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Mononuclear phagocytes (monocytes, dendritic cells, and macrophages) are among 
the first host cells to face intra- and extracellular protozoan parasites such as trypano-
somatids, and significant expansion of macrophages has been observed in infected 
hosts. They play essential roles in the outcome of infections caused by trypanosomatids, 
as they can not only exert a powerful antimicrobial activity but also promote parasite 
proliferation. These varied functions, linked to their phenotypic and metabolic plasticity, 
are exerted via distinct activation states, in which l-arginine metabolism plays a pivotal 
role. Depending on the environmental factors and immune response elements, l-arginine 
metabolites contribute to parasite elimination, mainly through nitric oxide (NO) synthesis, 
or to parasite proliferation, through l-ornithine and polyamine production. To survive 
and adapt to their hosts, parasites such as trypanosomatids developed mechanisms 
of interaction to modulate macrophage activation in their favor, by manipulating several 
cellular metabolic pathways. Recent reports emphasize that some excreted–secreted 
(ES) molecules from parasites and sugar-binding host receptors play a major role in 
this dialog, particularly in the modulation of the macrophage’s inducible l-arginine 
metabolism. Preventing l-arginine dysregulation by drugs or by immunization against 
trypanosomatid ES molecules or by blocking partner host molecules may control early 
infection and is a promising way to tackle neglected diseases including Chagas disease, 
leishmaniases, and African trypanosomiases. The present review summarizes recent 
knowledge on trypanosomatids and their ES factors with regard to their influence on 
macrophage activation pathways, mainly the NO synthase/arginase balance. The review 
ends with prospects for the use of biological knowledge to develop new strategies of 
interference in the infectious processes used by trypanosomatids, in particular for the 
development of vaccines or immunotherapeutic approaches.
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TRYPANOSOMATiD iNFeCTiOUS 
DiSeASeS AND MACROPHAGe 
ACTivATiON PATHwAYS

infections Caused by Trypanosomatids
Trypanosomes and Leishmania parasites cause important but 
neglected infectious diseases in both humans and animals 
worldwide.

Sleeping sickness or human African trypanosomiasis (HAT) 
is an endemic parasitic disease exclusively located in intertropi-
cal Africa, caused by Trypanosoma brucei gambiense (Tbg, 95% 
of cases) and T. b. rhodesiense, transmitted by the tsetse fly (1). 
Related parasites, including T. b. brucei (Tbb), T. congolense,  
T. vivax, T. evansi, and T. equiperdum, cause wasting diseases 
in livestock, termed animal African trypanosomosis (AAT) or 
nagana, and are the cause of a few atypical cases in humans (2). 
HAT is a severe burden for poor rural populations (3, 4). The real 
number of infected people is most probably underestimated as 
published maps are the result of mathematical extrapolation of 
data recorded in only partial epidemiological surveys, a situation 
aggravated by wars and social conflicts (5–7). After a painful 
tsetse bite, the first clinical sign of HAT is the chancre at the bite 
site, which disappears within 2 or 3 weeks (1). The disease evolves 
in two distinct pathological stages. Within a few days after the 
tsetse bite, the patient enters the stage I also called hemolymphatic 
stage. Intermittent fever develops because of the successive waves 
of parasite replication in the blood. Adenopathies, splenomegaly, 
or even hepatological signs are frequent. The stage II or menin-
goencephalitis stage emerges slowly and insidiously over a period 
of months or years when the parasites invade the nervous system. 
The general signs of the hemolymphatic stage do not completely 
disappear, and the neurological symptoms develop progres-
sively in parallel. A wide variety of neurological symptoms are 
encountered. The main symptoms after which sleeping sickness 
was named are daytime somnolence and nocturnal insomnia. 
Staging relies on white cell counts and detection of trypanosomes 
in the cerebrospinal fluid and is indispensable as the treatment of 
stages I and II differs (8), and it was recently demonstrated that 
the parasite could persist in adipose tissue (9).

