con-
fidence intervals were calculated for vaccine antigen-specific 
IgG, IgA, and cytokine concentrations. Numbers of vaccine 
antigen-specific memory B-cells are reported as geometric mean 
values/105 CD19+ cells. The mean percent reduction of the IgG 
concentrations was calculated between the different time points 
after vaccination. The kinetics of IgG antibody levels was deter-
mined with a bi-exponential decay model as described (28).

Normal distribution of (log-transformed) data was confirmed 
prior to each analysis. Differences between time points were 

tested with paired sample t-tests (normal distributed data) or with 
Wilcoxon Signed Ranks tests (not normally distributed data). 
Correlations between variables were determined with Spearman 
correlations and linear regression analysis. A p-value <0.05 was 
considered statistically significant (two-sided test). Data were 
analyzed using GraphPad Prism v7 (GraphPad Software) and 
SPSS statistics v24 (IBM).

rESUlTS

Study Baseline Characteristics
At the start of the study in April 2014, 105 participants received 
a Tdap booster vaccination (Figure 1). 2 years after the booster, 
90.6% (96/106) of the participants completed all study visits and 
≥100 blood samples had been collected at every time point. Mean 
age at the start of the study was 27.6 ± 1.4 years and 34% was 
male (36/106).

igg and iga antibody Kinetics after the 
Tdap Booster Vaccination
Before the Tdap booster vaccination, IgG levels against PT, FHA, 
and Prn were low (Figure 2 and Table 1), although 7% (7/105) of 
the participants had a PT-IgG level ≥50 IU/mL. 1 and 2 years post-
booster, this percentage increased to respectively 78% (79/101) 
and 71% (71/100) of the participants. Following the Tdap booster 
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FigUrE 2 | Reverse cumulative distribution curves of IgG levels before and after a tetanus, diphtheria, and acellular pertussis (Tdap) booster vaccination.  
(a) pertussis toxin (PT), (B) filamentous hemagglutinin, (C) pertactin, (D) diphtheria toxoid, and (E) tetanus toxin specific IgG levels (IU/mL) in Dutch adults 
25–29 years of age before (pre; black lines), 2 weeks (red lines), 4 weeks (green lines), 1 year (blue lines), and 2 years (orange lines) after a first Tdap booster 
vaccination. Note, black line represents the cut-off for protection (PT 20 IU/mL (suggestive), diphtheria and tetanus 0.01 IU/mL).
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TaBlE 1 | IgG geometric mean concentrations (IU/mL) with 95% confidence intervals following a first adult tetanus, diphtheria, and acellular pertussis booster 
vaccination and percent reductiona of IgG antibody levels.

gMC iU/ml (95% Ci) reduction (%)a

Pre +2 weeks +4 weeks +1 year +2 years 4 weeks–1 year 1–2 years

PT 5.4 130 123 43 35 58 15
(4.1–7.2) (95–178) (93–161) (33–55) (27–45)

FHA 10.6 404 339 132 108 53 17
(8.4–13.2) (340–480) (288–399) (110–158) (90–131)

Prn 10.5 360 357 180 142 41 20
(7.8–14.0) (270–481) (269–473) (132–247) (104–194)

Diphtheria 0.09 1.5 1.3 0.34 0.24 66 25
(0.07–0.11) (1.3–1.9) (1.1–1.5) (0.28–0.42) (0.20–0.29)

Tetanus 1.3 11.6 9.4 3.0 2.2 59 24
(1.1–1.5) (10.1–13.4) (8.4–10.6) (2.6–3.3) (1.9–2.4)

GMC, geometric mean concentrations; CI, confidence intervals; PT, pertussis toxin; FHA, filamentous hemagglutinin; Prn, pertactin.
aSamples were excluded if no increase in antibody concentration was observed 2 weeks post-booster compared with pre-booster, or when an increase after 4 weeks post-booster 
was observed.

