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T regulatory cells (Tregs) are a key component of the immune system, which maintain 
a delicate balance between overactive responses and immunosuppression. As such, 
Treg deficiencies are linked to autoimmune disorders and alter the immune control of 
pathogens. In HIV infection, Tregs play major roles, both beneficial and detrimental. 
They regulate the immune system such that inflammation and spread of virus through 
activated T cells is suppressed. However, suppression of immune activation also limits 
viral clearance and promotes reservoir formation. Tregs can be directly targeted by 
HIV, thereby harboring a fraction of the viral reservoir. The vital role of Tregs in the 
pathogenesis and control of HIV makes them a subject of interest for manipulation in 
the search of an HIV cure. Here, we discuss the origin and generation, homeostasis, 
and functions of Tregs, particularly their roles and effects in HIV infection. We also 
present various Treg manipulation strategies, including Treg depletion techniques and 
interventions that alter Treg function, which may be used in different cure strategies, 
to simultaneously boost HIV-specific immune responses and induce reactivation of the 
latent virus.

Keywords: regulatory T  cells, FoxP3, human immunodeficiency virus, simian immunodeficiency virus, lymph 
node, virus eradication, cytotoxic T lymphocytes

iNTRODUCTiON

The human immune system walks a fine line between protection from pathogens and self-reactivity. 
These functions are mediated by both the innate and adaptive immune responses, such that all 
immune cells, from monocytes and natural killer cells to B and T lymphocytes, play integral roles 
in protection. Yet, a major function of the immune system, regulation, and self-tolerance, was 
not well understood for a long time. Gershon and Kondo in 1970 first described a population 
of thymus-derived lymphocytes, which were responsible for the induction of tolerance in bone 
marrow-derived lymphocytes (1). However, the mechanism of action and the cellular charac-
teristics of these cells were not studied in detail until 1995, when Sakaguchi et al. reported that 
the CD25hi CD4+ T cell subset has an immunoregulatory function and helps defend against the 
development of autoimmunity, rekindling the interest in this regulatory population (2). These cells 
have since been termed T regulatory cells (Tregs), and their immunosuppressive functions have 
been extensively investigated over the past 23 years. We now understand that Tregs are essential 
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TAble 1 | Key immunophenotypic markers/molecules and cytokines expressed by T regulatory cells (Tregs) and their function.

Function in Tregs Reference

Marker/molecule
CD25 Receptor for IL-2, essential for Treg function and maintenance (2)
FoxP3 (forkhead box P3) Co-ordinates expression of various genes required for Treg activity (6–8)
CD127 (Low) Receptor for IL-7 (9, 10)
CTLA-4 (Cytotoxic T lymphocyte antigen-4)/CD152 Ablates CD28 costimulation by competitive binding to CD80 and CD86.  

Upregulation of IDO production by DCs
(11–14)

CD28 Development and maturation, activation induced Treg markers and expression of CCR6 (15, 16)
PD1 (Programmed cell death-1) Binds to PD-L1, inhibits proliferation and effector responses of lymphocytes (17–19)
ICOS (Inducible costimulator)/CD278 Controls expansion and maintenance of the Foxp3+ regulatory T cells, and IL-10 production (20–22)
LAG-3 (Lymphocyte activation gene-3)/CD223 Plays an important role during IL-27-mediated enhanced Treg function (23)
GITR (Glucocorticoid-induced tumor necrosis factor 
receptor)/CD357

Differentiation of thymic Tregs (tTregs), and expansion of both tTregs and pTregs (24, 25)

GARP (Glycoprotein A repetitions predominant) Present on activated Tregs; promote activation and secretion of TGF-β (26, 27)
TNFR2 (tumor necrosis factor receptor 2)/CD120b Promotes sustained expression of FoxP3 (28)
Helios Highly expressed on tTregs; enhances Treg function by increasing expression  

of other Treg functional molecules
(29–32)

CD39 Anti-inflammatory effect by hydrolytically cleaving ATP to AMP (33, 34)
CD73 Anti-inflammatory effect by hydrolyzing AMP cleaved by CD39 to adenosine (32, 35)
CCR4 Expressed on effector Tregs; required for recruitment to tissue, through CCL22 (36–38)
CCR6 Regulates migration to inflammatory tissue (39)
CCR7 Required for migration to lymph nodes; limits Treg circulation back to the thymus (40–42)
CXCR5 Expressed on Tfr cells; required for homing to the germinal centers (43)

Cytokines
IL-10 Secreted; anti-inflammatory (44, 45)
TGF-β Membrane bound and secreted; suppressive; important for Treg trafficking to the gut (46–50)
IL-35 Secreted; suppressive (51)
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for proper homeostasis of the immune system and regulation 
of self-tolerance. While clearly playing a significant role in the 
pathogenesis of HIV infection, there is still debate in the field 
of whether Tregs are a boon or bane to fighting the virus. More 
recently, Tregs were reported to be involved in the HIV reser-
voir seeding, maintenance, and control of reactivation. In this 
review, we discuss Tregs and their roles during HIV infection, 
with emphasis on their role in viral persistence, and strategies 
for Treg manipulation that may have an impact for an HIV cure.

TYPeS OF Tregs

Based on their site of differentiation, Tregs can be classified 
into thymic Tregs (tTregs) and peripheral Tregs (pTregs). The 
differences in the differentiation of tTregs and pTregs have been 
described in detail by Lee et al (3).

Separation based on their immunophenotypes identified 
numerous distinct Treg subpopulations (4) (Table 1). Treg clas-
sification through other methods, such as mass cytometry, also 
showed that they form a very diverse population, with up to 22 
different Treg subsets being identified (5). In this section, we only 
focus on the key Treg subsets for which both immunophenotypes 
and function were well characterized.

