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Exosomes are a type of extracellular vesicle whose study has grown exponentially in 
recent years. This led to the understanding that these structures, far from being inert 
waste by-products of cellular functioning, are active players in intercellular communi-
cation mechanisms, including in the interactions between cancer cells and the immune 
system. The deep comprehension of the crosstalk between tumors and the immune 
systems of their hosts has gained more and more importance, as immunotherapeutic 
techniques have emerged as viable options for several types of cancer. In this review, 
we present a comprehensive, updated, and elucidative review of the current knowledge 
on the functions played by the exosomes in this crosstalk. The roles of these vesicles in 
tumor antigen presentation, immune activation, and immunosuppression are approached 
as the relevant interactions between exosomes and the complement system. The last 
section of this review is reserved for the exploration of the results from the first phase I to 
II clinical trials of exosomes-based cell-free cancer vaccines.

Keywords: exosomes, cancer, immune response, extracellular vesicles, clinical trials as topic

iNTRODUCTiON

The understanding of the intercellular communication processes is a key for the development of 
mechanistic insights capable of explaining a wide variety of both physiological and pathological 
phenomena. Direct cell-to-cell contact, and paracrine and endocrine interactions are relatively 
well-understood mechanisms that can account for some of these processes. However, a novel 
mechanism has emerged, involving the intercellular transfer of molecular and genetic material 
through extracellular vesicles (EVs), gaining considerable attention in recent years (1).

Extracellular vesicles are small phospholipid bilayer vesicles, released by all prokaryotic and 
eukaryotic cells, including cancer cells (2–5), which can contain different types of RNA, proteins, 
mitochondrial DNA, and both single stranded DNA and double stranded DNA, spanning all chro-
mosomes (3, 6–8). The nomenclature of EVs has been a source of confusion due to the difficulties 
posed by the purification methods necessary for the distinction of the various types of EVs, and 
a definitive classification system has not been achieved yet (5, 9). However, EVs can be broadly 
classified according to their size and mode of biogenesis into three subtypes (1): microvesicles 
(MV), ranging between 50 and 1,000 nm in diameter, and originating by budding from plasma 
membranes (2). Apoptotic bodies (AB), which are 50–5,000 nm in diameter and originate from 
cells undergoing programmed cell death (3). Last, exosomes range between 30 and 150  nm in 
diameter, and originate from early endosomes, which are later transformed into multivesicular 
bodies (MVB) by formation of intraluminal vesicles (ILV) by budding into the lumen, followed by 
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FigURe 1 | Mechanisms used by exosomes to influence target cells. (A) Direct interaction between surface receptors on the exosome and on the target cell.  
(B) Cleavage of surface receptors on the exosome with subsequent interaction between the receptor fragments and receptors on the target cell. (C) Fusion of  
the exosome membrane with the plasma membrane of the target cell with release of the exosomal cargo into the cytoplasm of the cell. (D) Internalization of  
the whole exosome through phagocytosis.
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fusion with the plasma membrane and release of the ILV into the 
extracellular space as exosomes (2, 3, 5, 10). It is worth noting 
that cancer cells tend to release more exosomes than healthy 
cells, which may be due to enhanced growth rate or a result of 
stimulation in response to stressful conditions (11).

Exosomes have been isolated from all biological fluids tested 
so far, such as urine, breast milk, plasma, saliva, cerebral spinal 
fluid, amniotic fluid, ascites, bile, semen, bronchoalveolar lavage 
fluid, and aqueous humor (12–24). Exosomes contain collections 
of proteins, some of which show specificity for the cell type that 
originated them, such as MHC class I and II proteins, while 
others are present in all exosomes, regardless of the cell originat-
ing them, suggesting that the latter are related to the common 
biogenesis pathway of these EVs. Indeed, this group includes 
endosomal proteins, proteins from the plasma membrane and 
from the cytosol. Also, as a consequence of its genesis, proteins 
on the surface of exosomes have the same orientation as the one 
in their cell of origin (2, 5, 25). Exosomes are also packed with 
different types of nucleic acids, including DNA in some cases  
(6, 8, 26), but mostly small RNAs, such as ribosomal RNA, transfer 
RNA, miRNA (microRNAs), and messenger RNA (mRNA), that 
are selectively loaded into the vesicles. The mechanisms behind 
the enrichment in their cargo are still far from fully understood, 
but the presence of “zipcode” sequence motifs and posttranscrip-
tional changes are some of the ways in which specific mRNAs 
and miRNAs can be packaged into exosomes (26). Exosomes can 

influence target cells through at least four different mechanisms 
(Figure  1) (1): direct contact between proteins on the mem-
brane of exosomes and on the plasma membrane of the recipient  
cell, with subsequent triggering of intracellular signaling cas-
cades (2). Cleavage of the proteins on the exosomes membrane 
followed by interaction between the protein fragments and mem-
brane receptors on the cell (3). Fusion of the exosomes with the 
membrane of the cell leading to release of its cargo (4). Finally, 
cellular internalization of the whole vesicle by phagocytosis is 
also possible (2, 27, 28).

