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Objective: Dendritic cells (DCs) are key orchestrators of immune function. To date,  
rheumatoid arthritis (RA) researchers have predominantly focused on a potential patho-
genic role for CD1c+ DCs. In contrast, CD141+ DCs and plasmacytoid DCs (pDCs) 
have not been systematically examined, at least in early RA. In established RA, the role 
of pDCs is ambi guous and, since disease duration and treatment both impact RA patho-
physiology, we examined pDCs, and CD1c+ and CD141+ conventional DCs (cDCs), in 
early, drug-naïve RA (eRA) patients.

Methods: We analyzed the frequency and phenotype of pDCs, CD1c+, and CD141+ 
DCs from eRA patients and compared findings with healthy controls. In parallel, we 
performed transcriptional analysis of >600 immunology-related genes (Nanostring) from 
peripheral blood pDCs, CD1c+ DCs, B cells, T cells, and monocytes.

results: All DC subsets were reduced in eRA (n = 44) compared with healthy controls  
(n = 30) and, for pDCs, this was most marked in seropositive patients. CD141+ and 
CD1c+ DCs, but not pDCs, had a comparatively activated phenotype at baseline 
(increased CD86) and CD1c+ DC frequency inversely associated with disease activity. 
All DC frequencies remained static 12 months after initiation of immunomodulatory ther-
apy despite a fall in activation markers (e.g., HLA-DR, CD40). There was no association 
between the whole blood interferon gene signature (IGS) and pDC or CD1c+ DC param-
eters but an inverse association between CD141+ DC frequency and IGS was noted. 
Furthermore, IFN-I and IFN-III mRNA transcripts were comparable between eRA pDC 
and other leukocyte subsets (B cells, CD4+, and CD8+ T cells and monocytes) with no 
obvious circulating cellular source of IFN-I or IFN-III. Transcriptomic analysis suggested 
increased pDC and CD1c+ DC proliferation in eRA; pDC differentially expressed genes also 
suggested enhanced tolerogenic function, whereas for CD1c+ DCs, pro-inflammatory  
transcripts were upregulated.
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inTrODUcTiOn

Dendritic cells (DCs) are professional antigen-presenting cells 
(APCs), which orchestrate immune responses. They provide a  
link between the innate and adaptive immune system by trans-
lating non-specific danger and damage signals into a targeted 
antipat hogen response (1). DCs continuously sample their envi-
ronment by micropinocytosis allowing uptake of both self and 
non-self proteins, which are subsequently trafficked to the cell 
membrane and displayed in an antigen–major histocompatibility 
complex (MHC) complex (2). DC receptors can sense danger, 
microbe, or cytokine signals, which, when triggered, drive DC 
maturation and activation. This promotes migration to lymph 
nodes, further proinflammatory cytokine release, increased 
stability of the antigen–MHC complex, and upregulation of co-
stimulatory molecules, such as CD40 and CD86. Together, these 
support a targeted T cell response against the presented antigen. 
Thus, if activated/mature DCs present self-antigen tolerance 
may be breached highlighting the need for tight regulation of 
DC biology and their importance in autoimmunity (2, 3). Some 
DCs, while retaining APC capacity, are resistant to maturation-
inducing signals and downregulate co-stimulatory molecule exp- 
ression and pro-inflammatory cytokines while simultaneously 
upregulating the expression of inhibitory molecules and anti-
inflammatory cytokines (4, 5). These so-called regulatory or tole- 
rogenic DCs promote T cell anergy and regulatory T cell (Treg) 
generation and are being explored as a potential therapy in auto-
immune disease (6–11).

Dendritic cells are a heterogeneous population and can be 
divided into conventional myeloid (cDCs) and plasmacytoid 
(pDCs) (12). cDCs express typical myeloid antigens but can be 
sub-divided by their expression of CD141 and CD1c, thereby 
generating two additional subsets; CD141+ DC (cDC1) and 
CD1c+ DC (cDC2), respectively. pDCs typically lack these 
markers, although can express low levels of CD141, and express 
instead CD123, CD303, and CD304. Typically both cDC and pDC 
subsets display APC capacity, but this function is emphasized in 
cDCs (13). CD141+ DC have been suggested to cross-present 
antigen and efficiently prime CD8+ T cells and CD1c+ DC are 
capable of priming CD4+ and CD8+ T  cells (14). Conversely, 
pDCs have relatively reduced HLA-DR (MHC class II) expres- 
sion (13) and are the primary type 1 interferon (IFN-I) producing 
cell subset, a key early cytokine in the immune defense against 
viral infection (15).

Dendritic cells are believed to be important in RA pathogen-
esis, indeed, HLA-DR variants are linked to RA susceptibility 
implicating DC activation of autoreactive lymphocytes in 
disease onset (16). Furthermore, another DC subset termed 

inflammatory DC, which are thought to be derived from mono-
cytes, have been reported to be the main DC subset in the syno-
vial fluid of RA patients and are involved in the induction and 
maintenance of Th17 cell responses (17–23). There is additional 
evidence that cDCs are involved in early breach of tolerance in 
animal RA models (24). However, previous studies have often 
not distinguished between CD141+ cDC1 and CD1c+ cDC2 
subsets and referred to them collectively as myeloid cDCs or 
just examined CD1c+ DCs alone. Indeed, CD1c+ DCs have 
been found at high levels in synovial joint tissue and fluid from 
RA patients where they can promote pathological Th1 cytokines 
(25, 26). With regard to circulating CD1c+ DC in RA patients 
there are contrasting reports. Most studies have reported a 
decrease in their numbers with a comparatively immature 
phenotype (25, 27–31), whereas one reported an increase in 
number (32). Additionally, in established RA patients, CD1c+ 
DC levels inversely correlated with disease activity and low DC 
numbers were restored upon successful treatment and fall in 
disease burden (29). However, this was not a universal finding 
for all therapeutic regimens (30). Examination of CD141+ DCs 
specifically in RA has been limited to one published abstract 
where they are increased in established RA synovial fluid, dis-
playing a relatively mature phenotype (33). Nonetheless, studies 
of the presumed murine equivalent demonstrate an acceleration 
in the onset of collagen-induced arthritis following their adop-
tive transfer with CD4+ T cells (34).