Forkhead box P3 (FoxP3) is the key marker and master 
regulator of Tregs (6). In fact, Tregs are defined to have a 
CD25hi FoxP3+ CD4+ phenotype. The importance of this 
protein was discovered when mutations in the foxp3 gene 
that codes for FoxP3 were shown to cause the X-linked reces-
sive disease, scurfy, in mice. Scurfy presents as lymphoprolif-
eration leading to fatal autoimmunity, and mimics X-linked 

autoimmunity-allergic dysregulation syndrome in humans 
(7). Scurfy mice administered with stable Tregs, defined by 
FoxP3 expression and full suppressive functionality, did not 
develop any signs of the disease (8). FoxP3 expression can 
also be transiently induced following in  vitro stimulation of 
nonsuppressive CD25neg CD4+ T  cells, which indicates that 
expression of FoxP3 alone is not responsible for the regulatory 
activity of T cells (52).

Thymic Tregs are defined by the expression of CD25 and 
FoxP3 on CD4+ T  cells. It has been shown that CD25hi CD4+ 
Treg cells develop from self-reactive thymic cells that express 
a T  cell receptor (TCR) with high affinity for self-antigens. 
Differentiation occurs as an alternative mechanism to apoptosis, 
such that self-antigen reactivity can induce an inhibitory response 
instead of an autoimmune response (53). Upon TCR interaction 
with these peptide-major histocompatibility complex (MHC) 
complexes, FoxP3 is induced in the immature thymocytes (54). 
However, FoxP3 expression is not sufficient to create a stable Treg. 
Demethylation of the FoxP3 locus in the Treg-specific demethyl-
ated region (TSDR) is required to generate stable tTregs (55). In 
addition, CpG hypomethylation of certain loci called “Treg cell 
representative regions” is imprinted in Tregs, also contributing to 
their stability (56). Interactions between B7 molecules (CD80 and 
CD86), expressed on the antigen-presenting cells (APCs), and 
CD28, on thymocytes, are co-stimulatory and are critical to the 
thymic development of Tregs, as evidenced by the severe decrease 
in Treg numbers in mice either deficient in CD28 or treated with 
a blocking anti-B7 antibody (15, 57, 58). Interleukin-2 (IL-2), 
the central cytokine involved in Treg biology, is also essential for 
tTreg maturation (59).
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In addition to tTregs, it has become clear that de novo expres-
sion of FoxP3 can occur in non-Treg CD4+ T cells, either in vitro 
or in vivo. Such induction of FoxP3 expression notably happens 
when naïve T cells are stimulated in the presence of transforming 
growth factor beta-1 (TGF-β1) (60), leading to the development 
of a subset of induced Tregs (iTregs). This subset has extensively 
been used to study the functions and characteristics of Tregs 
ex vivo (61); however, it is now recognized that these in vitro-
induced iTregs may not accurately portray the characteristics of 
in vivo-induced, pTregs. Notably, full FoxP3 TSDR methylation 
does not occur in TGF-β-induced Tregs, leading to poorly sup-
pressive and unstable Tregs (62). Conflicting reports have been 
published with regard to the contribution of retinoic acid (RA) to 
pTreg differentiation. RA from dendritic cells (DCs) was reported 
to be a key cofactor in generating pTregs in the gut (63, 64).  
However, supplementation by RA does not increase Treg fre-
quency (65), which has cast doubt on the role really played by 
RA in pTreg differentiation. Interestingly, RA can phosphoryl-
ate AKT (protein kinase B) (66), thereby reducing its activity, 
and this pathway could be involved in pTreg differentiation, 
because a constitutively active AKT has been shown to impair de 
novo induction of FoxP3+ cells (67). Another pathway involved 
in pTreg induction is antigen presentation by immature DCs. 
Notably, it has been shown that delivering peptides in subim-
munogenic forms for a prolonged period of time can result 
in the induction of CD4+CD25+ Tregs from naïve T  cells in 
peripheral lymphoid organs, even in the absence of a functional 
thymus (68).

Treg HOMeOSTASiS

It was thought that IL-2 is the most important Treg regulator, 
being required for both Treg maintenance and function (69, 70).  
More recently, it was shown that Tregs form two distinct popula-
tions, the CD44lo CD62Lhi central Tregs, which actively recir-
culate through lymphoid organs and are sustained by paracrine 
IL-2, and the CD44hi CD62Llo CCR7lo effector Tregs, which 
are not found in the lymphoid tissue, do not require IL-2, and 
are instead maintained by inducible costimulator (ICOS) (71).  
In vivo, Tregs can proliferate in response to antigens, meaning 
that Tregs can dynamically respond to their environment (72). It 
has also been shown that B7/CD28 costimulation plays a critical 
role in maintenance of Tregs, as shown by experiments reporting 
a profound decrease in Tregs in B7/CD28-deficient mice (58, 73).

Tregs iN THe lYMPH NODeS

L-selectin (CD62L) is thought to be crucial for the homing of 
Tregs to the lymph nodes (LNs). CD4+ CD25+ CD62L+ Tregs 
more potently suppress the proliferative responses of CD25neg 
CD4+ T  cells than CD4+ CD25+ CD62Lneg Tregs (74). CD62L-
dependent homing induced survival and tolerance in a vascular-
ized cardiac allograft mouse (75). It has therefore been postulated 
that Treg trafficking to the LNs may be dependent on CD62L (76). 
A CD69neg CD25+ CD4+ T-cell subset from the LNs was identified 
to efficiently suppress CD57+ germinal center (GC)-Th cell-
driven B cell production of immunoglobulins. These cells express 

CCR7 and efficiently migrate in response to CCL19, a chemokine 
expressed in the T cell zone of LNs. Furthermore, many of these 
CD69neg CD25+ CD4+ T-cells populate the T cell rich zone of the 
LNs; however, some are present in the GCs also (77).

A particular subset of Tregs, the T follicular regulatory cells 
(Tfr), discovered in 2011, are Tregs that have migrated into 
the LN, and thus share phenotypes with Tregs, such as FoxP3, 
CTLA-4 (cytotoxic T-lymphocyte antigen 4), and CD25 expres-
sion (78). Additionally, they undergo differentiation and share 
surface markers with T follicular helper cells (Tfh), such PD-1 
and ICOS, and important for their localization in the GC s, Bcl-
6, CXCR5, and CXCL13 (78). This phenotype allows them to 
modulate B  cell and Tfh cell functions in the LN follicles and 
acts as immune regulators of the GC responses to stimulation 
(43, 78–80). Currently, CTLA-4 is the only molecule demon-
strated to be necessary for full suppression (81, 82); however, 
IL-10 and TGF-β1 are theorized to play roles in the suppressive 
function (83). Although a small subpopulation of mature Tfr 
do not express CD25 (84), depletion of Tfr by anti-CD25 mAb 
still enhanced humoral responses, with significantly more Ab 
produced (85, 86).