Immune cells of both the adaptive and innate systems are an 
important component of the tumor microenvironment that most 
times presents paradoxical roles in tumorigenesis. On the one 
hand, chronic inflammatory states can serve as agents for cancer 
initiation and promotion and can stimulate angiogenesis and 
metastasis (29). On the other hand, the immune system is also 
responsible for the specific identification and elimination of neo-
plastic cells. This process, known as cancer immunosurveillance, 
is based on the expression of tumor-specific antigens (30–33). 
The concept of immunosurveillance has been updated according 
to clinical and experimental data to include the notion that the 
immune system is not only involved in anti-tumor activity, but 
also shapes the tumor itself, resulting in the formulation of the 
cancer immunoediting hypothesis. This hypothesis views the 
interactions between the immune system and neoplasms as a con-
tinuum consisting of at least three components: (1) elimination, 
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FigURe 2 | Pathways for T cell activation by dendritic cell (DC)-derived 
exosomes. (A) Peptide MHC class II complexes (pMHC II) can be transferred 
to DC, and then exposed on the cell surface (cross-dressing). (B) Peptides 
can be used by DC, which load them onto their own endogenous MHC class 
II molecules, subsequently presenting them at their surface. Both these 
pathways (A,B) allow for the activation of CD4+ T cells. (C) Peptide MHC 
class I complexes (pMHC I) can directly interact and activate CD8+ T cells  
in a DC-independent manner.
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roughly corresponding to the concept of immunosurveillance. 
(2) Equilibrium, a state where net tumor cell outgrowth is kept 
in check by the immune cells, and there is no clinically apparent 
disease. (3) Last, there is escape, when cancer cells grow immu-
nologically unrestricted due to Darwinian selection processes of 
the cells most fit to evade the immune control (33). Exosomes 
have recently emerged as important modulators of the immune 
response in the context of cancer development. These EVs can 
regulate the formation of the immunological synapse between 
T-cells and antigen-presenting cells (APC), promote the devel-
opment of an immune response, and tumor-derived exosomes 
are part of the immunosuppressive mechanisms through which 
cancer cells inhibit immunosurveillance processes in order to 
progress and invade (25, 34–36).

This review will cover the current body of evidence regard-
ing the roles of exosomes in these biological processes, as well 
as summarize their potential translational applications, both 
in therapeutic and diagnostic procedures. Conclusions from 
first phase I and II clinical trials of exosomes-based cell-free 
cancer vaccines are also reviewed, and the interactions between 
exosomes and the complement system will be briefly approached. 
We hope to present a clear, updated, and comprehensive insight 
into this rapidly evolving subject.

eXOSOMeS AND ANTigeN 
PReSeNTATiON

Antigen presentation constitutes a fundamental step of the 
immune response. This is the process through which APC, 
such as dendritic cells (DC), macrophages and B-cells, expose 
peptide antigens, bound to MHC class I or class II molecules, 
to T-cells by forming a contact point between the two cells, 
termed an immunological synapse (34). MHC class II mol-
ecules, specific to APC, are involved in the activation of CD4+ 
helper T-cells through the presentation of exogenous peptides, 
internalized by endocytosis. MHC class I molecules, present in 
all nucleated cells, are necessary for the widespread surveillance 
of the health status by CD8+ cytotoxic T  lymphocytes (CTL) 
and natural killer (NK) cells (37). They are also involved in the 
contacts established between APC and CTL, and the peptides 
presented by MHC class I molecules are mostly of an endog-
enous origin, being generated by the proteasome. However, the 
presentation of exogenous antigens in complexes with MHC 
class I is also possible through cross-presentation, a process 
that is likely necessary for the establishment of an anti-cancer 
cellular immunity (38).

Activation of CD4+ T Cells
B  cells release exosomes containing significant amounts of 
functional newly formed MHC class II molecules associated 
with peptides, along with several accessory molecules, such as 
B7, ICAM-1, and LFA-3. This enables them to produce power-
ful in  vitro, antigen-specific, MHC class II restricted, T helper 
responses (39). The importance of exosomes in the interactions 
between T helper cells and B cells was further elucidated by the 
evidence that the former are powerful stimulators of exosomes 