Conversely, while pDCs are also increased in the synovial 
compartment and reduced in the peripheral blood of established 
RA patients, the circulating pDCs are immature and num-
bers do not correlate with disease activity (25, 27, 29, 31, 35). 
Furthermore, when compared with CD1c+ DCs, synovial pDCs 
also have a more immature phenotype (25). Some, therefore, 
pro pose that, in RA, pDCs have an anti-inflammatory function 
in the context of breach of tolerance (35–37). However, this role 
has not been universally supported (38, 39) and the net role of 
pDCs in RA pathogenesis remains ambiguous. Their capacity to 
produce large amounts of IFN-I is likely to be important given the 
emerging association of the interferon gene signature (IGS) with  
autoimmunity. The IGS is a composite score of genes upregu- 
lated upon exposure to IFN-I [interferon response genes (IRGs)]. 
In both early and established RA, a subset of patients have a  
raised IGS, which impacts on the clinical response to certain 
therapies (40–45). Exposure to IFN-I is likely to be important 
as genetic variants that increase RA susceptibility are associated 
with the IFN-I pathway (46, 47) and upregulation of genes related 
to the IFN-I signaling pathway predicted progression to RA in 
seropo sitive arthralgia (48, 49). Furthermore, administration 
of IFN-α can promote an inflammatory arthritis phenotype in 

Discussion: This is the first detailed examination of DC subsets in eRA peripheral blood. 
Compared with CD1c+ DCs, pDCs are less activated and may be skewed toward tolero-
genic functions. CD141+ DCs may be implicated in RA pathophysiology. Our findings 
justify further investigation of early RA DC biology.

Keywords: rheumatoid arthritis, early rheumatoid arthritis, plasmacytoid dendritic cells, conventional dendritic 
cells, tolerance
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humans (50) and transfer of IFN-I producing DCs propagates a 
persistent inflammatory arthritis in mice (51). RA therapies can 
influence the IGS (44, 52) and, therefore, complicate study of IFN 
biology in RA.

Given the central role of DCs in all immune responses, and 
their proposed role in RA and other autoimmune inflammatory 
diseases, we examined CD1c+ DC, CD141+ DC, and pDCs in 
patients in the early stages of RA, before treatment with antirheu-
matic drugs.

MaTerials anD MeThODs

Patient cohorts
Glucocorticoid and disease-modifying antirheumatic drug 
(DMARD)-naïve patients were recruited from the Newcastle 
Early Arthritis Cohort, Newcastle upon Tyne Hospitals, UK at 
the point of their initial consultant rheumatologist diagnosis of 
RA (early RA) with reference to 2010 ACR/EULAR RA clas-
sification criteria. Clinical parameters including DAS-28-ESR, 
its components, inflammatory markers, disease duration, early 
morning stiffness, and serological status (rheumatoid factor, 
RF; anti-cyclic citrullinated peptide, anti-CCP) were recorded. 
Healthy controls with no history of autoimmunity were also 
recruited. Circulating serum cytokines IFN-γ, IL-6, IL-12 p70, 
TNF-α, IL-1β, IL-2, IL-13, IL-4, IL-10 were measured by MSD 
technology (Meso Scale Discovery, MD, USA) and B-Cell acti-
vating factor (BAFF) was measured using ELISA (R & D Systems 
GmbH, Germany) as per manufacturers instructions. This study 
obtained full ethical approval from the North East—Newcastle 
& North Tyneside 2 Research Ethics Committee (REC reference: 
12/NE/0251).

Dc Phenotyping and sorting
Peripheral blood mononuclear cells were isolated by density 
centrifugation (Lymphoprep, Axis-Shield Diagnostics Ltd., UK), 
washed, and re-suspended in staining buffer (phosphate-buffered 
saline supplemented with 1% fetal calf serum, 2 mM EDTA and 
0.01% sodium azide) in the presence of IgG. Cell surface expres- 
sion was assessed following 30 min incubation with the following 
antibodies: CD3-FITC (HIT3a), CD19-FITC (HIB19), CD20-FITC 
(2H7), CD203c-FITC (NP4D6), CD11c-PerCP-Cy5.5 (BU15), 
CD123-BV650 (6H6), HLA-DR-AF700 (L243), CD141-BV711 
(1A4), CD14-BV510 (M5E2), CD1c-APC-Cy7 (L161) all from 
Biolegend, CA, USA; CD86-APC (FUN1) and CD40-PE (C40-
1457) from BD Biosciences (Oxford, UK); CCR7-PE (150503)  
from RnD Systems, Abigndon, UK and live/dead CyStain® from 
Partec Japan. Acquisition was on a BD LSR Fortessa™ and analy- 
zed using FlowJo software (Treestar). pDCs, CD1c+ DCs, and  
CD141+ DCs were defined as CD19−CD20−CD3−CD203c− 
HLA-DR+CD14−CD1c−CD141− or dimCD11c− CD123+, CD1
9−CD20−CD3−CD203c−HLA−DR+CD14−CD1c+CD141− 
or dimCD11c+ and CD19−CD20−CD3−CD203c−HLA-DR+ 
CD14−CD1c+CD141highCD11c−, respectively (gating strategy 
shown in Figure S1 in Supplementary Material). Equivalent pDC 
and CD1c+ DCs as well as B  cells (CD19+, CD20+, CD14−, 
CD3−), CD4+ T cells (CD19−, CD20−, CD14−, CD3+, CD4+, 