Soon after their migration to the LNs, Tregs form long-lasting 
conjugates with DCs. This prevents the DCs from interacting  
with CD25neg CD4+ T helper cells (87). Using a murine mathema-
tical model, it has been shown that after occupying the LNs, Tregs 
do not recirculate, whereas naïve T cells do so readily (88).

MeCHANiSMS OF Treg SUPPReSSiON

T  regulatory cells produce multiple secretory cytokines that 
mediate their suppressive activities. The conventional dogma is 
that cell-to-cell contact is required for the Tregs to exert their 
suppressive activities (89). However, advances in cell culture 
capabilities have recently challenged this paradigm. A study 
using Treg separation from CD4+ T cells with a 0.45-µm perme-
able membrane demonstrated that, while cell-to-cell contact in 
the presence of IL-10 and IL-35 appears to indeed be required 
for Treg activation, the suppressive capabilities of Tregs are not 
completely mediated by cell contact. Instead, the release of inhibi-
tory factors, such as TGF-β, IL-10, and IL-35, plays a prominent 
role in Treg-mediated suppression (44, 45).

Transforming growth factor beta-1 is a cytokine secreted by 
Tregs, which is also present on the cell surface as a membrane 
bound cytokine. TGF-β1 suppresses non-Treg cells through 
interactions with the two heterodimer TGF-β receptors, TGF-βRI 
and TGF-βRII (90, 91). In fact, through the use of T cell-specific 
Tgfb1 deletion and subsequent Treg cotransfer experiments in 
Rag1−/− mice, the inhibition of Th1 differentiation and colitis 
was shown to be dependent upon TGF-β1 production by Tregs 
(46). Additional studies with TGF-β1 blockades have further 
supported its role as a mediator of Treg suppressive function 
(47, 48). TGF-β1 primarily inhibits type 1 T-helper cell (Th1) 
responses by blocking differentiation through the inhibition 
of the master regulator T-bet. However, TGF-β1 is also able to 
directly suppress the effector functions of CD8+ T cells through 
inhibiting cytokine and effector molecule secretion (49). Beyond 
direct suppression, TGF-β signaling is important for inducing 
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Treg trafficking to the gut, where they can then modulate gut 
Th17 cells and gut inflammation (50).

T regulatory cells also produce IL-10, which has been shown to 
be important in controlling inflammation, as disruption of IL-10 
production caused colitis in mice. However, unlike TGF-β1, the 
lack of Treg-produced IL-10 does not cause systemic immunopa-
thology, as demonstrated through Treg-specific IL-10 deletions 
by Cre recombinase. On the contrary, these mice present with 
contained pathology to the colon, lung, and skin, indicating a 
tissue-specific mechanism of IL-10 immune suppression (92). 
Nonetheless, IL-10 has been linked to Treg activation and their 
effector functions (45), thus playing a critical role in immune 
control.

The new IL-12 family heterodimer IL-35 (Ebi3-IL-12α) is an 
inhibitory molecule produced by Tregs, which is required for 
complete suppressive functionality in mice (51). In fact, both 
parts of IL-35, Ebi3 and IL-12α, are necessary to support T-cell 
proliferation, and recombinant IL-35 was sufficient for reduc-
tion of effector T-cell proliferation (51). Tregs are capable of 
inducing differentiation of naïve T cells to “iT(R)35” cells (93) 
through IL-10 and IL-35. These iT(R)35 cells have impressive 
suppressive capabilities originating from substantially increased 
IL-35 production, while they lack FoxP3 and do not produce 
TGF-β or IL10, making them a population distinct from tTregs 
(93). However, other studies questioned the importance of IL-35 
and demonstrated that IL-35 is not constitutively expressed on 
human Tregs, while being shown to be produced by effector 
T cells (94).

On the cell surface, Tregs constitutively express CTLA-4, an 
inhibitory receptor that ablates CD28 costimulation by competi-
tive binding of the B7-1 and B7-2 ligands (CD80 and CD86) on 
APCs (11, 12). Additionally, CTLA-4 also acts through upregula-
tion of indoleamine 2,3-dioxygenase (IDO) production by DCs, 
inhibiting T cell expansion (95). The importance of this protein 
is clearly demonstrated by the observation that mice deficient in 
CTLA-4 die within 2–3 weeks from major organ lymphocytic 
infiltration and destruction, resulting from uncontrolled lym-
phocyte proliferation (13). A similar fatal autoimmune disease 
occurs if CTLA-4 is deleted from Tregs using Cre/lox with the 
FoxP3 promoter, due to loss of Treg suppressive function, par-
ticularly, lack of Treg-mediated DC CD80 and CD86 expression 
(14). Meanwhile, CTLA-4 blockade can induce autoimmune 
disease (96). Further support for the suppressive function of 
CTLA-4 through B7-1/B7-2 was obtained by demonstrating that 
reversal of the lymphoproliferative phenotype occurs after the 
administration of the CTLA4Ig, which mimics the ablation of 
CD28 costimulation by CTLA-4 (97). Imaging of conventional 
CD4+ T cells, DCs, and Tregs in the LNs showed that CTLA-4 
blockade increases the amount of CD4+ T cell-DC interactions 
and T-cell activation through ablation of suppressive interac-
tions of both B7-1 and B7-1 on DCs (98). However, CTLA-4 
does not act exclusively through Tregs, being also expressed 
on conventional T  cells, where inhibitory function can occur 
in cis by both the previously stated mechanism, as well as by 
signaling through the cytoplasmic region (99). CTLA-4 is also 
an important contributor to Treg survival, as the anti-CTLA-4 
mAb Ipilimumab was found to have an additional function of 

targeting Tregs for death by CD16+ nonclassical macrophages 
through antibody-dependent cell-mediated cytotoxicity 
(ADCC) (100).

