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How a single genome can give rise to many different transcriptomes and thus all the 
different cell lineages in the human body is a fundamental question in biology. While 
signaling pathways, transcription factors, and chromatin architecture, to name a few 
determinants, have been established to play critical roles, recently, there is a growing 
appreciation of the roles of non-coding RNAs and RNA-binding proteins in controlling 
cell fates posttranscriptionally. Thus, it is vital that these emerging players are also 
integrated into models of gene regulatory networks that underlie programs of cellular 
differentiation. Sometimes, we can leverage knowledge about such posttranscriptional 
circuits to reprogram patterns of gene expression in meaningful ways. Here, we review 
three examples from our work.

Keywords: posttranscriptional regulation, RnA-binding protein, microRnA, embryonic stem cell, Th17, fetal 
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inTRODUCTiOn

The sequencing of the first human genome (1), in principle, provided us with a complete parts list 
and blueprint for building a human being. However, our work is far from done, and a quote from 
Richard Feynman applies here: “What I cannot create, I do not understand.” This is a daunting 
challenge for biologists, since we know little about how all these parts fit and work together to make 
a functional human cell, the basic unit of life. Furthermore, it has been estimated that an average 
adult human being is composed of 30–37 trillion cells (2, 3). How a single-cell embryo can give rise 
to all these cells and ultimately a whole organism is still poorly understood.

The answer must be contained in the genome if we could fully decode it. First, the central dogma 
of molecular biology posits that DNA (the genome) is transcribed into RNA (the transcriptome) 
and then translated into protein (the proteome) (4). Thus, RNA has been considered mainly as a 
“messenger” to transmit information encoded in the genome to produce the proteome. However, 
even if we understood the function of all the proteins encoded by our DNA that would only account 
for ~1% of the information content of the genome (1). That leaves the bulk of the genome, presum-
ably harboring the blueprint for life, that we are only beginning to understand. For example, a part 
of the blueprint that is best understood contains instructions for the transcriptional machinery to 
either switch genes on or off. Indeed, gene regulation at the DNA level within the cell’s nucleus is 
an active and exciting field of research. However, it has come to light that RNA does not only serve 
as a template to encode protein, also known as messenger RNA (mRNA). It turns out that most of 
the genome (~75%) is transcribed, in other words, able to generate complementary RNA (5), but 
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FigURe 1 | Recurrent network motif in posttranscriptional (re)programming. (A) The miR-290–Ash1l–polycomb repressive complex 2 (PRC2) axis plays a role in 
setting the chromatin landscape of embryonic stem cells (ESCs) to support the pluripotency gene expression program. A model of how the expression of the 
miR-290 family and Ash1l varies to impact activity of PRC2 is depicted along a time course as ESCs undergo differentiation. This process is reversible (7–9).  
(B) The miR-155–Jarid2 axis can also remodel the chromatin landscape by regulating PRC2 recruitment to support the Th17 gene expression program including 
transcription of the Il22 cytokine gene among many others. A model of how the expression of miR-155 and Jarid2 varies to impact Il22 transcription is depicted 
along a time course as naïve CD4+ T cells undergo Th17 differentiation. This process has not been shown to be reversible. (C) The Lin28b–let-7 axis mediates the 
fetal–adult hematopoietic switch. One downstream target of this pathway in B cell lineage progenitors is Arid3a messenger RNA which encodes a transcription 
factor (10). A model of how the expression of Lin28b and the let-7 family varies to impact Arid3a posttranscriptionally is depicted for hematopoietic stem and 
progenitor cells (HSPCs) during ontogeny. This process is reversible (11).
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these transcripts are not always translated giving birth to the field 
of “non-coding RNAs.”1 As such, the number of annotated non-
coding RNAs rivals the number of protein-coding transcripts 
(6), and we will need to determine what functions these factors 
of emerging importance play. To draft an outline of a working 
roadmap for putting all these parts together, system biologists 
have begun mapping various types of networks to catalog as 
comprehensively as possible how diverse biomolecules interact 
with each other. We are doing our small part to begin integrating 
the roles of regulatory non-coding RNAs and associated RNA-
binding proteins in this larger framework. We have noticed a 
recurring theme from our work (Figure 1).