American trypanosomiasis, named Chagas disease in recogni-
tion of Carlos Chagas, who first discovered it in 1909, is mostly 
encountered in South and Central America. Infection primarily 
affects poor rural populations in Latin America and has serious 
consequences for public health. The disease develops following 
infection by the protozoan parasite Trypanosoma cruzi. The para-
site is mainly transmitted by the Triatomine vector also known 
as the “kissing bug” (10). The disease has two clinical stages. The 
initial acute stage lasts for about 2 months after infection, para-
sites circulate in the blood, but in most cases symptoms are mild 
or even absent. In less than 50% of people bitten by a bug, early 
characteristic clinical signs can be observed, such as skin lesion 
(chagoma) or unilateral edema in the eyelid (the sign of Romaña). 
T. cruzi proliferates actively in the infected individual and invades 
many types of host cell. The host immune response leads to a 
dramatic reduction in the parasite load. People then enter the 
chronic stage of the disease and remain asymptomatic for years. 

The patient shows evidence of immunity (antibodies to specific 
antigens of T. cruzi) but remains infected, and the immune system 
does not prevent disease progression to the chronic stage. Up to 
30% of patients suffer from cardiac disorders and up to 10% suffer 
from digestive (typically enlargement of the esophagus or colon), 
neurological, or mixed alterations (11). In later years, the infection 
can cause sudden death due to cardiac arrhythmias or progressive 
heart failure caused by the destruction of the heart muscle and its 
nervous system. Chagas disease can also be reactivated if patients 
in the chronic phase are immune compromised as in the case of 
coinfection with HIV or due to chemotherapy (10).

Leishmaniases are vector-borne neglected tropical diseases 
caused by different species of the Leishmania protozoan parasite. 
They represent a major public health problem worldwide, as they 
are present in 98 endemic countries. Besides humans, several 
mammals, often domesticated or wild canids, provide an addi-
tional zoonotic reservoir of infection, especially of L. infantum 
(12). Although most people infected by Leishmania sp. develop 
no symptoms, the clinical features include a wide range of symp-
toms depending on the species of Leishmania concerned and the 
immune response of each host. Cutaneous leishmaniasis, the most 
common form of the disease causes skin sores on the exposed parts 
of the body (13). The sores may start out as papules or nodules and 
end up as ulcers with a raised edge. When the ulcers heal, they 
leave permanent scars, often the cause of serious social stigma. In 
mucocutaneous leishmaniasis, the parasite spreads from the skin 
and causes ulcers in the mucous membranes of the nose (most 
common location), mouth, or throat, which can lead to partial or 
total tissue destruction (14). Visceral leishmaniasis, also known as 
kala-azar, is characterized by irregular fever, weight loss, anemia, 
and enlargement of the spleen and liver and results in death if 
untreated (12). Severe pancytopenia is observed, and parasites are 
found in bone marrow. HIV/AIDS patients are much more likely 
to develop VL, and once infected, VL accelerates AIDS (15).

Recent investigations report an increase in arginase activity 
in trypanosomatid-infected patients (16–19), and for instance, 
arginase activity is considerably higher in the blood of VL/HIV 
coinfected patients than in VL patients (20) or its age-related 
alteration impacts on disease severity (21).

excreted–Secreted (eS) Factors of 
Trypanosomatids and Macrophage 
Targeting
The excretory–secretory component is the primary interface 
between the parasite and its host and induces strong molecular 
crosstalk with its environment. Studies of naturally ES factors 
by microorganisms have dramatically increased in recent years, 
including viruses, bacteria, and parasites. The ES factors or 
secretome of trypanosomatids is a complex mixture of proteins, 
carbohydrates, and lipids excreted from the surface of the parasite 
or secreted through the flagellar pocket of the parasite and via 
exocytosis vesicles (22). The composition of this complex mixture 
is still largely unknown, despite the recent definition of an experi-
mental approach for the identification of conserved secreted 
proteins in trypanosomatids (23), but it has long been suspected 
of being important for the parasitic lifestyle (24).