An indirect Treg suppression mechanism is through consump-
tion of IL-2. CD4+ CD25+ Tregs are able to bind IL-2, preventing 
non-Tregs from binding and thus inhibiting activation (101), 
while simultaneously depriving them of the necessary prosur-
vival signals to prevent apoptosis (102). This competition serves 
an additional function of enhancing Treg responses by priming 
them for IL-10 production after TCR stimulation (103, 104).

Extracellular adenosine triphosphate (ATP) is a known inflam-
matory signal that acts through the P2 purinergic receptors and 
is released from cells, which have a high intracellular concen-
tration of ATP, during tissue damage [reviewed in Ref. (105)].  
Tregs suppress the inflammatory responses to ATP through 
directly limiting the amount of extracellular ATP by hydrolysis 
of ATP to adenosine monophosphate (AMP) by CD39, which 
is highly expressed on the surface of FoxP3+ Tregs (33) and is 
further upregulated during inflammation (106). Indeed, CD39 
plays an important role during HIV infection, as suggested by 
the observations that CD39+ Treg cells are inversely correlated 
with CD4+ T cell counts (107) and polymorphisms that cause 
decreased expression of CD39 correlate with slower disease 
progression (107) and decreased suppression of effector T cells 
(106). Following hydrolysis, AMP is hydrolyzed to adenosine 
by CD73 on the surface of Tregs (108, 109), which is then shed 
from the plasma membrane (110). This further increases the 
suppressive nature of Tregs as adenosine is an anti-inflammatory 
molecule. In vitro experiments demonstrated that adenosine 
directly inhibits T  cell activation and proliferation through 
binding to the receptor A2a, preventing TCR-mediated IL-2R 
(111) and IFN-γ (112) expression. Adenosine further inhibits 
the Th1 response by decreasing TNF-α and IL-12 production by 
myeloid dendritic cells (mDCs) while simultaneously increas-
ing IL-10 (113). Additionally, adenosine inhibits IFN-γ and 
IL-2 production of CD4+ and CD8+ T cells and is inversely cor-
related to gut inflammation and damage during SIV infection 
(34). Tregs also suppress T cells through cyclic AMP (cAMP). 
The binding of adenosine to receptors A2A and A2B induces 
adenylate cyclases, increasing the production of intracellular 
cAMP and suppressing the immune activation [reviewed in Ref. 
(114)]. Using gap junction inhibitors and cAMP antagonists, it 
was shown that Tregs transfer cAMP through gap junctions to 
suppress non-Tregs (115–117).

ROle OF Tregs iN Hiv/Siv iNFeCTiON

Changes in Treg Frequency Throughout 
Hiv/Siv infection
Treg suppression of the cell-mediated immune response occurs 
early during the acute HIV/SIV infection, as reported in SIV-
infected Rhesus macaques (RMs) (118). In fact, in HIV-infected 
individuals, the relative frequency of Tregs correlates with the 
viral load levels and disease progression (119–123), while being 
inversely correlated with the SIV-specific cytotoxic T  lympho-
cyte (CTL) responses (118). Of note, CD4+ T  cell depletion 
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characteristic to acute HIV/SIV infection partially spares Tregs, 
as suggested by the observation that, in spite of the decrease in 
their absolute counts, Treg frequency increases during the acute 
HIV infection (121, 123–125). In HIV-infected subjects receiving 
ART, Treg frequency is partially restored (120, 126). Interestingly, 
elite controllers have higher Treg absolute counts, yet lower fre-
quencies, in the peripheral blood and rectal mucosa compared to 
progressors (119, 127). The mechanism by which Tregs are spared 
relative to other CD4+ cell subsets during HIV infection remains 
unclear. In the gut mucosa of SIV-infected RMs, non-Tregs were 
shown to have significantly higher apoptotic gene expression 
than Tregs, of which some were apoptotic genes associated with 
HIV production, supporting the concept that Tregs are relatively 
resistant to cell death mediated by SIV infection (128). This rela-
tive Treg resistance to HIV/SIV infection is further supported by 
the observations that the number of infected Tregs is similar to 
CD4+ CD25neg cells (129) and that HIV gp120 binding to CD4 
enhances Treg survival (122, 130).

Alternatively, the increases in Treg frequency may also be 
explained by increased conversion of peripheral conventional 
CD4+ T  cells to a pTreg phenotype. Ex vivo work performed 
with plasmacytoid dendritic cells (pDCs) and conventional 
CD4+ T  cells from HIV-infected individuals demonstrated 
enhanced induction of Treg differentiation when pDCs were 
stimulated with HIV (131). Similarly, tissue mDCs from SIV-
infected NHPs were more efficient at converting non-Tregs to 
Tregs (132). Increases in the levels of TGF-β characteristic to 
pathogenic SIV infection of RMs (133) further substantiate 
the theory of increased pTreg conversion during HIV/SIV 
infection. This finding is important, because in progressors, 
Treg suppressive capacity is maintained throughout infection 
(134), with enhanced function in the LNs, where there is a HIV/
SIV reservoir of importance, compared to the peripheral blood 
(135–137).