CD8−, CD56−), CD8+ T cells (CD19− CD20−, CD14−, CD3+, 
CD4−, CD8+, CD56−), and monocytes (CD3−, CD14+) subsets  
from 4 healthy controls and 8 age- and sex-matched early RA 
patients were flow-sorted (BD FACSARIA II, Becton Dickinson, 
NJ, USA) following staining with the following antibodies: CD3- 
BV786 (UCHT1), CD4-PECy7 (RPA-T4), CD8-PE (HIT8a), 
CD19-APC (HIB19), CD20-APC (2H7) (all from Biolegend) with  
CD11c, CD1c, CD123, CD14, HLA-DR, and CyStain® as previously  
listed. Florescence minus one was used for gating and median 
fluorescence intensity was determined to quantify cell surface 
expression.

Transcriptional analysis
Following homogenization (QIAshredder column, Qiagen, 
Germany), RNA was isolated from cell sorted pDC, CD1c+ 
DC, CD4+ T cells, CD8+ T cells, B cell, and monocyte lysates 
by Qiagen RNeasy Plus Micro Kit (Qiagen, Germany) as per 
manu facturer’s instructions. 50 ng of RNA from each was loaded 
onto a NanoString nCounter Human immunology V2 Panel 
chip (NanoString Technologies Inc., WA, USA) including 594 
immunology-related genes. An additional 14 genes were included 
in a customized chip modification to allow for cell specific quan-
tification of the IGS (Table S2 in Supplementary Material). These 
notably included ISG15, IFI6, OAS1, and IFI44L. The nCounter 
protocol was followed according to manufacturer’s instructions. 
CD27 transcript expression was examined in the pDC subset and 
compared with the B  cell compartment to exclude plasma cell 
contamination.

interferon gene signature
Whole blood RNA was isolated using the Tempus Spin RNA 
Isolation Kit (Tempus, ThermoFisher Scientific, MA, USA). RNA  
was reverse transcribed to cDNA using Superscript II (Thermo- 
Fisher Scientific, MA, USA). To quantify the expression of IRG 
MxA, IFI6, OAS1, ISG15, and IFI44L, gene specific primers were 
designed and Roche universal probe library used (Table S1 in 
Supplementary Material) to perform RT-PCR (Taqman gene 
expression master mix, ThermoFisher). The mean expression of 
these five genes was termed the IGS score. Patients were defined 
as exhibiting a positive IGS if their mean IRG expression was 
≥2 SDs above the mean healthy control IRG expression (53).

statistical and Data analysis
Univariate generalized linear models, Mann–Whitney U tests, 
one-way ANOVA (with Tukey’s post hoc analysis) and Wilcoxon-
signed rank tests were performed using GraphPad Prism (ver.  
5.0, San Diego, CA, USA), employing a significance threshold 
where α = 5%. Nanostring analysis was performed in R (v3.3.2), 
with packages from the Bioconductor repository. Differential 
expression analysis was performed with DESeq2, due to the data 
appearing to follow the negative-binomial distribution. Library 
scaling normalization was performed with DESeq2 prior to fitting 
the model, and differential expression was tested using the Wald-
Test. Statistical significance was accepted where genes FDR cor-
rected p values < 0.05 and fold change > 1.5. Ingenuity® Pathway 
Analysis (IPA®) was performed on differentially expressed genes 
(DEGs).
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resUlTs

Patient cohorts
Cohorts included 44 early RA patients and 30 healthy controls. 
Full demographical data are shown in Table 1A where there were 
significant differences in age and sex between the cohorts. Some 
early RA patients (n = 15) had DC parameters measured again 
at 1, 3, 6, and 12  months after initiation of DMARD therapy. 
Treatment included a single baseline intramuscular glucocor- 
ticoid injection (n =  13) and thereafter methotrexate monoth-
erapy (n = 9), hydroxychloroquine, sulfasalazine, or leflunomide 
monotherapy (n = 1 for each) and methotrexate with hydroxy-
chloroquine (n = 3). A further 8 early RA and 4 healthy controls 
(age and sex matched) were recruited for transcriptomic analysis 
(demographics, Table 1B).

pDc, cD1c+, and cD141+ Dc Peripheral 
Blood Frequency is reduced in early ra, 
Which is sustained into established 
Disease
Plasmacytoid DCs, CD1c+, and CD141+ DC frequency was 
compared across disease cohorts. We also examined DC number 
in our early RA cohort in relation to the whole blood lymphocyte 
count (×109/L). Equivalent data were not available for our healthy 
controls; however, there was a highly significant (p  <  0.0001) 
positive association between DC frequency and DC number in 
early RA patients (Figure S2 in Supplementary Material). We, 
therefore, focused on DC frequency data, which were available 
for both cohorts. There was no effect of age or gender on DC sub-
set frequencies (data not shown). All DC subsets had significantly 
reduced frequency in early RA compared with healthy controls 
(Figure 1A). When dividing the early RA cohort by serostatus, 
pDCs were significantly reduced in seropositive (either RF+ 
or anti-CCP+ or both) but not in seronegative (both RF− and 
anti-CCP−) early RA patients. CD1c+ and CD141+ DCs were 
significantly reduced in both seronegative and seropositive early 
RA patients compared with healthy controls (Figure 1B). There 
was no difference when examining RF or anti-CCP serostatus 
separately. Longitudinal DC frequency remained stable for all 
subsets from baseline during the 12  months after initiation of 
treatment (Figure 1C).