https://www.frontiersin.org/Immunology/
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FiGURe 1 | Trypanosomatid modes of secretion and macrophage targeting. 
ES, excreted–secreted, ectosomes: ubiquitous microvesicles assembled at 
and released from the plasma membrane, and exosomes: nanovesicles 
released on the exocytosis of multivesicular bodies.
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For example, the whole secretome of Tbg was shown to be able 
to inhibit the maturation of dendritic cells (DCs) and the induc-
tion of lymphocytic allogenic responses (25). In addition, there is 
evidence for the involvement of diverse enzyme families, such as 
proteases and hydrolases, in different aspects of the pathogenesis 
in human hosts (26–28). Regarding HAT, the whole secretome of 
three different bloodstream strains of Tbg were analyzed using a 
proteomics-based approach, which enabled the identification of 
over 440 proteins, several of which were described for the first time 
(29). Moreover, the secretome molecular profile was associated 
with the virulence of the parasite in vivo (30). Similar studies were 
conducted in species responsible for animal trypanosomoses, 
particularly T. congolense and T. evansi (31, 32). They evidenced a 
core secretome and specificities in African trypanosomes affecting 
humans and those affecting animals. In addition, results obtained 
with Tbg were compared with both the glycosome and with the 
total proteome of a Tbb strain, highlighting the importance of 
protein isoforms between the parasite cellular metabolism and its 
corresponding ES molecules (29). Interestingly, a large proportion 
of the secreted proteins were found in vesicles displaying active 
exocytosis beyond the flagellar pocket. Trypanosomes of the 
brucei group produce nanotubes coming from the flagelle, which 
dissociate into vesicles. Vesicles from T. b. rhodesiense contain the 
serum resistance-associated protein, which can be transferred to 
Tbb leading to evasion to human innate immunity (33, 34). This 
new type of secretion could be crucial for the survival strategy 
of Trypanosoma by allowing them to exchange proteins at least 
between parasites and/or to manipulate the host immune system.

For T. cruzi, it was also evidenced that proteins are released 
via vesicles formed by at least two different mechanisms, larger 
ectosomes budding from the plasma membrane and smaller 
exosomes within the flagellar pocket (35). Proteomics enabled the 
identification of proteins involved in metabolism, signaling, nucleic 
acid binding, and parasite survival and virulence. The authors con-
cluded that T. cruzi uses different secretion pathways to excrete/
secrete proteins and that infective forms of the parasite may use 
the extracellular vesicles to deliver cargo to the host cells (35).  
A recent comparative proteomic analysis demonstrated both com-
mon and specific proteins in the secretomes from two  different 
T. cruzi strains, highlighting, similar to African trypanosomes, 
a plasticity probably associated with the parasite virulence (36).

Exosome-like microvesicles were also evidenced in L. donovani. 
Proteomics revealed a large majority of known eukaryotic exo-
somal proteins in the conditioned medium of cultured parasites 
(37). These proteomics results were extended to L. braziliensis, 
for which only 5% of the identified secreted proteins presented 
a classical secretion signal (38). Interestingly, these exosome-like 
vesicles were further shown to be involved in the communication 
with macrophages and immune modulation (39) and could be 
involved in immune evasion (40). Of importance, Leishmania 
exosomes presented mainly pro-parasitic activities, both in vitro 
and in vivo, functionally priming host cells in the first moments 
of the infection (41) or in the establishment of the disease (42). 
Moreover, L. infantum secretes various molecules that modulate 
human DC differentiation and functions (43).