In the LNs, Tfr contribute to the impairment of Tfh function 
(138, 139). Tfh expand during HIV infection (140–142). Their 
increase is associated with B  cell dysfunction (143), as docu-
mented by hypergammaglobulinemia, increased GC B cells, and 
decreased memory B cells (140–142, 144), a likely consequence 
of hyperactivation through chronic antigenic stimulation (144) 
and increased cytokine production (141, 142). During HIV 
infection, the Tfh/Tfr ratio increases and is associated with 
impaired somatic hypermutation and affinity maturation. These 
functions can be restored upon Tfr reconstitution (145). While 
the frequency of Tfr relative to total CD4+ T cells increases dur-
ing chronic SIV infection, the Tfr fraction of Tfh is decreased 
during both acute and chronic stages. Loss of Tfh proliferation 
control by Tfr during HIV/SIV infection has been examined as 
a possible explanation for Tfh expansion and may help explain 
the hyperactivation in the B cell follicles (146, 147). Other stud-
ies, however, reported opposite findings, showing that the Tfr/
Tfh ratio increases postinfection and through expansion of the 
regulatory phenotype (139). These data are consistent with Tfh 
impairment, notably downregulation of ICOS and decreased 
expression of IL-21 and IL-4 (139), implicating Tfh inhibition 
in the aberrant humoral response. Thus, whether therapeutic 
targeting of Tfr in HIV/SIV infection is beneficial or detrimental 

is still up for debate, although their permissiveness to infection 
enhances the beneficial aspects of targeting Tfr (148).

Treg Suppression in Hiv infection
T regulatory cells are considered both beneficial and detrimen-
tal during acute HIV infection (Figure 1). Increased immune 
activation is a hallmark of HIV infection, and Tregs have been 
shown to control the activation status of HIV-infected CD4+ 
T  cells (118, 149–152). In the nonpathogenic SIV infection 
of African green monkeys, an increase in Tregs occurs early 
during the acute infection, as early as 24 h postinfection, con-
comitant with significant increases in TGF-β and IL-10 (153). 
In contrast, during the acute pathogenic SIV infection of RMs, 
there is only modest TGF-β induction and delayed increases 
in IL-10 (153). Additional support for the role of Tregs in 
acute infection was obtained by Cecchinato et al. who showed 
that CTLA-4 blockade early during the acute infection was 
detrimental to RMs, resulting in increased viral replication and 
decreased responsiveness to ART (154). These results may be 
due to essentially “adding fuel to the fire” by increasing immune 
activation and consequently expanding the target pool for SIV, 
although some of this may be due to non-Treg effects. In vitro 
studies have shown that, in addition to limiting the amount of 
susceptible cells, Tregs can limit the infection of conventional 
CD4+ T cells through DC-CD4+ T cell immunological synapses 
(117). Therefore, Tregs can help in preventing the deleterious 
pathogenic consequences of HIV/SIV infections by controlling 
the immune activation status of virus producing cells by shifting 
them into resting state. This thereby suppresses viral produc-
tion, and prevents the spread of infection. The corollary of this 
paradigm is, however, that, by pushing infected T cells into a 
resting state, Tregs are promoting the generation of the latent 
HIV/SIV reservoir, the seeding of which starts as early as 3 days 
post-infection (155), which represents the ultimate obstacle for 
HIV cure research.

Meanwhile, Tregs also suppress the HIV-specific CD8+ T cell 
responses (156), their frequency being inversely correlated 
with the SIV-specific CTL response (118) and T-cell activation 
(125). The disruption of the cell-mediated immune response 
against HIV by Treg-mediated suppression of CD8+ T cytotoxic 
lymphocytes is therefore inhibiting viral clearance in infected 
individuals, likely leading to an increased viral replication. In 
fact, in controllers with the protective HLA-B*27 and HLA-B*57 
alleles, the HLA-B*27 and HLA-B*57-restricted CD8+ T cells are 
not suppressed by Tregs, whereas the CD8+ T cells with nonpro-
tective HLA alleles are highly suppressed ex vivo, substantiating 
the role CD8+ T  cells in controlling virus (157). Jiang et  al. 
infected humanized mice with HIV following Treg depletion and 
compared them with those that were not depleted of Tregs. They 
found that the Treg-depleted mice had lower levels of infection, 
as measured by peak viral loads and p24 intracellular staining in 
plasma and lymphoid tissues, such as spleen and mesenteric LNs 
(158), supporting a negative effect of Tregs on disease.

Of note, conflicting data were published with regard to the 
effect of Treg infection with HIV on their suppressive capabilities. 
Purified bulk Treg populations from HIV-infected individuals 
retain their suppressive activity (125, 149, 159). In vitro, HIV 
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FigURe 1 | Flow chart illustrating the effects of Tregs on the HIV reservoir (A). Tregs can be infected with HIV, thereby contributing to the HIV reservoir. Tregs reverse 
the activation status of the HIV-infected T cells into resting T cells, further contributing to the reservoir formation. Finally, by suppressing the HIV-specific CD8+ 
T cells, which would otherwise kill infected cells, Tregs also shape the non-Treg reservoir. Potential effects of Treg depletion on the HIV reservoir (b). Treg depletion 
obviously result in a reduction of the Treg reservoir through direct killing. Treg depletion also abolish their suppressive effects of the T cells, which may reverse their 
resting status, become activated and produce and release the virus. Finally, reversion of the suppressive effect of Tregs on HIV-specific CD8+ T cells has the 
potential to boost their anti-SIV activity, which can also curtail the reservoir.
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infection of Tregs has been reported to either have no effect on 
Treg functionality (160) or result in loss of functionality (161). 
However, when functionality was assessed on a per-cell basis, 

infec ted Tregs had a lower suppressive capacity and correspon-
ding decreases in genes relating to suppressive function and 
increases in inhibitory genes compared to noninfected Tregs 
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TAble 2 | Strategies for targeting T regulatory cells (Tregs) and/or their function.

impact  
on Tregs

Target Drug Rationale expected Treg  
depletion/blockade

Reference Potential 
complications

Depletion CD25 IL-2 immunotoxin Treg targeting through attachment  
to CD25, the receptor for IL-2
Treg killing through eEF-2 (Eukaryotic  
elongation factor 2) ribosylation by  
diphtheria toxin

Up to 75% depletion of 
circulating Tregs
Up to 40% depletion of  
the lymph node (LN) Tregs

(158, 167, 168) Autoimmunity,  
toxicity

Daclizumab Binds to CD25, preventing IL-2  
binding and action. Il-2 is required  
for maintenance of Treg counts  
and function

Up to 50% depletion  
of circulating Tregs

(169–172)

CCR4 CCR4 immunotoxin Targets Tregs by attaching to CCR4  
(effector Treg marker)
Treg killing through eEF-2 ribosylation  
by diphtheria toxin