cD1c+ Dc but not pDc or cD141+ Dc 
Frequency inversely associates With 
Disease activity; cD141+ Dc Frequency 
inversely associates With the igs
Dendritic cell frequency was compared with early RA clinical 
phenotype. There was a significant inverse association between 
CD1c+ DC frequency and DAS-28-ESR, which was mainly 
driven by tender joint count and ESR; however, this was not seen 
with pDCs or CD141+ DCs (Figures 2A,B). Furthermore, there 
was no significant association between circulating cytokines  
IFN-γ, IL-6, IL-12 p70, TNF-α, IL-1β, IL-2, IL-13, IL-4, IL-10, and 
BAFF (data not shown) and DC frequency. This demonstrates 

that pDCs, CD1c+ DCs, and CD141+ DCs have a dis tinct 
relationship with disease activity, and this is independent of 
circulating pro-inflammatory cytokines. Due to pDCs’ marked 
IFN-I producing capacity and thus potential contribution to the 
IGS, we also compared DC frequency in IGS positive and nega-
tive early RA subtypes. There was no difference in either pDC or 
CD1c+ DC frequency between these early RA subtypes. However 
CD141+ DC frequency was significantly reduced in the IGS+ 
early RA cohort with a significant inverse association between 
CD141+ DC frequency and IGS score (Figures 2C,D).

in early ra cDc, but not pDc, have 
increased Baseline ccr7 and cD86 
expression but for all Dcs, some  
surface Markers of cell activation  
Fall With Disease Duration
We compared cell surface expression of CD40, CD86, HLA-DR, 
and CCR7 on DCs in early RA patients and healthy controls. 
These markers were chosen as they are implicated in DC 
maturation, such as antigen presentation and co-stimulation 
(CD40, HLA-DR, CD86) and DC migration (CCR7). There 
was no effect of age or gender on surface marker expression 
(data not shown). CD1c+ DCs and CD141+ DCs had signifi-
cantly increased cell surface expression of CCR7 and CD86 in 
early RA compared with healthy controls and CD141+ DCs 
also had increased expression of HLA-DR but neither had 
any difference in CD40 expression. Serostatus did not appear 
to impact on surface marker expression (Figures  3B,C). 
pDC phenotype was comparable between disease and health 
(Figure  3A), but there was significantly increased CCR7 
expression on seropositive compared with seronegative early 
RA pDCs. Given the association between CCR7 and lym- 
phocyte trafficking, we examined DC frequency and CCR7 
exp ression in seropositive early RA patients. An inverse trend 
was seen for pDCs (p = 0.059) but not for cDCs (Figure 3D). 
Finally, there was no significant association between DC pheno-
type, dis ease activity, or the IGS (data not shown).

We subsequently studied pDC and cDC phenotypes in an early 
RA cohort longitudinally at baseline and at 1, 3, 6, and 12 months 
after diagnosis. There was a significant and sustained fall in pDC 
HLA-DR, CD40, and CD86 surface expression at 12  months 
but CCR7 expression remained static (Figure  3E). Both cDC 
subsets had significantly reduced HLA-DR and CD40 expres-
sion at 12 months but comparable CD86 and CCR7 exp ression 
(Figures 3F,G). Overall, these data suggest that, in early RA, both 
cDC subsets are relatively activated at baseline and for all DCs 
parameters of maturation fall as disease becomes established and 
treated.

healthy control and early ra Peripheral 
Blood pDcs have comparable iFn-α and 
iFn-λ Transcript levels When compared 
With Other circulating lymphocytes
Plasmacytoid DCs are the primary IFN-I producing cell subtype 
but the relative contribution of both IFN-I and pDCs to IGS 
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TaBle 1 | Patient demographics.

a

Patient cohort N age (years)  
median  
(range)

M:F ratio Das-28 
median 
(range)

crP mg/l  
median  
(range)

esr mm/h 
median  
(range)

rF+ and/or 
anti-ccP+  

(n, %)

TJc 
median 
(range)

sJc 
median 
(range)

Patient Vas 
median 
(range)

symptom 
duration 
weeks 
median 
(range)

eMs 
mins 

median 
(range)

eRA 44 57 (33–84) 3:4 4.49 (1.4–76) 9 (4–114) 25 (5–76) 34 (77%) 5 (0–20) 3 (1–24) 52 (8–100) 14 (3–52) 60 (0–360)

HC 30 37 (23–62) 3:2 – – – – – – – – –

p-Value± – 0.002 0.01 – – – – – – – – –

B

era hc Difference  
between igs+,  

igs− era, and hc 
cohortsa

Difference  
between igs+  

igs− era  
cohorts±

igs+ igs− all era

Number (n) 4 4 8 4 – –

Age (years) median (range) 56(49–64) 54.5 (53–60) 55 (49–64) 53 (48–62) p = 0.905 p = 0.771

M:F ratio 3:1 3:1 3:1 1:1 p = 0.750 p = 0.847

Median IGS Score 0.001156 0.000203 0.00071 0.000198 p = 0.0003 p = 0.028

DAS-28 median (range) 3.4 
(2.63–4.28)

4.38  
(1.63–6.18)

3.71 
(1.63–6.18)