Among the functional classes of ES factors, the group of 
unfolding and degradation proteins, mainly proteases, deserves 

the most attention. They cover a large panel of physiological and 
pathological functions, and representatives of this group are known 
to be virulence factors, to favor parasite invasion and its growth 
in the hostile host environment, to make it possible to escape the 
host immune defenses, and/or, finally, to produce nutrients by 
hydrolyzing host proteins (44–47). In addition, trypanosomatids 
can use at least four secretory systems to sequentially deliver 
factors to modulate macrophage response and consequently the 
response of the immune system as a whole; the classical signal 
peptide-mediated system as well as bacterial-type secretion sys-
tems that export proteins directly into the host environment, and 
two vesicular systems, including ectosomes and exosomes. These 
extracellular vesicles are specifically released by trypanosomatids 
to deliver signals to the target cells. Aside from considerable 
differences in content and morphology, with some ubiquitously 
assembled and released from the plasma membrane while others 
are released during exocytosis of the multivesicular bodies, the 
functions of ectosomes are largely analogous to those of exosomes 
(48). The study of these extracellular vesicles and their impor-
tance in biological communication is in full swing (49, 50), even 
using a philosophical approach (51), which could be appropriate 
in the case of parasites such as trypanosomatids (33, 34, 52). 
Interestingly, the different modes of secretion can also interact in 
different ways with the macrophage: via receptor–ligand interac-
tions (free proteins and ectosomes), endocytosis (free proteins 
and ectosomes), phagocytosis (exosomes), or by direct fusion 
with the plasma membrane (Figure 1).

Macrophage Activation Pathways
Classical Versus Alternative Activation Pathway
The main function of macrophages is to react to external stimuli, 
including pathogens and particularly their ES factors, to inform 
the host’s immune system, and to modulate the corresponding 
response. The functional properties of macrophages make it 
possible to distinguish different phenotypes of subpopulations 
(53). Depending on the type of cell, the cytokines and pathogens 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


FiGURe 2 | Macrophage activation pathways in trypanosomatid infections. T-cell subsets potentiating M0 macrophage differentiation into M1 or M2 subtype; Th, 
helper T lymphocyte; IFN-γ, interferon-γ; IL, interleukin. Host cell receptors involved in trypanosomatid detection: C-lectins and toll-like receptors (TLRs). Phenotypic 
markers and cytokines of macrophage polarization: cluster of differentiation (CD) 38, Egr2, early growth response protein 2; TNF-α, tumor necrosis factor; TGF-β, 
transforming growth factor. Products of macrophage polarization influencing the death or growth of trypanosomatids; NO, nitric oxide.
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present at the infection site, unpolarized macrophages (M0) can 
differentiate into classically activated M1 macrophages or alterna-
tive activated M2 macrophages. The two macrophage subpopula-
tions express different surface receptors and produce specific sets of 
cytokines or chemokines (54, 55). M1 are potent pro-inflammatory 
cells, with high microbicidal activity [e.g., expression of antigen 
presentation molecules (MHC II) and co-stimulation molecules 
(CD40 and CD80/86), secretion of tumor necrosis factor (TNF)-α, 
interleukin (IL)-12, and activation of nitric oxide synthase (NOS) 
2], while M2, which have moderate anti-inflammatory properties 
(e.g., secretion of IL-10 and high levels of arginase-1), are poorly 
microbicidal and are involved in tissue repair (56, 57). Although 
it is difficult to find specific phenotypical markers to delineate 
M0, M1, and M2 macrophages, recent findings in mouse pro-
vide evidence that some surface markers can be considered as 
representative of each subtype of macrophage, such as CD38 
for M1 and early growth response protein 2 for M2 (58). Taken 
together, the cytokine pathways, nitric oxide (NO) and polyam-
ine levels, may explain why there is more than a simple duality 
of microbicidal/pro-inflammatory properties versus cell growth/
anti-inflammatory properties in the macrophage subpopulations 
(59, 60). Actually, M1 and M2 phenotypes often coexist, and other 
terms have emerged to identify non-classical activation pheno-
types such as M2a or M2b, the latter representing alternative 
activated macrophages that express small amounts of arginase 1 
(56). The resulting mixed phenotype then depends on the balance 
between activator and inhibitor activities and the tissue environ-
ment, thereby determining the outcome of the infection (61, 62), 
particularly during trypanosomatid infections (Figure 2). Thus, 
the role of macrophage activation stimuli needs to be considered 
in the dynamic complexity driven by trypanosomatid parasites 

and particularly their ES factors (Figures 2 and 3), as well as a 
function of the host (63).