Up to 40% depletion  
of circulating Tregs
9–22% depletion  
of the LN Tregs

(173, 174)

Mogalizumab Targeting Tregs by attaching to CCR4  
and causing antibody-dependent,  
cell-mediated cytotoxicity

Up to 80% depletion  
of circulating Tregs

(175, 176)

Cyclophosphamide Treg depletion through DNA double strand  
breaks and decreased DNA repair. Treg  
sensitivity is due to decreased production  
of glutathione (required for detoxification  
of Cy active metabolites)

Up to 50% depletion  
of circulating Tregs
Increased CD8+ T cell  
and NK cell activation

(177, 178)

Functional 
blockade

CTLA-4 Ipilimumab Binds to CTLA-4 on Tregs, blocking  
it from inhibiting lymphocytes

Up to 75% decrease  
of circulating Tregs

(100, 154,  
179, 180)

Autoimmunity,  
toxicity

IDO 1-methyl-d- 
tryptophan

Inhibits IDO, blocking suppressive  
function

Increased expression of  
IFN-γ by the lymphocytes  
in the LNs, decreased  
plasma viral loads

(181, 182) Autoimmunity
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(162), and this altered suppressive capacity may further contrib-
ute to the generalized immune activation in chronic infection.

Tregs AS AN Hiv/Siv ReSeRvOiR

Suppression of the immune responses is not the only way that 
Tregs contribute to HIV disease. Treg infection with both SIV 
(118, 128) and HIV (160) occurs both in vitro (163) and in vivo. 
Indeed, when naïve T cells were transduced to express FoxP3, 
their susceptibility to HIV infection increased, and they pro-
duced infectious virus at levels comparable to memory T cells 
(163). In SIV-infected macaques, the fraction of mucosal Tregs 
containing SIV DNA is higher than that of the non-Tregs, but 
Tregs harbor less SIV RNA, which was interpreted as an indica-
tion that they are less susceptible to productive infection (128). 
Additionally, mucosal Tregs have a better survival rate than the 
non-Tregs, supporting increased infection rates without active 
replication (128). Similarly, in HIV-infected individuals, a larger 
proportion of Tregs contains HIV DNA than the non-Tregs and 
importantly, treatment with the histone deacetylase inhibitor 
(HDACi) valproic acid was able to reverse latency in resting 
Tregs from more patients than treatment of non-Tregs (164). Yet, 
when the comparisons are refined by comparing Tregs (CD25+ 
CD127neg) to effector memory T cells (TEM) (CD25neg CD127+), 
the difference in the levels of integrated HIV DNA between the 
two cellular populations was no longer significant (160), an 
unsurprising, but notable result due to the inclusion of naïve 
T  cells in the non-Treg group. Interestingly, when comparing 

the in  vitro susceptibility to infection, Tregs were reported 
to be more susceptible to infection by CXCR4-tropic strains, 
while TEM were more susceptible to CCR5-tropic strains (160). 
Further substantiating Tregs as an important reservoir, replica-
tion competent virus has been reactivated from Tregs isolated 
from HIV-infected individuals on long-term ART (164–166).

As such, due to the increase in Treg frequency during HIV/
SIV infection (118–126), a larger proportion of Tregs contain-
ing HIV/SIV DNA than non-Tregs (128, 164), better survival 
from SIV infection (128), and decreased suppressive activity of 
infected Tregs (161, 162), Tregs appear to be an important HIV 
reservoir. Together with their major role in shaping the viral 
reservoir, these data point to a key role for Tregs as targets in cure 
research strategies.

TARgeTiNg Tregs AS A CURe  
ReSeARCH STRATegY

The suppressive function of Tregs during HIV infection has 
opened the forum to assess the benefit of manipulating Tregs 
for the HIV-infected subjects. However, this is not without its 
issues, as Tregs are also beneficial in some ways, particularly 
in suppressing general immune activation. The major problem 
with targeting Tregs is that the most typical marker for Tregs, 
the FoxP3 molecule is intracellular and, as such, it cannot be 
directly targeted in  vivo. Multiple other targets have however 
been considered for in vivo Treg depletion strategies (summa-
rized in Table 2).
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Targeting CD25 for Treg Depletion
Two drugs targeting Treg through their constitutive expression 
of CD25, Daclizumab and Ontak, have been used to deplete 
them (183, 184). Both compounds bind CD25, but act differ-
ently. For Denileukin difitox (ONTAK), which is IL-2 coupled 
with diphtheria toxin, the IL-2 identifies and binds the CD25+ 
cells, allowing the diphtheria toxin to enter the cell and cause cell 
death by ADP-ribosylating host eEF-2 and preventing protein 
synthesis (185). Ontak has been used to treat CD25+ cutaneous 
T cell lymphoma (186). Ontak has also been tested with relatively 
positive results in peripheral T-cell lymphoma, metastatic renal 
cell carcinoma, and unresectable stage IV melanoma (187–189). 
Other studies of Ontak administration to melanoma patients, 
together with a DC vaccine reported no peripheral Treg deple-
tion; yet, this result may be due to the use of a very low dose 
(190). In the same study, in vitro assessments showed that, while 
the internalization of Ontak was observable in activated Tregs 
even at low concentrations, Ontak internalization in resting 
Tregs only occurred at very high concentrations (190). This may 
be a potential barrier to the use of Ontak to target the resting 
reservoir.

The second component, Daclizumab, is a monoclonal anti-
body to CD25, which prevents the interaction of IL-2 with its 
receptor. As such, Daclizumab may be used for Treg depletion, 
as IL-2 is essential for Treg development, maintenance, and func-
tion, as discussed above. It has been approved for the treatment 
of relapsing forms of multiple sclerosis (169, 170) and in adult 
T cell leukemia to induce remission (191). Daclizumab was also 
used in radio-immunotherapeutic approaches, after linking it 
with 90Y, and its administration extended the length of remission 
in patients with adult T  cell leukemia (171). This conjugated 
Daclizumab was also tested in other CD25+ malignancies, with 
promising results, especially for patients with Hodgkin’s disease 
(192). Finally, for a short time, it was used to prevent acute rejec-
tion in patients with kidney transplants (193).