synthesis and release from the latter, namely by activation of 
the CD40 and IL-4 receptors (40–42). B cell-derived exosomes 
also contain MHC class I molecules, and some components of 
the B-cell receptor (BCR), such as several tetraspanins, CD19, 
and immunoglobulin, but not CD21, a normal component of 
the BCR, present in high quantities on the surface of stimulated 
B cells (41, 42). It is worth noting that the BCR is an essential 
piece in the activation of B  cells by antigens, leading to the 
uptake, degradation, and presentation of antigens (43). Exosomes 
with MHC class II-peptide complexes, which are derived from 
peptide-pulsed DCs can be taken up by MHC class II-deficient 
DCs, which use the whole exosomal peptide-MHC complexes 
to activate T helper cells, a process termed cross-dressing that 
could contribute to amplify the initial adaptive immune response 
(Figure  2) (44–46). This process is vastly more efficient when 
the exosomes are derived from lipopolysaccharide (LPS)-treated 
mature DCs, in comparison with immature DCs (45). These differ-
ences may be accounted for by the significantly smaller amounts 
of the adhesion molecule ICAM-1 present in immature DCs-
derived exosomes (45). Recipient DCs can also use MHC class 
II-peptide complexes from APC-derived exosomes as a source of 
antigens which are loaded onto their own MHC class II molecules 
(Figure 2). This was evidenced by the fact that exosomes carry-
ing IAb-IEα52–68 complexes can activate CD4+ T-cells in wild-type 
animals (WT), but not in MHC class II−/−KO mice (47) and that 
Marilyn T-cells, when transferred to MHC class II deficient hosts, 
are less efficiently activated by H-Y exosomes, when compared 
with WT animals (48).
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The nature of the information transmitted by the exosomes 
depends also on their cell of origin. For instance, MHC class 
II-expressing T-84 intestinal epithelial cells release exosomes 
which strongly activate T cells, through the transfer of peptide 
antigens to DC-generated MHC class II molecules, rather than 
transferring the whole MHC class II—peptide complex (49). 
On the other hand, Di-Hwei Hsu and colleagues showed that 
DC-derived exosomes transferred pre-assembled peptide-MHC 
class II complexes to APC, which then go on to activate T cells 
(50). APC-derived exosomes can also elicit responses by direct 
interaction between the exosomes and the CD4+ T cells, in the 
case of activated T  cells (40). However, the activation of naïve 
T cells by the exosomes requires an intermediary, such as MHC 
class II negative DC (40). B cells can also serve as this intermedi-
ary if the exosomes are released from LPS-treated mature DC, but 
not if they originate from immature DC (45).

Activation of CD8+ T Cells
Since all nucleated cells express MHC class I molecules, so do 
the exosomes secreted by most cells, seemingly giving them the 
potential to activate CTL (7). However, tumor-derived exosomes 
can only activate CTL clones after processing by APC expressing 
the correct MHC haplotype (24, 51). Tumor-derived exosomes 
contain cancer-related antigens that may permit the initiation 
of an immune response using DC as intermediaries. Andre and 
colleagues were able to isolate tumor-derived exosomes from 
malignant ascites of patients with melanoma, and these were 
enriched in melanoma-associated antigen (MAGE) recognized 
by T cells (MART-1). These exosomes, once loaded onto DC, 
permitted in vitro cross-presentation of the antigen, and activa-
tion of a clone of CTL, which mounted an efficient in vitro anti-
tumor cellular response, as measured by the amount of IFN-γ 
released, and by the promotion of specific tumor cell lysis (24). 
Furthermore, murine tumor-derived exosomes were shown to 
contain shared tumor antigens which, once loaded onto human 
DC, can induce efficient cross-presentation to human CTL 
leading to in  vivo cross-protection between different poorly 
immunogenic mouse tumors (51). These results suggest that 
tumor exosomes, either collected from tumor cell cultures or 
directly from malignant effusions, are potential sources of viable 
antigens for the creation of broad-spectrum immunotherapeu-
tic techniques. Exosomes produced by DC can also activate 
CD8+ T cells indirectly through cross-dressing (50). However, 
APC-derived exosomes have the additional capacity of directly 
activating clones of CTL in a DC-independent manner, by 
cross-presenting exogenous antigens (Figure 2). Saho Utsugi-
Kobukai and colleagues demonstrated this by showing that 
exosomes from ovalbumin peptide-pulsed DCs could stimulate 
an antigen-specific, MHC class I restricted, T cell hybridoma 
(52). Results from Charlotte Admyre and colleagues further 
confirmed this process by showing that exosomes released 
from monocyte-derived DCs can produce antigen-specific 
responses on autologous CD8+ T cells from human peripheral 
blood samples (53). They also demonstrated that, much like 
the case in exosomes activation of CD4+ T cells, this process 
was more efficient when the exosomes came from LPS-treated 
mature DC rather than immature DC. This difference may be 

accounted for by the higher concentrations of MHC classes I 
and II and co-stimulatory molecules on the mature DC-derived 
exosomes (53).