FigUrE 3 | Predicted levels of pertussis toxin (PT)-specific IgG levels (IU/mL) 
after a first adult tetanus, diphtheria, and acellular pertussis booster vaccination 
in Dutch adults 25–29 years of age using a bi-exponential model. Note, solid 
bold line represents the median, solid lines represents the 95% predicted interval 
(95% PI), and dotted line represents a PT-IgG concentration of 20 IU/mL.
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vaccination, the IgG levels increased for all vaccine antigens and 
remained higher at all time points compared with pre-booster 
levels (p-values <0.01) (Figure 2 and Table 1). Surprisingly, 8% 
(8/105) of the participants did not show a PT-IgG level ≥20 IU/mL  
at any of the time points. The IgG levels for diphtheria and tetanus 
were above the protective level pre-booster for most individuals 
and IgG levels increased upon the booster, but started to decline 
already after 2 weeks post-booster and progressed to decline signifi-
cantly after 1 and 2 years post-booster (p-values <0.01) (Figure 2). 
The reduction in vaccine antigen-specific IgG varied between 41 
and 66% in the first year, but was more limited (15–25%) during 
the second year post-booster (Table 1). Overall, the PT-IgG levels 
were similar between males and females, but 7/8 participants who 
did not have arbitrarily protective PT-IgG levels in the first month 
post-booster were females. At 2 years post-booster, more females 
showed PT-IgG levels under the protective cut-off (21/66 females, 
32%) compared with males (8/34 males, 24%).

According to the bi-exponential model, the median PT-IgG 
level was predicted to remain above 20  IU/mL for approxi-
mately 9  years (Figure  3). Median duration of protection 
against diphtheria and tetanus both >0.01 IU/mL (29, 30) was 
predicted to approximately last 16 and 93  years, respectively 
post-booster.

The avidity (GMAI) of the PT-IgG antibodies was significantly 
higher for 2 and 4  weeks of post-booster compared with pre-
booster (p-values <0.01), while no differences were observed in 
the GMAI of Prn-IgG antibodies (Figure 4).

Seropositive PT-IgA levels were observed in 85% (89/105) 
of the participants pre-booster, and in 99% (103/104) of the 
participants 2  weeks post-booster (Figure  5A). 2 and 4  weeks 
post-booster, the IgA levels for all three pertussis antigens had 
increased, but declined subsequently within the first year post-
booster (p-values <0.001) (Figure 5).

B-cell responses after the Tdap Booster 
Vaccination
At 2 weeks post-booster, the absolute numbers of circulating 
B-cells and plasma-, naïve-, and memory-B-cell subsets had 

increased significantly compared with pre-booster numbers, 
except for natural effector B-cell numbers (Figure 6). Pre-booster, 
detectable numbers of vaccine antigen-specific circulating mem-
ory B-cells were observed in just a few participants (Figure 7). 
Following Tdap, the numbers of the vaccine antigen-specific 
memory B-cells/105 CD19+ cells had increased significantly at all 
time points compared with pre-booster values, except for PT and 
Prn 2 years post-booster, but numbers had declined significantly 
between 4 weeks and 1 year post-booster (Figure 7). A correlation 
was observed between the numbers of specific memory B-cells at 
2 weeks versus the specific IgG levels at 1 year and 2 years post-
booster for PT and Prn (r = 0.64 and 0.58 for PT and r = 0.65 and 
0.66 for Prn, respectively; p-values <0.01) (Figure 8).
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FigUrE 5 | IgA antibody levels before and after a tetanus, diphtheria, and acellular pertussis (Tdap) booster vaccination. (a) Pertussis toxin (PT), (B) filamentous 
hemagglutinin, and (C) pertactin (Prn)-specific IgA levels (IU/mL) in Dutch adults 25–29 years of age before (pre), 2 weeks, 4 weeks, and 1 year after a first Tdap 
booster vaccination. Note, black lines represent the geometric mean concentration with 95% confidence interval. Each time point was significantly different 
compared with other time points.