In the context of HIV infection, these compounds look pro-
mising, with regards to reservoir control. Ontak administration 
to DKO-hu HSC mice, followed by infection with HIV-R3A, 
reduced the levels of Tregs in blood, spleen, and mesenteric LN 
and increased the expression of HLA-DR, a marker of immune 
activation, on CD4+ and CD8+ T cells. It nevertheless resul ted in 
lower levels of HIV-1 present in the plasma and the lymphoid 
organs, during the acute stage of infection (158). Furthermore, 
Ontak administration to humanized NRG mice infected with 
HIV-1 and completely virologically suppressed by ART, resulted 
in viral reactivation in spleen and bone marrow. Cell-associated 
viral DNA levels did not change, indicating that the virions 
relapsed from the reservoir. The mice were maintained on ART, 
which prevented the reactivated virus to reinfect cells and, after 
virus control was achieved post-Ontak administration, the levels 
of cell-associated viral DNA were significantly decreased in the 
lymphoid tissue as compared to controls, with no significant 
change in total CD4+ T cells in the spleen and bone marrow (194).

Ontak administration to chronically SIVsab-infected African 
green monkeys, resulted in a significant Treg depletion and 
induced significant CD4+ and CD8+ T  cell activation (167). 
Finally, Ontak administration to SIVsab-infected RMs, a model 

of spontaneous complete control of HIV infection (195, 196), 
resulted in the depletion of 75–85% of the peripheral Tregs, an 
8- to 10-fold increase in immune activation of the peripheral 
CD4+ and CD8+ T cells and a boost of SIV-specific T cells (168). 
Furthermore, a relatively robust virus reactivation was observed, 
with plasma viral loads reaching up to 103 viral RNA copies/mL 
(from below 5 copies/mL before treatment).

These results suggested that Treg depletion is a plausible 
stra tegy for reducing the HIV reservoir in circulation and lym-
phoid tissues, while boosting effective cell-mediated immune 
responses (168). Ontak was discontinued for clinical use due to 
the production issues related to difficulties in the purification 
from the bacterial expression system. Daclizumab has also been 
discontinued. However, a new bivalent IL-2 immunotoxin was 
developed that showed increased potency when compared to 
the Ontak-like monovalent version (197). When it was used 
in human CD25+ HUT102/6TG tumor-bearing NSG mouse 
model, this bivalent immunotoxin was shown to significantly 
prolong survival of the mice in a dose-dependent manner (198).

Targeting CCR4 for Treg Depletion
T regulatory cells (Tregs) express a high level of CCR4 (199–201), 
which is the receptor for CC chemokines (MIP-1, RANTES, 
TARC, and MCP-1) and has been shown to be a coreceptor for 
HIV-1 (202). Wang et  al. developed a diphtheria-toxin based 
anti-human CCR4 immunotoxin, which effectively binds to 
and cause protein synthesis inhibition in target cells. It prolongs 
the survival of tumor-bearing NOD/SCID IL-2 receptor γ−/− 
(NSG) mice injected with human CCR4+ acute lymphoblastic 
leukemia cells, indicating the efficacy of this drug (173). When 
the drug was tested in NHPs, it depleted ~80% of CCR4+ FoxP3+ 
and 40% of FoxP3+ CD4+ T cells in the peripheral blood. In the 
LNs, although there was a decrease of ~90% of CCR4+ FoxP3+ 
Tregs, overall FoxP3+ CD4+ T cells were decreased by only 9–22% 
(174). The anti-CCR4 monoclonal antibody, Mogamulizumab, 
also shows promise in treatment of peripheral T-cell lymphoma 
and cutaneous T-cell lymphomas like mycosis fungoides and 
Sezary syndrome, by depleting CCR4+ malignant cells and 
CCR4+ Tregs (175, 176).

Cyclophosphamide
Cyclophosphamide (Cy) is a well-established chemotherapeutic 
agent, which is widely used for the treatment of leukemias and 
lymphomas. In high doses, Cy acts as a nonselective cytoreduc-
tive agent, which directed its uses as part of a preparation regi men 
for allogeneic stem-cell transplantation (203) and in treatments 
for systemic lupus erythematosus (SLE) (204–206). In low, 
metronomic dosages, Cy retains its antitumor capabilities, with 
reduced side effects and improved clinical responses (207).  
In mice, low-dose Cy administration selectively and significantly 
depleted and reduced the functionality of Tregs (208, 209).  
In vitro, CTLs and T helper cells are more resistant to Cy cyto-
toxicity than Tregs (210). Treg selectivity has been attributed 
to decreased DNA repair, as demonstrated by the increased 
and sustained DNA intercross-linking, as well as increased and 
sustained phosphorylated histone 2AX. A different mechanism 
for sensitivity, decreased production of glutathione, a detoxifier 
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for Cy and its active metabolites, was also evoked. Indeed, Tregs 
have decreased ATP levels, which abrogate glutathione produc-
tion, thereby inducing hypersensitivity to Cy (211). Interestingly, 
CCR2+ Tregs are preferentially depleted in mice over CCR2neg 
Tregs. An analysis of the cell cycles demonstrated increased 
proliferation and activation in CCR2+ Tregs (212).

Patients treated with a single dose of 300 mg/m2 Cy experi-
enced a ~20% Treg decrease sustained for 25 days and a decrease 
in proliferation marker Ki-67, further substantiating the loss of 
Treg homeostatic proliferation (177). Further studies of Cy in 
humans showed that end-stage cancer patients treated with met-
ronomic dosing of 100 mg of Cy per day for 7 days for 4 weeks 
of on/off, such that the cumulative dose of ~777 mg/m2 was split 
between 2  weeks with a week without treatment in between,  
had greater than 50% decrease in both relative frequency and 
absolute counts of Tregs at day 30 of treatment. Importantly, 
treatment caused an increase in CD8+ T cell and NK cell cyto-
toxicity, a requirement for adequate clearance of infected cells 
during HIV cure approaches. Interestingly, when the dose was 
increased to 200  mg/day, the selective depletion of Tregs was 
ablated, underpinning the importance of the low dose for specific 
Treg targeting (178).