eXOSOMeS iN iMMUNOSUPPReSSiON

Exosomes are part of the mechanisms cancer cells use to create 
an immunosuppressive, pro-tumorigenic microenvironment, 
which allows the disease to progress (54–59). These mechanisms 
have been observed in numerous cancer types and several dif-
ferent mediators have been identified. A full understanding of 
these processes may open new avenues for novel therapeutic 
modalities, such as immune-checkpoint blockade therapies, 
as viable cancer therapy options. The production and release 
of exosomes bearing factors capable of inducing apoptosis of 
the surrounding immune cells, such as Fas ligand (FasL) and 
galectin 9, is one of the mechanisms used by cancer cells to 
induce immunosuppression (57, 59, 60). Giovanna Andreola 
and colleagues showed that melanoma cells accumulate intra-
cellular FasL, namely within MVB, which in this cancer type 
are characteristically populated by melanin-rich melanosomes 
(59). The melanoma cells were subsequently shown to release 
exosomes showing a marked positivity for FasL that were capa-
ble of provoking receptor-mediated apoptosis on Fas-sensitive 
Jurkat T  lymphocytes (59). Exosomes induction of apoptosis 
in activated CD8+ T  cells was reported by Wieckowski and 
colleagues (54), and immunosuppression mediated by human 
colorectal cancer (CRC) cells’ exosomes, bearing both FasL 
and TNF-related apoptosis-inducing ligand (TRAIL), was 
demonstrated, also acting through the induction of apoptosis of 
activated human T lymphocytes (Figure 3) (58). Furthermore, 
phenotypically similar and pro-apoptotic exosomes were also 
present in the plasma of CRC patients, demonstrating the in vivo 
release of these vesicles, their potential role in modulating the 
host’s immune environment, and their possible use as prog-
nostic markers (58). T cell apoptosis induced by FasL-bearing 
tumor exosomes is significantly inhibited by previously treat-
ing the T  cells with IRX-2, a cytokine-based biological agent 
(61). Activated T cells also release exosomes bearing FasL and 
TRAIL, a process dependent on PKD1/2 (62). These vesicles can 
induce apoptosis of other activated T cells, in order to prevent 
autoimmune damage, in a process called activation-induced cell 
death (AICD) (63).

Pioche-Durieu and colleagues have demonstrated that 
Epstein–Barr virus (EBV)-infected nasopharyngeal carcinoma 
(NPC) cells express abundant amounts of galectin 9 (64), a 
molecule shown to be an agonist of Tim-3 (65). This TH1-
specific surface molecule mediates the apoptosis of these cells, a 
mechanism thought to have evolved as another means to prevent 
prolonged tissue inflammation (Figure  3) (65). Keryer-Bibens 
and colleagues showed that NPC-derived exosomes bear both 
galectin 9 and the viral latent membrane protein 1 on their 
surfaces, also shown to have an intrinsic T-cell inhibitory abil-
ity (60). More recently, Klibi and colleagues found circulating 
galectin 9-containing exosomes in the blood of NPC patients, 
and reported that these exosomes had the ability to induce 
apoptosis in EBV-specific CD4+ T  lymphocytes through the 
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FigURe 3 | Mechanisms used by tumor-derived exosomes to suppress immune responses. (A) Exosomes bearing apoptosis-inducing ligands, such as Fas  
ligand, TNF-related apoptosis-inducing ligand or, in the case of Th1 cells, galectin 9, can initiate T cell apoptosis. Exosomes also inhibit IL-2-dependent CD8+ T cell 
activation. (B) Exosomes bearing TGF-β1 can also disrupt IL-2 signaling to natural killer (NK) cells, thus inhibiting NK cell activation, cytotoxicity, and proliferation. 
The expression of the NKG2D receptor on NK cells can also be diminished by exosomes carrying NKG2D ligands, thus reducing NK cell ability to recognize 
malignant cells. (C) Exosomes can reduce the expression of toll-like receptor 4 and inhibit the transcription of MHC class II genes in dendritic cells, through  
the transference of different types of microRNA.
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galectin 9/Tim-3 pathway (57). Cancer cells can use exosomes 
to enact other mechanisms that modulate the immune environ-
ment, such as through the interference with cytokine-mediated 
immune-activation pathways, like those related to IL-1, IL-6, and 
TGF-β (66–69). Human mesothelioma exosomes were shown to 
alter the way in which immune cells respond to IL-2 by inhibiting 
IL-2-driven priming of both cytotoxic NK cells and CD8+ T cells, 
while leaving the IL-2-dependent activation of the immunosup-
pressive Treg populations unaffected (Figure  3). These effects 
were mediated by a membrane-associated form of TGF-β1 and 
show an exosomal “double hit” mechanism tailored to facilitate 
immune evasion of tumors (66).

Tumor-derived exosomes also promote Treg expansion 
and increase their immunosuppressive functions. Indeed, 
Wieck owski and colleagues demonstrated that tumor-derived 
exo somes, but not DC-derived exosomes, induced a substantial 
expansion of the CD4+CD25+FOXP3+ Treg population (54). 
Szajnik and colleagues further clarified this process by showing 
that tumor-derived exosomes lead to a dose-dependent induc-
tion and promotion of Treg proliferation. It was also shown that 
incubating CD4+CD25neg T cells with the same type of exosomes 
lead to higher percentages of CD4+CD25+ T  cells, indicat-
ing that these vesicles mediate this cellular conversion (55). 