l-Arginine Metabolism Balance and T-Helper Subsets
Mammalian arginine metabolism is complex as this semi-essential 
amino acid is a substrate for many enzymes that may compete 
with each other (64). The dual role of l-arginine metabolism, its 
regulation by T cells, and alterations of l-arginine metabolism by 
pathogens were recently reviewed (65). Parasites and particularly 
Leishmania and trypanosomes are highly sensitive to the l- 
arginine-NO pathway (Figure 3). For instance, L. major infection 
in mice established the paradigm of Th1 and Th2 subset roles 
(66), a Th1 response being associated with IFN-γ production and 
NOS 2 expression, whereas a Th2 response being associated with 
IL-4 production and arginase 1 expression (67, 68). Interestingly, 
it has been demonstrated that a deprivation in l-arginine impairs 
L. major-specific T-cell responses (69). T-cell deficiency associ-
ated with l-arginine depletion has been evidenced in cancer and 
in infectious diseases including T. cruzi infection. A decrease 
in cyclin-dependent kinases essential for the cell cycle, the 
downregulation of T-cell receptor z chain, has been shown to be 
implicated in T-cell anergy (70).

The low levels of l-arginine and NO in macrophages lead 
to various RNI, such as peroxynitrites that can not only diffuse 
around macrophages and kill extracellular infectious agents and 
intracellular pathogens in adjacent cells but also induce the nitra-
tion of various proteins and are involved in the pathogenesis of 
various infections including leishmaniasis and trypanosomiasis 
(71–73). Products of NOS and NAPH oxidase in classically 
activated macrophages can react, leading to S-nitrosylation 
in protein resulting in the death of extracellular parasites and 
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FiGURe 3 | Macrophage polarization, T-helper subsets, and l-arginine metabolism. Th, helper T lymphocyte; IFN-γ, interferon; IL, interleukin; NO, nitric oxide; ROI, 
reactive oxygen species; RNI, reactive nitrogen species.
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through transnitrosylation can affect various targets in host cells, 
mainly molecules with Fe–S clusters, activating or inactivating 
various cell functions (74, 75). Arginase modulates NO produc-
tion in activated macrophages (76), what is essential in infections 
by trypanosomatids, as arginase activity may be involved in NOS 
activity impairment by competing for l-arginine and reducing 
macrophage microbicidal activity (77). Moreover, arginase 
hydrolyzes l-arginine to l-ornithine that favors parasite growth 
and is a precursor for the synthesis of l-glutamine, l-proline, and 
polyamines. Polyamines are key regulators of cell growth and dif-
ferentiation (78) and essential in trypanosomatids’ antioxidant 
defense, which rely on trypanothione, an unusual spermidine–
glutathione conjugate (Figures 2 and 3).

MACROPHAGe l-ARGiNiNe MeTABOLiSM 
DYSReGULATiON DURiNG 
TRYPANOSOMATiD iNFeCTiONS

NOS/Arginase imbalance induced by 
Trypanosomatids
Parasite Infection in the Dysregulation of the  
NOS/Arginase Balance
Several pathways regulate l-arginine metabolism, of which 
three are of interest in the context of trypanosomatids: first, in 