FigUrE 4 | Avidity of pertussis toxin (PT)- and Prn-IgG antibodies. (a) PT and (B) pertactin avidity index in Dutch adults 25–29 years of age before (pre), 2 weeks, 
and 4 weeks after a first tetanus, diphtheria, and acellular pertussis booster vaccination. Note, black lines represents the geometric mean percentage with 95% 
confidence interval, #p-value <0.01 compared with pre-booster levels.
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T-Cell Cytokine responses after the adult 
Tdap Booster Vaccination
In general, the production of IFN-γ, IL-13, and IL-17 cytokines 
increased significantly at all time points post-booster vaccina-
tion compared with pre-booster values (Figure 9; Figure S1 in 
Supplementary Material). Similar levels were observed at 2 and 

4  weeks and again at 1  year and 2  years following Tdap (data 
4 weeks and 2 years post-booster not shown). Pertussis-specific 
IFN-γ production and FHA-specific IL-13 production decreased 
significantly between 2 weeks and 1 year post-booster (Figure 9). 
Only low pertussis-specific IL-10 production was observed both 
pre- and post-booster (data not shown).
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FigUrE 6 | Absolute numbers of B-cell and B-cell subsets before (circles) and 
2 weeks after (triangles) a first tetanus, diphtheria, and acellular pertussis 
booster vaccination in Dutch adults 25–29 years of age. Gating of populations 
(all SSClow): B-cell: CD45+CD19+; translational: CD45+CD27−CD38+; 
plasmablast: CD45+CD27+CD38+; naïve mature: CD45+CD27−IgD+CD38dim; 
natural effector: CD45+CD27+IgD+CD38dim; CD27− memory: 
CD45+CD27−IgD−CD38dim; CD27+ memory: CD45+CD27+IgD−CD38dim. Note, 
black solid line represents the geometric mean numbers with corresponding 
95% confidence intervals, *p-value <0.05.
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DiSCUSSiOn

In this study, we demonstrated that systemic IgG levels against the 
pertussis vaccine antigens PT, FHA, and Prn persisted at higher 
levels for at least 2 years after a first adult aP booster vaccination 
in young Dutch adults 25–29 years of age, who had been primed 
in infancy with whole-cell pertussis vaccine. A limited antibody 
decay was observed during the second year post-booster with 
antibody levels against PT above 20  IU/mL in at least 70% of 
the participants and an estimated median duration of protection 
for about 9 years. The numbers of PT- and Prn-specific B-cells 
observed at 2 weeks post-booster correlated with the correspond-
ing IgG antibody levels after 1 year and 2 years. Furthermore, the 
booster enhanced Th1, Th2, and Th17 cytokine production for at 
least 2 years.

Using the same vaccine antigen dose, the adult Tdap booster 
vaccination in this study induced 1.5–4 times higher PT-IgG 
levels compared with previous studies (15, 31, 32), which were 
conducted between 1997 and 2002 in a period with presumed 
lower circulation of B. pertussis than nowadays (17, 18). Our 
participants were, therefore, most likely more frequently exposed 
to B. pertussis. This is underlined by the fact that the majority of 
our participants showed pre-booster PT-IgA levels, that further 
increased post-booster. IgA responses are not induced by aP vac-
cines in infants (22), but exposure to B. pertussis induces systemic 
pertussis-specific IgA-producing memory B-cells in children and 