Furthermore, phenotypic changes were also reported, namely 
an increase in the expression of immunosuppressive cyto kines 
and cytotoxins, such as CTLA-4, FasL, TGF-β1, granzyme B, 
perforin, and IL-10 in the cells co-cultured with the tumor-
derived exosomes, but not in the ones in contact with DC-derived 
exosomes (55). Immunosuppressive activity changes were also 
reported in this study, and the Treg cells previously incuba ted 
with the tumor-derived exosomes showed increased capacity 
to induce apoptosis and inhibit proliferation of the responder  
cells. These effects were also shown to be mediated by both 
perforin and granzyme B, as the inhibition of these factors 
impaired the exosomes ability to induce increases in immuno-
suppressive functions (55). Wada and colleagues showed that 
exosomes derived from malignant effusions of human patients 
were able to reduce the decrease in Treg numbers and FOXP3 
expression levels in a TGF-β1-dependent manner (70).

Furthermore, tumor-derived exosomes were shown to inhibit 
NK  cell immunity using murine mammary tumor cell lines. 
When the test animals were submitted to pre-treatment with 
these exosomes, acceleration in the growth rate of implanted 
tumors was observed, as well as a decrease in the in vitro cyto-
toxic activity of NK cells incubated with the exosomes (Figure 3) 
(67). An inhibition of the IL-2-mediated NK cell proliferation, 
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later reported to be mediated by TGF-β1 (66), was also observed 
(Figure 3) (67).

Murine mammary tumor cells’ exosomes were found to inter-
act with myeloid precursors in the bone marrow, stimulating their 
release of IL-6 and thus inhibiting their differentiation into DC 
(68). Human melanoma and CRC exosomes also have the capac-
ity to skew the differentiation of monocytes toward a myeloid line 
with the ability to suppress T cell function through the release 
of TGF-β (69). This differentiation modulation is dependent 
on exosomal Hsp72, on the transcription factor Stat3 (71), and 
on the adaptor molecule MyD88, involved in toll-like receptor 
(TLR) family signal transduction (72). Later studies, however, 
suggest that murine melanoma cells release exosomes which are 
capable of both promoting maturation of DC and enhancing the 
T cell-activating capacity of DC (73).

Cancer cells can also modulate the expression of surface 
receptors on immune cells, such as NKG2D and TLR4 using 
exosomes. This modulation can be mediated by proteins carried 
by exosomes, or it can be accomplished through transference of 
microRNAs to target cells (56, 74–76). The NK cell NKG2D recep-
tor is an important component of cancer immunosurveillance,  
as cancer cells often aberrantly express NKG2D ligands, which 
mark them for NK  cell-mediated destruction (33). Tumor 
exosomes bearing NKG2D ligands and TGF-β1 are capable of 
downregulating the expression of NKG2D on NK  cells, and 
reducing their cytotoxic potential, thus stopping them from rec-
ognizing and killing malignant cells (Figure 3) (56, 74). Zhou and 
colleagues showed that human pancreatic cancer cells’ exosomes 
are capable of downregulating the expression of the TLR4 in 
DCs, through the transfer of miR-203, a type of microRNA 
upregulated in pancreatic adenocarcinoma (Figure 3) (75, 77). 
It was also reported that the DCs did not have diminished levels 
of TLR4 mRNA, suggesting that mRNA degradation is not the 
mechanism behind this receptor modulation, which may occur 
at the translational level (75). Ding and colleagues, using the 
same cancer model, reported the release of exosomes containing  
miR-212-3p which, upon transfer to DC, inhibited regulatory 
factor X-associated protein (RFXAP), a transcription factor for 
MHC class II, illustrating yet another DC-suppressing mecha-
nism acting with the help of exosomes (Figure 3) (76). Ying and 
colleagues demonstrated that human epithelial ovarian cancer 
cells-derived exosomes were capable of promoting the polari-
zation of macrophages to the tumor-associated immunosuppres-
sive M2 phenotype, and that this transformation was mediated 
by miR-222-3p, a type of miRNA carried by these exosomes 
which targets the SOCS3/STAT3 pathway. Furthermore, they 
demonstrated that these vesicles were also capable of promoting 
the proliferative and migratory capabilities of ovarian cancer 
cells (78).

eXOSOMeS iN iMMUNe ACTivATiON

Apart from the already mentioned roles exosomes play in 
antigen presentation, these EVs can also contribute to the pro-
motion of both innate and adaptive immunity through other 
mechanisms. Macrophages infected with Mycobacterium avium, 
for example, release exosomes containing components from the 

bacterial cell wall which promote the activation of neighboring 
uninfected macrophages (79), and numerous other exosomes-
mediated processes occur during infections with different types 
of microorganisms to promote immune responses (80). The role 
of exosomal immune activation has also been explored in the 
context of auto-immune disorders, and synovial fibroblasts of 
rheumatoid arthritis patients were shown to release exosomes 
containing membrane-bound TNF-α which could inhibit 
AICD in CD4+ T cells (81) and the bronchoalveolar lavage fluid 
of sarcoidosis patients contained elevated levels of exosomes 
which could stimulate autologous mononuclear cells (23). 
Tumor cell-derived exosomes bearing adjuvant molecules, such 
as heat shock protein (Hsp) 70, can stimulate several different 
components of both adaptive and innate immune responses, 
which mount an anti-cancer response (82–85).