inDUCing PLURiPOTenCY  
BY POSTTRAnSCRiPTiOnAL 
RePROgRAMMing

If we knew the genetic programs underlying cell fate specifica-
tion, it would be possible to instruct cells to perform desired bio-
logical functions at will. For example, Takahashi and Yamanaka 
employed four transcription factors to instruct mature somatic 
cells to de-differentiate back to an embryonic-like pluripotent 
stem cell state (7). Interestingly, two independent groups found 

1 This popular term in an unfortunate misnomer because it suggests that these 
RNAs do not harbor genetic code. It would have been more accurate to call them 
untranslated RNAs rather than non-coding RNAs.

that they could accomplish this feat in cellular reprogramming 
using a class of small (19–23 nucleotides long) non-coding RNAs 
called microRNAs (miRNAs) (8, 9). This represents one example 
of posttranscriptional reprogramming; however, the mechanisms 
of action are not well understood.

We have previously reported that ablation of Dicer, the RNAse 
III-containing enzyme required for miRNA processing impairs 
mouse embryonic stem cell (ESC) differentiation and self-renewal 
(12). Furthermore, Dicer is required for the generation of induced 
pluripotent stem cells (13). A reasonable candidate for mediating 
these activities is the miR-290 family (14), a miRNA cluster that 
is highly expressed in mouse ESCs and is downregulated during 
differentiation. Interestingly, the miR-290 locus has one of the 
top ranked super enhancers in ESCs (seventh out of 231), higher 
than the pluripotency genes encoding Oct-4 and Nanog (15). 
miRNAs target complementary mRNAs by base pairing, via their 
so called seed sequence, a six to eight nucleotide motif at their 
5′ end (16). Members of miR-290 share the same seed sequence 
as the miR-302 family used in the two studies mentioned 
earlier and therefore are predicted to target the same mRNAs. 
We determined that expression of the Trithorax group protein 
Ash1l is posttranscriptionally repressed by these ESC-specific 
miRNAs (Figure  1A) (14). Ash1l is a methyltransferase which 
promotes tri-methylation of histone H3 at lysine 36 (H3K36me3), 
an epigenetic mark associated with ongoing gene transcription. 
One function of Ash1l is to antagonize Polycomb-mediated gene 
silencing (17). The polycomb repressive complex 2 (PRC2) cata-
lyzes tri-methylation of H3K27, a histone mark associated with 
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FigURe 2 | A model depicting how miR-290 reprograms the epigenome of embryonic stem cells (ESCs). In wild-type (WT) ESCs, high levels of miR-290 represses 
Ash1l and perhaps additional targets (depicted by “X”) that can otherwise antagonize polycomb repressive complex 2 (PRC2) (containing Ezh2, Eed, Suz12, and 
Jarid2). PRC2 activity results in deposition of H3K27me3 marks on chromatin including bivalent domains that harbor H3K4me3 (20), a mark on active or poised 
promoters. Upon Dicer deletion or differentiation, miR-290 levels are reduced and can no longer repress Ash1l and additional targets. Unfettered, Ash1l activity 
results in increased H3K36me3 marks and antagonizes PRC2 (17). This figure is reproduced from Kanellopoulou et al. (14).
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silencing. PRC2 has been shown to be essential for pluripotency 
maintenance and induction (18, 19). Indeed, we found that in the 
absence of miRNAs, the Homeobox (Hox) gene clusters, which  
are canonical targets of PRC2, have reduced H3K27me3 marks and 
PRC2 occupancy and are de-repressed. This defect in epigenetic 
silencing could be rescued by transfection of a single representa-
tive member of the miR-290 family (14, 20). Furthermore, this 
defect can also be rescued by Ash1l knockdown (14). A similar 
study, showing defective polycomb recruitment in the absence 
of miR-290, was independently performed by Graham et al. (20) 
further confirming the importance of this family of miRNAs in 
ESC pluripotency. In summary, a single miRNA family can repro-
gram the epigenetic landscape of a cell. By affecting the balance 
between H3K36me3 and H3K27me3, miR-290 can promote the 
pluripotent program of gene expression (Figure 2).