FigUrE 7 | Numbers of memory B-cells before and after a tetanus, diphtheria, and acellular pertussis (Tdap) booster vaccination. The numbers of (a) pertussis toxin,  
(B) filamentous hemagglutinin, (C) pertactin, and (D) tetanus toxoid-specific IgG-producing memory B-cells/100,000 CD19+ cells in Dutch adults 25–29 years of age before 
(pre), 2 weeks, 4 weeks, 1 year, and 2 years after a first Tdap booster vaccination. Note, black solid line represents the geometric mean number, $ indicates significant 
increase compared with numbers pre-booster (p-value <0.05) and # indicates significant decrease compared with previous time point(s) post-booster (p-value <0.05).
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FigUrE 8 | Correlation between IgG and memory B-cells. Spearman’s correlation coefficient (rs) between the numbers of IgG-specific memory B-cells/105 CD19+ 
cells (x-axis) at 2 weeks post-booster and the specific IgG levels in IU/mL (on the y-axis) at 1 year post-booster (a,C) and at 2 years post-booster (B,D) for pertussis 
toxin; (a,B) and for pertactin; (C,D). p = p-value.

adults (22, 33). Therefore, the presence of IgA antibodies pre-
booster and their rise post-booster may result from the activa-
tion of pre-existing pertussis-specific memory B-cells induced 
by previous B. pertussis contact in life, indicative of enhanced  
B. pertussis circulation nowadays. Together, the high pertussis cir-
culation, compared to a population that is not or only minimally 
boosted with pertussis infections, alters pertussis immunity with 
enhanced antibody levels and cellular immunity upon a booster 
vaccination.

Using a bi-exponential antibody decay model with the arbi-
trarily defined level of protection of ≥20 IU/mL (23), the median 
duration of protective PT-IgG levels in our study was estimated 
to last up to 9  years after the Tdap booster. Although a power 
function decay model can also be used to determine antibody 
persistence, this model results in even more prolonged antibody 
persistence (34). Therefore, we prefer to use the more conserva-
tive bi-exponential model. We need to point out that the young 
adults in our study have been primed with wP vaccines during 
infancy, as is the case for the majority of the current adult Dutch 
population.

In this study, the highest pertussis-specific IgG levels were 
seen at day 14 post-booster followed by a slight decrease at day 
28. In line with this, Halperin et al. reported increased IgG levels 
from day 7 with a peak around day 14 (35), and Kirkland et al. 

reported comparable IgG levels at 2 and 4 weeks, both after a Tdap 
booster (36), though using lower vaccine antigen concentrations 
compared with our study (35, 36). Other pertussis booster stud-
ies measured serological responses from 4  weeks post-booster 
onward (15, 37–39). Since peak IgG levels will be missed with 
sample collections from 4  weeks onward, vaccine antibody 
responses could be measured already around day 14 post-booster.

The higher IgG responses upon Tdap vaccination due to pre-
sumed recall of memory B-cells induced by a previous B. pertussis 
infection is reflected by the high numbers of pertussis-specific 
IgG memory B-cells after the booster, and the significantly higher 
absolute numbers of recirculating B-cell subsets. In line with this, 
Hendrikx et  al. found similar numbers of PT-specific memory 
B-cells in pre-adolescents after a second aP booster vaccination. 
In contrast, post-booster numbers of FHA- and Prn-specific 
memory B-cells were higher in adults, probably a result of more 
natural boosting compared with pre-adolescents. The numbers of 
pertussis-specific circulating memory B-cells, a month after vac-
cination of adolescents correlate with antibody levels a year post 
vaccination suggesting that memory B-cells at least partly will dif-
ferentiate into plasma cells upon vaccination (40). Although the 
homing of the pertussis-specific memory B-cells normally occurs 
quickly, waning circulating IgG levels during the second year was 
limited, probably by the presence of long-lived plasma cells in the 
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FigUrE 9 | Cytokine levels of stimulated T-cells before and after a tetanus, diphtheria, and acellular pertussis (Tdap) booster vaccination. (a) Interferon-gamma,  
(B) interleukin-13, and (C) IL-17 cytokine concentrations (pg/mL) in the supernatants of T-cells stimulated with heat inactivated pertussis toxin (PT) (circles), 
filamentous hemagglutinin (squares), or pertactin (Prn) (triangles) in Dutch adults 25–29 years of age before 2 weeks and 1 year after a first Tdap booster 
vaccination. Note, black lines represents the geometric mean concentration; *p-value < 0.05.