– – p = 0.689

CRP mg/L median (range) 6 (4–11) 7.5 (4–56) 7 (4–56) – – p = 0.661

ESR mm/h median (range) 17 (2–33) 26 (7–56) 22.5 (2–56) – – p = 0.384

A. Early rheumatoid arthritis (RA) and healthy control cohorts’ demographics shown. Mann–Whitney U tests performed between the cohorts where applicable. B. Flow cytometry cell sorting was performed on 8 early RA patients and 4 
healthy controls. The early RA patients were further split into 4 IGS+ and 4 IGS− patients. Respective demographics for each are shown.
aOne-way ANOVA and ±Mann–Whitney U tests used.
Significant p values (<0.05) are shown in bold.
DAS-28, disease activity score-28 (ESR); EMS, early morning stiffness; eRA, early RA; HC, healthy controls; IGS, interferon gene signature; M:F ratio, male:female ratio; mins, minutes; SJC, swollen joint count; TJC, tender joint count; 
VAS, visual analog scale.
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FigUre 1 | Peripheral blood DC frequency is reduced in early rheumatoid arthritis (RA). (a) Peripheral blood plasmacytoid DCs (pDCs), CD1c+, and CD141+ 
dendritic cells were identified by flow cytometry and recorded as a percentage of the circulating lymphocyte population in early RA patients (n = 44); and healthy 
controls (n = 30). Mann–Whitney U test. (B) The early RA cohort was further split into seropositive (RF+ and/or anti-CCP+) or seronegative (both RF+ and 
anti-CCP−). One way ANOVA with Tukey’s multiple comparison test. Horizontal lines depict median values. (c) pDC, CD1c+, and CD141+ DC frequencies were 
enumerated longitudinally in an early RA cohort (n = 15) at baseline and then 1, 3, 6, and 12 months after diagnosis. Each line represents an individual patient. 
Wilcoxon signed rank test. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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generation in early RA is unclear. Since all cells can produce 
IFN-I and some suggest a role for both IFN-II and IFN-III in IGS 
generation (54, 55), we examined, in early RA and healthy con-
trol cohorts, type I, II, and III interferon transcript expression in 
pDCs as well as in CD1c+ DCs, B cells, CD14+ monocytes, and 
CD4+ and CD8+ T cells. We found that type I interferons IFN-
α2 and IFN-β1 had comparable transcript expression between all 
the peripheral blood subsets. IFN-α1/13 expression in CD14+ 
monocytes was significantly reduced when compared with 
B cells and CD4+ T cells, although expression between the other 
cell subsets was comparable (Figure  4A). Type III interferons 
(IL-28, IL29) again showed comparable expression across the 
cell subsets, although lower expression of IL28A/B was detected 
in monocytes when compared with CD4+ T cells (Figure 4B). 
These transcript levels were comparable to, or just above those 
seen for the negative controls on each nanostring chip empha-
sizing their negligible production. However, type II interferons 
(IFN-γ) were predictably and significantly raised in the T cell 

compartment with high transcript levels detected (median 23.86 
transcript relative expression) but negligible expression in the 
other subsets (one-way ANOVA with Tukey’s post hoc analysis, 
data not shown). Given the role of IFN in generation of the IGS, 
we also compared the above transcripts after dividing the early 
RA co-hort by IGS (IGS+ vs IGS−). Unexpectedly IFN-I, IFN-II, 
and IFN-III transcript levels in all six lymphocyte subsets was 
comparable between IGS+ and IGS− early RA patients (one-
way ANOVA with Tukey’s post  hoc analysis, data not shown). 
Furthermore, for all lymphocyte subsets, linear regression did 
not demonstrate any significant association between the whole 
blood IGS score and IFN transcript level. Together, these data 
suggest that cir culating pDCs do not account for IFN-I or IFN-
III production in the circulation of early RA patients and thus 
may not underpin IGS generation. Finally, to compare cellular 
sensitivity to IFN and subsequent contribution to the IGS, the 
mean expression of five IRGs (MxA, ISG15, OAS1, IFI6, IFI44L) 
was examined in the above cell subsets in the IGS+ early RA 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


FigUre 2 | Only circulating CD1c+ DC frequencies inversely associate with disease activity and CD41+ DC but not pDC frequencies inversely associate with the 
interferon gene signature (IGS) (a) Plots depict linear regression of pDC, CD1c+ DC, and CD141+ DC frequency and disease activity (DAS-28-ESR) in early 
rheumatoid arthritis (RA) (n = 42). (B): Individual DAS-28-ESR components are examined with relation to CD1c+ frequency (linear regression) (c) Early RA 
patients (n = 39) peripheral blood DC frequency divided by IGS (positive n = 13 and negative n = 26). Horizontal lines depict median values. Mann–Whitney  
U tests. (D) Linear regression of CD141+ DC frequency and IGS score. DAS-28, disease activity score 28; ESR, erythrocyte sedimentation rate; SJC, swollen 
joint count; TJC, tender joint count; VAS, visual analog scale.
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cohort. There was no significant difference in expression between 
subsets (one-way ANOVA with Tukey’s post hoc analysis, data 
not shown).

Differential gene expression Between ra 
Patients and healthy controls Observed 
for Both pDcs and cD1c+ Dcs
To examine DCs in more depth, we examined the transcriptome 
of pDCs and CD1c+ DCs from early RA patients and compared 
these with age and sex-matched healthy controls (Full data set 
Table S3 in Supplementary Material). Data sets were interrogated 
for significantly DEGs between cohorts. We found that the 
transcriptome of DCs was significantly different in early RA with  
12 pDC DEGs and 22 CD1c+ DC DEGs observed. Table  2 
illustrates these DEGs.

To seek differentially regulated specific pathways, we used 
IPA®, a powerful analysis tool for the integration and interpreta-
tion of transcriptomics data. This demonstrated increased invol-
vement of pathways linked to proliferation/expansion in early RA 
pDCs (p = 1 × 10−9, Z-score 2.17, genes involved: CSF1R, IFNAR1, 
IL6R, IL6ST, MAPK14) and CD1c+ DCs (p = 1.77 × 10−11, Z-score 
2.76, genes involved BCL3, BTLA, CCR6, ICOSLG, IKZF1, IL6R,  

IRF8, TNF), although this was more marked in CD1c+ DCs 
where they also showed reduced apoptosis (p = 2.09 × 10−9, Z- 
score 2.27, genes involved: BCL3, CASP3, CASP8, CDKN1A, 
ICOSLG, IL6R, IRF8, MAPK14, TNF).