To be an effective therapy for HIV, Cy must be effective in 
depleting Tregs from the LNs, where there is a major viral res-
ervoir. A study in mice showed that Cy treatment was beneficial 
in the LNs by selectively depleting the CD8+ lymphoid-resident 
DCs while sparing the skin-derived migratory DCs and pDCs 
in the LNs and spleen. This selective depletion in turn boosted 
antigen presentation and cytokine secretion by the mDCs 
and pDCs, with a reduction in Treg suppressive capabilities. 
These results were confirmed by an adoptive transfer of CD8+ 
DCs, which abrogated the immune enhancement (213). When 
patients were treated with a single IV low-dose of 300 mg/m2 Cy,  
a less immunosuppressive environment compared to controls 
was observed in the LNs, including significant decreases in IL-10, 
IL-6, and VEGF (214). Altogether, these results demonstrate that 
Cy administration is effective in modulating Tregs from both the 
LNs and periphery.

Little is known about Cy as a therapeutic approach for HIV 
cure. In an HIV-positive patient with SLE, treatment with Cy 
induced an enormous burst in viral replication, with plasma 
viral loads peaking to  >1.3  ×  107 copies/mL and quickly 
returned to below detectable levels (215). Using escalating doses 
up to 1.6 g/m2, Bartlett et al., monitored the effects of Cy on HIV 
DNA in LNs and PBMCs and plasma viral loads. They found 
no significant difference in the HIV DNA burden of LNs and 
PBMCs versus the control group, but, of note, plasma viral loads 
were not suppressed in these patients, with two subjects out of 
five admitting to nonadherence to ART (216). Thus, it is possible 
that the increase in plasma viral loads and lack of viral DNA 
clearance may have been due to nonadherence.

Based on these data and the impressive benefits of Cy during 
various cancer treatments, low-dose Cy could be an effective 
therapy to decrease HIV reservoir, through its Treg-depleting 
effect. However, further studies are necessary to detail the 
potential of Cy to enhance HIV-specific CTL responses and/or 
reactivate latent HIV.

THeRAPieS TARgeTiNg Treg FUNCTiON

Various therapies to affect Treg function have also been tested. 
CTLA-4+PD-1neg CD4+ T cells from multiple tissues are enriched 
for replication-competent SIV in infected RMs under ART, sug-
gesting a potential therapeutic target for reservoir elimination 
(217). During HIV infection, CTLA-4 plays a role in suppres-
sion of HIV-specific T cells, with CTLA-4 blockade enhancing 
CD4+ T  cell functionality, i.e., IFN-γ production and cell 
proliferation (218, 219). In an HIV-infected individual treated 
with Ipilimumab (α-CTLA-4 mAb) for melanoma, plasma viral 
loads remained below the limit of detection using standard 
qPCR methods, whereas a general decline in plasma viral loads 
was seen when using the single copy assay, with an opposing 
increase in cell-associated unspliced RNA post-treatment, 
likely due to expansion of infected T cells (179). Additionally, 
in chronically infected RM given blocking CTLA-4 Ab while 
on ART, decreases in viral RNA was noted when therapy was 
interrupted, along with an increase in the SIV-specific immune 
response (180). However, when the same blockade was used in 
early infection with the pathogenic SIVmac251-infected RM 
model, it increased immune activation, viral replication, but did 
not augment SIV-specific responses, and abrogated responsive-
ness to ART (154). Thus, further studies need to be conducted to 
determine whether stand-alone CTLA-4 blockade can be used as 
a latency reversing strategy.

As mentioned earlier, Tregs also express PD-1, which affected 
their homeostasis (17, 220). PD-1 also is thought to participate in 
Treg suppression (221). Due to its major role in contribution to 
T cell exhaustion (222, 223), efficiency of PD-1/PD-L1 blockade 
is widely studied in HIV-1 infection. However, the lack of speci-
ficity to Tregs of these interventions puts PD-1 targeting out of the 
scope of this review [reviewed in Ref. (224)].

Indoleamine 2,3-dioxygenase has been observed to increase 
during HIV infection and may suppress the antiviral responses 
(225). Thus, IDO blockade has been attempted to enhance 
the antiviral response to HIV/SIV (181, 182). In SIV-infected 
macaques under ART, treatment with the IDO inhibitor 
1-methyl-d-tryptophan (d-1mT) reduced plasma viral loads 
and SIV RNA in LNs (181). d-1mT combined with CTLA-4 
blockade in SIVmac251-infected macaques under ART did not 
provide better control of viremia (182). Additionally, this treat-
ment induced acute pancreatitis in all animals, whereas the same 
ART regimen given alone induced pancreatitis in only 10–20% 
of the animals (182). These data suggest either an exacerbation 
of ART toxicity, or more likely, the induction of auto-immune 
responses against pancreatic antigens. Whatever the underly-
ing mechanisms, such findings are a cautionary warning of the 
potential risk of any Treg manipulation in vivo.

CONClUSiON

Treg suppression of virus-specific immune responses may limit 
the efficacy of virus reactivation strategies, which require effective 
killing of the reactivated HIV/SIV reservoir. As a result, Tregs may 
play a central role in shaping the HIV reservoir and compromising 
the HIV/SIV-specific immune responses. Future research should 
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focus on further refine the effects of various Treg manipulation 
techniques on the reservoir. Here, we have described several 
promising Treg treatments that may either suppress Treg activ-
ity or kill Tregs altogether. Treg depletion, which has the ability 
to directly target a small fraction of the reservoir, reactivate the 
virus, and boost cell-mediated immune responses, might be a 
desirable strategy for cure research. Although standalone Treg 
manipulations are promising, they can quite easily be added to 
other regimens. In the future, investigations into combining Treg 
therapies with the more traditional viral reactivation therapies, 
i.e., HDACis, PKA agonists, etc., or vaccinations may prove to be 
valid cure strategies.
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