Exosomes derived from carcinoembryonic antigen-con-
taining (CEA) tumor cells which were subjected to heat stress, 
bear Hsp 70 (82). This molecule is a potent adjuvant of immune 
activation (86, 87), and these vesicles are capable of inducing a 
more powerful CEA-specific CTL anti-tumor response when 
compared with exosomes derived from non-heat stressed tumor 
cells (82). Heat-shocked mouse B lymphoma cells were also 
capable of promoting anti-tumor immune responses, mostly 
mediated by CD8+ T  cells, although CD4+ T  cells were also 
necessary, and the exosomes promoted DC maturation (83). 
Gastpar and colleagues demonstrated that cells from Hsp70/Bag-
4-positive human pancreas and colon carcinoma lines release 
exosomes bearing these same molecules on their surfaces, which 
stimulate NK cell migration and cytolytic activity (84). Vega and 
colleagues also showed the role of Hsp70 positive exosomes in 
the activation of macrophages, as measured by the amount of 
TNF-α released, which was ≈260-fold higher when compared 
with recombinant Hsp70 stimulation of the macrophages (85). 
DC-derived exosomes also bear molecules capable of stimulat-
ing immune responses, which represents another argument in 
favor of the use of cell-free DC-based cancer vaccines, which are 
explored in more detail in the last section of this review (88–92).

Exosomes derived from mature DC were shown to contain 
important concentrations of TNF-α. These exosomes were then 
demonstrated to be internalized by human alveolar epithelial 
cells, which were so stimulated to release inflammatory media-
tors, such as IL-8, monocyte chemotactic protein-1, macrophage 
inflammatory protein 1β (MIP-1β), regulated on activation, 
normal T  cell expressed and secreted (RANTES), and TNF-α. 
These processes seem to be dependent on the TNF-α cascade 
(88). Phase I clinical trials involving the administration of 
DC-derived exosomes in patients with advanced non-small 
cell lung carcinoma and metastatic melanoma evidenced an 
activation of NK cells in about half the patients, showing that 
these exosomes may operate an immune activation of both the 
innate and adaptive divisions (89–91). This promotion of NK cell 
proliferation and activation was later shown to be dependent on 
the expression of membrane-bound functional NKG2D ligands 
and IL-15Rα, and the inoculation of DC exosomes was also capa-
ble of restoring the levels of NKG2D on circulating NK cells of 
advanced melanoma patients and of inducing tumor regression 
in mice (92).
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eXOSOMAL iNTeRACTiONS wiTH THe 
COMPLeMeNT SYSTeM AND OPSONiNS

The complement system, part of the phylogenetically ancient 
innate immune system, serves as an unspecific recognizer of 
any invading pathogens. It is capable of triggering the activa-
tion of the adaptive immune response, directly catalyzing the 
destruction of cells by forming the membrane attack complex 
(MAC), driving systemic reactions through the release of ana-
phylatoxins, as well as of opsonizing target cells for phagocytosis 
(93). All vesicular structures in circulation are prone to activat-
ing the complement system, leading to their degradation. This 
process has been described for artificial liposomes designed for 
therapeutic purposes (94–96) that, despite not being directly 
antigenic, are capable of activating the complement system in 
an antibody-independent manner through electrostatic interac-
tions with complement proteins (97). Host cells are naturally 
protected against the activation of the autologous complement 
system through the expression of membrane-bound molecules 
which inhibit it, such as CD59 which prevents the formation of 
the MAC (98, 99) and CD46 and CD55 which act synergistically 
to stop the formation and deposition of C3b and C5b (100, 101). 
APC-derived exosomes, formed in antigen-processing intracel-
lular compartments, are associated with antigenic peptides and 
should, therefore, be particularly prone to antibody-binding 
and complement-mediated destruction (97). However, Clayton 
and colleagues demonstrated the expression of both CD55 and 
CD59, but not of CD46, on exosomes originated from human 
monocyte-derived dendritic cells and cells of B lymphocyte 
origin, which were functional in the in  vitro inhibition of 
complement-mediated lysis (97).

An opsonin can be defined as a molecule that binds antigens, 
marking them for phagocytosis. Numerous molecules can act 
as opsonins, including antibodies and some members of the 
complement system. Milk fat globule-EGF-factor 8 (MFG-E8), 
a protein commonly found on human milk fat globules, was 
evidenced to act as an opsonin by binding to phosphatidylser-
ine on the surface of dying cells, thus preventing the develop-
ment of autoimmune diseases by accumulation of apoptotic 
cells, which can undergo secondary necrosis and release toxic 
mediators (102, 103). Miksa and colleagues demonstrated that 
exosomes derived from immature DC, but not mature DC, 
carried MFG-E8 and were able to restore the effective clearance 
of apoptotic cells in septic rat models, thus suppressing the pro-
inflammatory response and providing protective effects in the 
context of sepsis (104). This provided a demonstration of the 
role of exosomes in presenting opsonins (104).