When examining individual DEGs, pDCs in early RA had 
markedly upregulated CSF1R and PRDM1 transcripts (fold 
changes > 2.5) and downregulated TNFRSF17 (fold change > 2). 
Processes linked to inflammatory cytokine signaling were also 
differentially expressed, such as reduced IFNAR1 and IL6R. 
CD1c+ DC DEGs also had reduced IL6R as well as highly 
increased CDKN1A transcript (fold change +2.56) whereas 
BTLA, B, and T  lymphocyte attenuator, was the most reduced 
(fold change −2.24).

DiscUssiOn

We report for the first time an extensive examination of perip-
heral blood pDCs, CD1c+ DCs, and CD141+ DCs in early, drug 
naïve RA patients including the transcriptomic analysis of 600+ 
immunology-related genes in pDCs and CD1c+ DCs. Our data 
suggest distinct roles for DC subsets in early RA pathogenesis, 
an understanding of which may have important therapeutic 
implications.
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FigUre 4 | Type I, II, and III interferon mRNA transcripts in circulating lymphocyte subsets from early rheumatoid arthritis (RA) patients and healthy controls. 
(a) Type I IFN (IFN-α; IFNA2, IFNA1/13, IFNβ) and (B) Type III IFN (IFN-λ; IL18A, IL18A/B, IL29) mRNA transcripts as determined by NanoString nCounter 
technologies was compared across flow cytometry cell sorted pDC, CD1c+ DC, CD8+ T cells, CD4+ T cells, B cells, and CD14+ monocytes from age and sex 
matched early RA patients (n = 8) and healthy controls (n = 4). One-way ANOVA with Tukey’s multiple comparison test. Horizontal lines depict medians with error 
bars of interquartile range. *p < 0.05, **p < 0.01.

FigUre 3 | Plasmacytoid DCs (pDCs), CD1c+ DC, and CD141+ DC phenotype is different in early rheumatoid arthritis (RA) and changes with initiation of therapy. 
(a) pDC, (B) CD1c+ DC, and (c) CD141+ DC cell surface marker expression of CCR7, CD86, HLA-DR, and CD40 was quantified by flow cytometry [median 
fluorescence intensity (MFI)] in healthy controls (HC, n = 30) and early RA patients [n = 30–32; further split into seronegative (n = 5–7) and seropositive (n = 25) early 
RA]. Horizontal lines depict median values. Mann–Whitney U tests (D) pDC, CD1c+ DC, and CD141+ DC CCR7 MFI plotted (linear regression) against circulating 
DC frequency in all seropositive early RA patients (n = 25). (e) pDC, (F) CD1c+ DC cell, and (g) CD141+ DC surface marker expression was quantified in an early 
RA cohort (n = 15) at baseline and at 1, 3, 6, and 12 months after diagnosis. Each line represents an individual patient. Wilcoxon signed rank tests. *p < 0.05, 
**p < 0.01, ***p < 0.001.
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TaBle 2 | Differentially expressed genes between early rheumatoid arthritis (RA) 
and healthy control DCs.

gene Fold change adjusted p-value

pDc: early ra vs healthy controls

CSF1R 2.55301 0.0187
PRDM1 2.51656 0.0229
IRF4 1.98403 0.0389
CD164 −1.52003 0.0111
IL6R −1.60581 0.0251
MAPK14 −1.71980 0.0229
IFNAR1 −1.74364 0.0236
CD48 −1.81414 0.0024
IL6ST −1.90833 0.0221
TNFSF4 −1.92215 0.0276
CCR5 −2.05663 0.0180
TNFRSF17 −2.14310 0.0024

cD1c+ Dc: early ra vs healthy controls

CDKN1A 2.56050 0.0040
IFITM1 2.54504 0.0411
NFIL3 2.24282 0.0046
BCL3 2.18094 0.0329
ICOSLG 2.17833 0.0329
MAPK14 −1.55133 0.0444
ALAS1 −1.56951 0.0448
IL6R −1.57953 0.0081
CASP8 −1.59026 0.0323
TAGAP −1.59159 0.0182
IKZF1 −1.59483 0.0046
IRF8 −1.59866 0.0042
TRAF5 −1.60970 0.0329
PSMB5 −1.66194 0.0291
ITGA5 −1.66465 0.0011
POLR1B −1.73326 0.0329
FKBP5 −1.89383 0.0002
CASP3 −1.93814 0.0042
CCR2 −1.99854 0.0411
CCR6 −2.06347 0.0042
TNF −2.07198 0.0081
BTLA −2.24360 0.0042