RePROgRAMMing CHROMATin  
in Th17 CeLLS

This general principle can be used in any cellular differentiation 
system. Indeed, we found a second similar example; although, 
it was not the original motivation of our work to demonstrate 
the generality of our idea. We screened for potentially interesting 
miRNAs in mouse T helper cell differentiation and found that 
miR-155 is highly expressed in Th17 cells compared with other 
subsets. Expression of miR-155 was induced upon T cell activa-
tion and was highly dependent on addition of IL-6 and IL-1β (21). 
Furthermore, we found that these two cytokines synergistically 

activated miR-155 expression in Th17 cells in a Stat3-dependent 
manner (21, 22), and later realized that the Mir155 locus har-
bored a super enhancer (23). Our investigations further revealed 
that this miRNA also plays a role in programming the epigenetic 
landscape in Th17 cells (24). In the absence of miR-155, there is 
increased recruitment of PRC2 to thousands of locations in the 
genome, and enhanced tri-methylation of H3K27 at those sites. 
While Th17 cell differentiation still occurs in the absence of miR-
155, we found significant defects in cytokine gene expression, a 
vital function of Th17 cells. In miR-155 knockout mice, we found 
CD4+RORγt+ Th17 cells in vivo, but they displayed a significant 
cell-intrinsic defect in IL-17 and IL-22 expression (24).

We determined that the root of the problem is de-repression 
of Jarid2, a target of miR-155 in Th17 cells (Figure 1B), and a key 
component of PRC2. It was recently found that Jarid2 is essential 
for recruitment of PRC2 to chromatin (25–29). Indeed, the defect 
in cytokine gene expression by Th17 cells can be rescued partially 
by deleting just one allele of Jarid2, thus reducing its expression 
by 50%. The partial rescue we observed with the compound 
deletion of miR-155 and Jarid2 highlights the fact that miRNAs 
target multiple transcripts and often it is hard to identify a single 
target that can restore the dysregulation of an miRNA deficiency. 
In that same experiment, we also observed genetic epistasis 
between miR-155 and Jarid2 with regards to homeostasis of 
Foxp3+ T regulatory cells indicating that this regulatory circuit 
is used again in a different context. Thus, the concentration of 
Jarid2 can be used to modulate the global activity of polycomb-
mediated gene silencing, and we have uncovered a situation in 
which miR-155 has co-opted this function as a rheostat.
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Lin28b-MeDiATeD RePROgRAMMing  
in HeMATOPOieSiS

In a third project, we screened for miRNAs that distinguished 
progenitor B (pro-B) cells isolated from fetal liver versus adult 
bone marrow. The let-7 family of miRNAs is highly expressed 
in pro-B cells from adult bone marrow but not fetal liver (11). 
Since the different let-7 members are encoded by seven disparate 
genetic loci, it seems unlikely that this differential expression 
is regulated transcriptionally. Rather we postulated that there 
could be posttranscriptional regulation of the whole family. An 
RNA-binding protein, Lin28, had already been discovered to 
inhibit maturation of let-7 miRNAs (30), was a likely candidate 
(Figure 1C). In support of our hypothesis, we found that Lin28b, 
one of two paralogs, is highly expressed in fetal hematopoietic 
stem and progenitor cells (HSPCs) but not in their adult coun-
terparts. Furthermore, enforced expression of Lin28 in adult 
HSPCs reprogrammed lymphocyte development to mimic fetal 
ontogeny. As evidence that we have uncovered a general molecu-
lar mechanism for fetal–adult hematopoietic switching, ectopic 
expression of LIN28B in adult erythroblasts is also sufficient to 
turn on fetal hemoglobin expression (31). This provides a novel 
avenue for the treatment of beta-thalassemia and sickle cell dis-
ease that may avoid the cytotoxic effects of hydroxyurea, currently 
the only clinically approved treatment for beta-globinopathies. 
Furthermore, we hope to inspire a new and better strategy to 
regenerate the hematopoietic and immune system. Specifically, 
Lin28b-reprogrammed HSPCs may be useful for transplantation 
in neonates or in utero if adult hematopoietic stem cells could be 
rejuvenated to become fetal again.

On a personal note, Bill Paul would frequently ask whether 
we had looked at embryonic-derived macrophages and whether 
their specification might also depend on Lin28b. Sadly, we failed 
to provide Bill with an answer before he passed away, but we are 
working hard to determine whether Lin28b also (re)programs 
myeloid lineages, in addition to lymphoid and erythroid differ-
entiation in memory of his inquisitiveness.

COnCLUSiOn

Overall, these studies support the idea that studying posttran-
scriptional regulatory networks will not only reveal interesting 
molecular mechanisms for controlling gene expression programs 
but can also provide novel therapeutic targets for reprogramming 
cell fates.
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