CeLL-FRee CANCeR vACCiNeS

Dendritic cells are the most efficient cells at presenting antigens 
and are the only APC capable of activating naïve T cells and initi-
ating the adaptive immune response (105). Indeed, if we interpret 
cancer immunosurveillance as a cycle of stepwise events leading to 
the effective killing of cancer cells by T cells, the cancer-immunity 
cycle, DC capturing and processing of tumor neoantigens acts 
as the first step, a process which is dependent on the presence of 

certain molecular signals, such as pro-inflammatory cytokines, 
co-stimulatory ligands, molecules released from the dying tumor 
cells, and gut microbiome products (106). It is then understand-
able that efficient DC-based cancer vaccines have been long 
sought after, and some encouraging results using these techniques 
have already been obtained, such as with the use of Sipuleucel- 
T Immunotherapy for the treatment of castration-resistant pros-
tate cancer (107). However, the widespread use of DC-based can-
cer vaccines presents some important limitations (108, 109). The 
use of DC-derived exosomes (often referred to in the literature as 
Dexosomes or simply Dex) cancer vaccines has recently emerged 
as an alternative which may be capable of overcoming some of 
these difficulties. First, Dex molecular composition is easier 
to determine, thus facilitating the stricter definition of quality 
control parameters (46). Dex are also more abundant in peptide-
MHC class II complexes allowing for higher yields (46, 109). Dex, 
when compared with DC, also present a great advantage during 
long-term storage, because they can safely be frozen for up to 
6  months (109). Adding to these advantages, the immunosup-
pressive tumor microenvironment is often responsible for inhib-
iting efficient antigen presentation and T cell stimulation by DCs, 
which should not affect Dex (110, 111). Finally, Dex do not pose 
most of the risks involved in the administration of viable cells, 
such as the development of immune dysfunction, or microvascu-
lar occlusions (112). The understanding of dexosomes’ viability as 
immunotherapeutic agents depends on the deep comprehension 
of their molecular composition. The membranes of Dex contain 
proteins involved in antigen presentation and T cell activation, 
such as MHC classes I and II and co-stimulatory molecules, like 
CD86 (B7-2) (113, 114). Molecules involved in Dex targeting 
and docking to receptor cells, such as ICAM-1, MFG-E8, and 
members of the tetraspanin family of proteins, such as CD9 and 
CD81 are also present in Dex (113–116). Morelli and colleagues 
described the mechanisms responsible for the targeting of Dex 
for DC internalization, which was shown to be calcium and 
temperature-dependent, and to rely on the presence of ligands 
on the surface of the exosomes, namely MFG-E8, phosphati-
dylserine, CD11a, CD54, CD9, and CD81, and on the surface 
of the recipient DC (αv/β3 integrin, CD11a, and CD54) (116). 
They also provided in vivo evidence of bone marrow Dex uptake 
not only by splenic DC, but also by splenic macrophages and by 
hepatic Kupffer cells (116). Zitvogel and colleagues provided the 
proof of concept supporting the in  vivo efficacy of Dex-based 
immunotherapy (111). Tumor peptide-pulsed Dex were capable 
of inducing in vivo CTL priming, tumor growth suppression, and 
tumor remission. Indeed, single intradermal administrations of 
these exosomes promoted significant tumor growth suppression 
after a week and, after 60  days, 40–60% of the animals were 
tumor-free (111). Furthermore, these cell-free immunotherapeu-
tic vaccines were more effective than the direct administration 
of DC vaccines, which only accomplished a 60th day tumor-free 
mice fraction of 20%. These differences may be accounted for by 
the exosomes’ imperviousness to the immunomodulatory effects 
of the tumor microenvironment, which can impair the ability of 
DC to present antigens (111). In the past decade, several clinical 
trials assessing the feasibility, safety, and efficacy of Dex-based 
cancer vaccines were performed, and the results were generally 
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encouraging. Two 2,005 phase I trials tested this immunotherapy 
approach, one in advanced non-small cell lung cancer (NSCLC) 
patients, and the other in metastatic melanoma (MM) patients 
(89, 90). In both trials the patients received four doses of the 
vaccine, consisting of autologous Dex loaded with several differ-
ent MAGE peptides. The vaccine production was shown to be 
feasible, and the therapy was well tolerated by the patients, with 
just minor grade 1–2 adverse events (89, 90). Furthermore, some 
interesting immunological and clinical results were obtained: 
one-third of the NSCLC patients showed increased systemic 
immune responses against MAGE, as demonstrated by delayed-
type hypersensitivity reactivity, and increased NK  cell activity 
was observed in half of the NSCLC patients analyzed and 8/13 of 
the MM patients, hinting that Dex exert their effects in both adap-
tive and innate components of the immune system. Clinically, 
some of the NSCLC patients also appeared to show prolonged 
post-immunization disease stability, and one of the MM patients 
exhibited a minor response with disappearance of one out of 
three subcutaneous lesions, having remained stable afterward for  
up to 24 months (89, 90). A more recent phase II clinical trial 
evaluated the use of IFN-γ-Dex, Dex derived from IFN-γ-
stimulated mature DC, as a maintenance immunotherapy after 
the use of first line chemotherapy in advanced NSCLC patients 
(117). This study showed the feasibility of production and safety 
of application of IFN-γ-Dex, with only one out of twenty-six of 
the patients developing a grade 3 hepatotoxicity. Regarding the 
clinical outcomes, this trial did not show any objective tumor 
response, according to the response evaluation criteria in solid 
tumors. However, it did show that the patients with the longest 
progression-free survival (PFS) had a significant increase in 
NK cell function after Dex administration (117).