Plasmacytoid DCs (pDCs) and CD1c+ DCs were flow cytometry sorted from early  
RA patients (n = 8) and age- and sex-matched healthy controls (n = 4). pDC and 
CD1c+ DC RNA was isolated and approximately 600 immunology-related genes’ 
transcripts were analyzed using NanoString nCounter technology. Genes achieved 
differential expression significance when adjusted p-value < 0.05 (FDR corrected) and 
fold change >1.5.
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Most investigations of the pathogenic role of pDCs in autoim-
munity are focused on their marked IFN-I-producing potential 
and its impact on B cell function. Indeed, sustained IFN-α pro-
duction from RA pDCs was sufficient to induce autoantibodies 
in vivo (29), and there is a high IGS in established RA synovial 
fluid (38, 56). We previously showed an increased IGS in early RA 
(44) and, when examining pDC and CD1c+ DC transcriptomes, 
we found increased expression of IRG, such as IFITMI or IRF4, 
supporting this observation. IFN-α has been shown to reduce 
IL6R expression in some cell lines (57), which is in keeping with 
our observation of reduced IL6R in both pDC and CD1c+ DC 
subsets. Furthermore, pDCs had reduced IFNAR1 expression, 
which is reduced upon ligation (58), again suggesting increased 
IFN-I signaling in the early RA cohort. However, when examin-
ing the relative contribution of each lymphocyte subset to the IGS 

as determined by five IRGs, there was no obvious subset where 
upregulation of these transcripts dominated. A previous study in 
RA examining three IRGs suggested that granulocytes may be 
the major contributor of the IGS although DCs were not exam-
ined in that study (59). There are thousands of potential IRGs, 
however (60), and their upregulation may be both ligand- and 
cell-dependent (61). Potentially, we did not examine the optimal 
IRGs to dissect a cell specific effect of IFN-I signaling or exposure.

Despite their IFN-I producing potential, we did not see asso-
ciation between peripheral blood pDC phenotype/frequency and 
the IGS in early RA. Type III interferons (IFN-III or IFN-λ) are  
also produced by pDCs and promote upregulation of genes nor-
mally associated with response to IFN-I (54, 62, 63). Furthermore, 
IFN-III are increased in RA and can associate with disease-specific 
antibodies (64, 65). However, pDCs had comparable IFN-I and 
IFN-III transcript levels to those in other circulating lymphocyte 
subsets, and these levels were independent of the background IGS.  
There are 13 IFN-α subtypes and expression of both IFN-α and 
IFN-λ subtypes are cell- and ligand-dependent (66), which may  
have contributed to these unexpected results, since we only exam-
ined two IFN-α transcripts (IFN-α2 and IFN-α1/13). Nonethe-
less, these data suggest that in early RA, circulating pDCs are not 
uniquely responsible for whole blood IGS generation by either 
IFN-I or IFN-III. Generation of IFN-I/III by pDCs may instead 
be primarily tissue-based, thereby highlighting the potential 
importance of migration and subsequent microenvironment on 
DC function. This is supported by the literature where pDCs are 
present in affected tissue, such as lupus nephritis or salivary tissue 
in Sjogren’s syndrome, where they locally produce IFN-I (67).

Unexpectedly, there was an inverse association between CD141+  
DC frequency and the IGS, which was independent of CD141+ 
DC phenotype and circulating cytokines. This is the first time 
that CD141+ DCs have been examined in the circulation of early 
RA patients, nonetheless, CD141+ DCs are not recognized for 
their IFN-I production. They do, however, produce IFN-II upon 
stimulation (68) as well as large amounts of interferon-λ (IFN-III) 
following stimulation with TLR3 ligands (69–71). In SLE, there 
has been a suggestion that there is a large IFN-II component to 
the IGS (55) and, as previously discussed, IFN-III can upregu-
late IRGs normally associated with IFN-I exposure (54). DC 
activation and IFN production may also upregulate chemokine 
receptors resulting in trafficking of the CD141+ DCs out of the 
peripheral circulation. This all raises the possibility that CD141+ 
DCs may play an important role in RA IGS generation.

Plasmacytoid DCs and CD1c+ DCs are known to be reduced  
in the peripheral circulation of established RA patients, par-
ticularly in those with active disease, where they migrate to the 
synovial compartment (25–27, 29, 31, 35, 38, 72). CD141+ DC 
circulating frequency in RA has not been previously compared 
with healthy controls, but we have demonstrated a reduced fre-
quency of all DC subsets in the circulation of early, drug-naïve RA 
patients, which was sustained up to 12 months. This emphasizes 
early involvement of these DC subsets in disease pathogenesis in 
keeping with previous observations in animal arthritis models 
where lymphatic CD1c+ DCs are important in breaching toler-
ance (24). Indeed, both CD1c+ DC and pDC transcriptomic 
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analysis suggested increased DC proliferation despite their re- 
duced frequency in the blood, supporting the suggestion of DC 
migration. Moreover, there was a further reduced pDC frequency 
in seropositive RA patients and these pDCs also had higher 
CCR7 expression, a key chemokine in promoting pDC migration  
(73, 74), which inversely correlated with pDC frequency. While 
CCR7 expression classically causes lymph node migration, its 
ligand, CCL19/CCL21, is significantly increased in the synovial 
fluid of RA patients (75) supporting the suggestion of early 
synovial pDC migration sustained into established RA. In keep-
ing with our observations, seropositive established RA patients 
have a higher frequency of synovial fluid pDCs than seronegative 
patients, which co-localize with B-cells in synovial tissue (26). 
Synovial pDCs produce IFN-I (26) and we, therefore, propose that 
CCR7-driven migration of pDC into the synovial compartment 
in seropositive RA patients precedes localized IFN-I production 
and, potentially, consequent autoantibody generation. This mir-
rors what is known about intra-articular CD1c+ DC function 
where the microenvironment modifies DCs and subsequent 
T cell activation, in a manner that is not necessarily observed in 
the periphery (17, 20–22).