bone-marrow. Others found no correlation between circulating 
memory B-cells and antibody levels for diphtheria and tetanus 
in steady state conditions. This suggests that peripheral memory 
B cells and antibody-secreting plasma cells may partly represent 
independently regulated cell populations and may play different 
roles in the maintenance of protective immunity (41). The induc-
tion of memory B-cells and long-lived plasma cells by the adult 
booster vaccination might contribute to long-term protection 
against pertussis.

In agreement with other studies, the adult booster vaccination 
resulted in increased levels of Th1, Th2, and Th17 cytokines (42, 43).  
However, Huygen et al. did not find increased Th1 levels upon 
the same vaccination in pregnant women or their age-matched 
controls (38). Also, a pre-adolescent Tdap booster in children 
9 years of age did not enhance T-cell responses (44), which we 
explained at the time by the high pre-booster levels already 
induced by a booster vaccination 5 years earlier. So far, just one 
study investigated the influence of pertussis priming vaccines on 
adult T-cell responses after a Tdap booster vaccination (43). That 
study showed a general Th2-dominated immune response after 
an aP booster in adults primed with aP vaccines during infancy, 
while wP-primed adults showed a Th1 dominated response (43). 
Since Th1 cells are essential for bacterial clearance and associated 

with protection (45), the increased pertussis-specific Th1 levels 
observed in our wP-primed adults post-booster, could possibly 
confer protection against pertussis, while this may be less in aP-
primed adults with a Th2-dominated response.

The increase in the number of pertussis-related deaths in 
infants during the epidemic of 2010 in California (10) and that of 
2012 in the UK (11), led to the implementation of maternal per-
tussis booster vaccinations (9). Maternal aP vaccinations are very 
effective in preventing pertussis in infants in the time window 
from birth until their first routine pertussis immunization, even 
with low anti-PT antibody levels at 2 months of age (<15 IU/mL)  
(46–48). In several countries, pregnant women are advised to 
be vaccinated during every pregnancy (38, 49). The persistence 
of high PT-IgG antibody levels reported here could indicate 
that the repeated administration of a Tdap booster vaccination 
might not be necessary for the majority of pregnant women. IgG 
antibody kinetics after an aP booster vaccination in pregnant 
women should be studied in more detail. Also, attention must be 
paid to potential non-responders to aP vaccinations, since these 
comprise 10% (7/70) of our female study participants.

The switch from wP to aP vaccines during infancy in 2005, 
will bring the first Dutch aP-primed cohort reaching the age 
of 18  years in 2023. However, other countries have already 
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used aP vaccines in the infant immunization program for more 
than two decades. Since protection against clinical pertussis 
wanes faster after priming with aP vaccines compared with 
wP vaccines (50), women at childbearing age primed with 
aP vaccines, may experience the consequences of less longer 
persistence of pertussis-specific antibodies after booster vacci-
nation. Therefore, the effectiveness of adult and maternal Tdap 
vaccinations and antibody persistence deserves further study, 
accounting for previous vaccinations and current B. pertussis 
exposure in the population.

To conclude, we showed a robust immune response and per-
sistence of high pertussis IgG antibody levels after a Tdap booster 
vaccination in Dutch adults 25–29 years of age. These adults have 
been primed with wP vaccines during infancy and might benefit 
from the booster vaccine by an elevated immune response to 
pertussis. Maternal aP vaccination is currently the best strategy 
to protect newborns from pertussis. Long-term follow-up of 
antibody levels in women vaccinated with aP during pregnancy 
could elucidate the necessity to vaccinate during every pregnancy. 
In addition, Tdap booster responses in growing cohorts of aP-
primed individuals reaching childbearing age should be further 
investigated.
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