Tumor-derived exosomes also work as antigen delivery 
systems, capable of preventing tumor development in a CD4+ 
and CD8+ T cell-dependent manner (51). Because of this, cell-
free vaccines based on the use of tumor-derived exosomes also 
emerged as a possibility. This idea, however, presented with a 
big limitation, since the isolation of tumor exosomes seemed to 
require the inconvenient in vitro culture of the patients’ tumor 
cells (118). The already mentioned findings of Andre and col-
leagues explains that malignant effusions of melanoma patients 
are exosomes-rich, and that these tumor exosomes are capable of 
transmitting tumor antigens to DC, which then go on to activate 
tumor-specific CTL capable of mounting an efficient in vitro anti-
tumor response which offers a solution to the above-mentioned 
problem (24). Indeed, Dai and colleagues published a phase 
I clinical trial in which exosomes derived from the ascites of 
advanced CRC patients were used as immunotherapy (118). 
These tumor exosomes were administered to the patients in 
combination with granulocyte macrophage colony-stimulating 
factor (GM-CSF), a powerful adjuvant which can promote the 
maturation and function of DC (119). Besides demonstrating 
the feasibility and safety of this treatment, with only grade 1–2 
adverse effects reported, it was also shown that the combination 
of tumor exosomes with GM-CSF allowed for a more efficient 
induction of systemic anti-tumor immunity and CTL responses 
than the administration of the isolated tumor exosomes. 
Regarding the clinical results, the patients treated with the 

isolated tumor exosomes showed no therapeutic response, while 
one patient with stable disease and one patient with a minor 
response were observed in the group receiving ascites-derived 
exosomes plus GM-CSF (118).

SUMMARY AND FUTURe PeRSPeCTiveS

Since the first published descriptions of exosomes release from 
rat reticulocytes (120, 121), the field of exosomes biology grew 
explosively, and we now know that these EVs, far from being a 
mere cellular mechanism for waste disposal, play countless roles 
in intercellular communication. Of particular interest to this 
review, exosomes were described as key players in the crosstalk 
between malignant cells and the immune system. Indeed, we 
know that exosomes can both be promoters of tumor growth 
and invasion by aiding in the establishment of an immunosup-
pressive microenvironment and agents at the service of cancer 
immunosurveillance, by assisting antigen presentation and 
promoting eradication of tumor cells by CD4+ (39) and CD8+ 
(24) T cells and by elements of the innate immune system, such 
as NK  cells (92). The translational applications of exosomes 
to cancer therapy have been evolving rapidly, with several 
phase I and II clinical trials evaluating the safety and efficacy 
of exosomes-based cancer vaccines already published showing 
promising results which will without a question encourage the 
development of better models of study in this area with great 
translational potential (89, 90, 117, 118).

Other therapeutic techniques may benefit from the use of 
exosomes, such as the delivery of molecules directed against 
spe cific cancer targets. Indeed, in collaboration with other peers, 
we have recently shown that engineered exosomes show better 
efficacy profiles, when compared with artificial liposomes, in  
the distribution of interference RNA specific for oncogenic 
KRAS in pancreatic cancer models. This process is partially 
dependent on the expression of CD47 on the exosomes, 
which allowed for their escape from CD11b+ monocytes, and 
consequently increased their half-life. Improved uptake of the 
exosomes by cancer cells, leading to a more potent anti-cancer 
activity, and improved survivals were also reported (122).

Given the exosomes’ widespread availability in nearly all 
body fluids, and the presence of molecules providing insight into 
the constitution of the cell that released the vesicles, exosomes 
have also emerged as potentially good biomarkers, allowing 
for cancer profiling and predicting treatment responses (2). 
Indeed, research into the value of plasma exosomal content 
in evaluating responses to chemotherapy and predicting the  
probability of relapse in acute myeloid leukemia patients has 
shown promising results (123, 124). These techniques take 
advantage of the fact that cancer cells release more exosomes 
than healthy cells (11).

These exciting recent advances in the field of exosomes biology 
will likely bring profound changes to the lives of cancer patients. 
They will permit us to use less invasive ways of obtaining the 
necessary information about the disease, and will open up new 
therapeutic avenues, more effective, and more individualized, 
thus minimizing the tremendous side effects most patients still 
have to currently endure during anti-cancer therapy.
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