There were distinct differences in how the DC subsets associ-
ated with disease activity. pDCs demonstrated a comparatively 
immature phenotype in early RA and their frequency did not 
associate with disease activity, supporting what has been reported 
in established RA (26, 29). In contrast, both CD1c+ DCs and 
CD141+ DCs had an activated phenotype although only CD1c+ 
DCs showed an association with disease activity, a relationship 
again replicated in established RA (29). These observations were 
further corroborated by the transcriptional data, which highligh- 
ted the potential tolerizing potential of pDCs that is being incre-
asingly appreciated in other disease states (76). Early RA pDCs 
were characterized by striking downregulation of TNFRSF17 
with upregulation of PRDM1 and CSF1R. TNFRSF17 (BMCA) 
is increased upon TLR engagement (77) and is expressed at high 
levels on pDCs from multiple myeloma patients, where there is  
pathogenic expansion of plasma cells (78). Reduced expression  
could, therefore, be predicted to have immunoregulatory conse-
quences. PRDM1 (BLIMP1) is increased in human pDCs in 
response to IFN-α and has been proposed as a mechanism to 
negatively control the production of effector cytokines, thereby 
skewing toward pDC tolerance (79). Notably, CD27 expression 
was minimal in the pDC cohort and markedly reduced compared 
with B  cells, excluding plasma cell contamination. CSF1R is a 
tyrosine kinase receptor that causes pDC differentiation and pro-
liferation (80–82). This pathway is also believed to be important 
in inflammatory macrophage differentiation. Blockers of CSF1R/
CSF1 have been trialed as a potential therapy for RA (83) although 
the only completed phase 2 clinical trial reported little clinical 
benefit (84). Potentially, these therapies could also affect pDC 
proliferation and thus abrogate any tolerogenic function, thereby 
compromising clinical outcomes. In contrast, when compared 
with healthy controls, the most differentially increased genes in 
early RA CD1c+ DCs were upregulated CKDN1a and down-
regulated BTLA. CKDN1a is associated with an inflammatory and 
potentially pathogenic phenotype in mouse DCs (18, 85). BTLA is 
important in DC skewing of T cells toward Tregs (86) and reduced 

expression has been linked to an inflammatory, potentially patho-
genic, monocyte-derived DC subset in RA (21, 22).

These findings are in agreement with current literature where 
CD1c+ DCs are likely to play a pathogenic role in RA (19, 20, 23);  
however, the role of pDCs in RA to date has been frequently con-
tradictory. On the one hand, pDCs from RA synovial fluid activate 
T cells and trigger the production of pro-inflammatory cytokines 
(38), and intra-articular transfer of activated pDCs propagated  
an inflammatory arthritis phenotype in mice (51). On the cont-
rary, mature peripheral blood pDCs from RA patients promoted 
differentiation of naive T  cells into IL-10-secreting Tregs (35). 
Furthermore, depletion of pDCs in a RA model resulted in breach 
of tolerance with development of autoantibodies (36) and in vari-
ous inflammatory arthritis models enhanced pDC recruitment 
and activation to the arthritic joints significantly eased arthritis, 
consistent with an anti-inflammatory or tolerogenic role (37). 
Our data go some way to resolving these apparently conflicting 
views, emphasizing the importance of anatomical microenviron-
ment and disease stage on pDC function. Indeed, pathological 
processes in early RA are known to be distinct from those that 
dominate later (87, 88), and we observed a significant change in 
pDC, CD1c+, and CD141+ DC phenotype after 12 months of 
disease. This is in keeping with published data where established 
RA patients (on immunomodulatory therapy) had reduced pDC 
maturation compared with healthy controls (28, 31).

Finally, the understanding of the role of CD141+ DCs in RA  
has been mainly derived from mouse equivalent DCs (CD8+ 
CD103+ CD11b− DCs) (89, 90), which accelerated the onset of 
CIA when adoptively transferred with CD4+ T cells (34). They 
have been examined once in established RA where numbers were 
enriched in the synovial compartment and demonstrated an acti-
vated phenotype (33). This supports our observation of reduced 
CD141+ DC frequency in blood, with increased HLA-DR and 
CD80 expression. This suggests that CD141+ DCs, despite their 
relatively small numbers when compared with other cellular 
subsets, may contribute to disease pathogenesis.

In conclusion, we simultaneously examined, for the first time 
in early RA, pDCs, CD1c+ DCs, and CD141+ DCs. While all 
DC subsets are reduced, CD141 +DC, but not pDC, frequency 
inversely correlated with the IGS and may be a hitherto unap-
preciated source of IFN-I. Furthermore, pDCs have similar 
levels of IFN-I and IFN-III mRNA transcripts as other major 
leukocyte subsets. Additional marked differences exist between 
the DC subsets with regards to activation and relationship with 
disease activity. These hint that pDCs may have, in the peripheral 
circulation at least, a more tolerogenic role when compared with 
CD1c+ DCs in early disease. Future work is, therefore, justified 
to compare synovial pDCs and cDCs with those in the circulation 
to further elucidate the effect of microenvironment and disease 
duration on DC function and, potentially, to expose novel thera-
peutic avenues and targets.
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FigUre s1 | Plasmacytoid DCs (pDCs), CD1c+ dendritic cells (DCs), and 
CD141+ DCs flow cytometry gating strategy. Gating strategy is shown to identify 
DCs from isolated PBMCs. pDCs, CD1c+ DCs, and CD141+ DCs were defined 
as CD19−CD20−CD3−CD203c−HLA-DR+CD14−CD1c−CD141− or dimCD11c− 
CD123, CD19−CD20−CD3−CD203c−HLA-DR+CD14−CD1c+CD141− or 
dimCD11c+ and CD19−CD20−CD3−CD203c−HLA-
DR+CD14−CD1c+CD141highCD11c−, respectively.

FigUre s2 | Plasmacytoid DC (pDC), CD1c+ DC, and CD141+ DC number 
and frequency in early RA whole blood. Plots depict early RA DC number 
(×106/L) and frequency (%) in the whole blood for (a) pDCs, (B) CD1c+ DCs, 
and (c) CD141+ DCs. Linear regression.
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