response to infection cleavage into citrulline and NO by the 
enzyme NOS, which is harmful since the produced NO is toxic 
for these parasites. Second, cleavage of arginine into ornithine 
and urea catalyzed by arginase, which favors trypanosome 
development as ornithine is a nutrient for trypanosomatids, and 
third, phosphorylation, in the presence of ATP, into Nω-phospho 
l-arginine by the arginine kinase, which allows storage of energy 
that can be delivered on demand, thanks to the reversibility of 
the reaction (arginine + ATP ↔ phospho-arginine + ADP), thus 
regulating energy homeostasis and contributing to trypanoso-
matids survival (79–81). Escaping toxic NO production requires 
either prevention of the activity of the NOS or a reduction in the 
availability of l-arginine, which may occur when several enzymes 
compete for this common substrate (77, 82).

Two arginase isoforms (arginase 1 and 2) have been identi-
fied in mammalian hosts so far, with a differential expression 
depending on tissues and cells (83, 84). Arginase activity of 
pathogens themselves interferes and competes in host l-arginine 
pathways. For instance, arginase from Helicobacter pylori inhibits 
NO production by eukaryotic cells (85). Arginase 1 and ornithine 
decarboxylase (ODC) are both located in the cytosol, facilitating 
polyamine synthesis from l-ornithine. Arginase 2 is a mito-
chondrial enzyme that could preferentially enhance l-proline 
or l-glutamate synthesis from l-ornithine because ornithine 
aminotransferase is also located in the mitochondria. However, it 
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has been shown that l-proline can be converted into l-ornithine, 
which can be transported from the mitochondria to the cytosol 
(86). Both arginases 1 and 2 have been reported to regulate poly-
amine synthesis (87).

Trypanosomes belonging to the brucei group were the first 
parasites in which the role of host arginase induction favor-
ing infection was evidenced (77). Considerable expansion of 
macrophages has been reported in the liver, spleen, and bone 
 marrow of infected mice (88), and the presence of NOS 2 has 
been demonstrated in these cells. However, in infected mice, 
parasites proliferate in the vicinity of macrophages in the 
peritoneal cavity, suggesting that the efficiency of NO-dependent 
cytotoxicity is limited in  vivo even though NOS 2 was active 
in vitro. Actually, a decrease in plasmatic l-arginine was meas-
ured in Tbb-infected mice compared to controls. An increase in 
arginase activity was observed in peritoneal macrophages from 
the first days of Tbb infection. Intraperitoneal NO production 
and NO-dependent parasite killing were restored by intraperi-
toneal injection of l-arginine. The early increase in arginase 
production in trypanosomiasis is a way for parasites to avoid the 
antimicrobial effect of RNI and to benefit from the larger quanti-
ties of l-ornithine that are necessary for parasite growth (77). As 
expected, arginase activity and arginase 1 and arginase 2 mRNA 
expression were demonstrated to be higher in macrophages in 
“trypanosusceptible”-infected BALB/c compared with those in 
“trypanoresistant” C57BL/6 mice (89). The high level of arginase 
activity in Tbb-infected BALB/c macrophages strongly inhibited 
macrophage NO production, which in turn resulted in less 
trypanosome killing compared with C57BL/6 macrophages. NO 
generation and parasite killing were restored when arginase was 
specifically inhibited (89). Similarly, Tbg field stocks isolated 
from patients, which did not display apparent genetic variability 
but marked differences in virulence (capacity to multiply inside 
a host) and pathogenicity (ability of producing mortality), were 
observed in experimental murine infections. Two strains exhibit-
ing opposite pathogenic and virulence properties in mouse were 
further investigated through their host–parasite interactions.  
In vitro, bloodstream forms and corresponding secretomes from 
both strains induced macrophage arginase as a function of their 
virulence (30). Moreover, infection of mice with T. musculi express-
ing Nippostrongylus brasiliensis acetylcholinesterase resulted in 
early parasite blood clearance. It was associated with elevated 
NO production and lowered arginase activity, a characteristic of 
a modified NOS2/arginase balance (90).

Arginase 1 induction in macrophages is used by Leishmania 
species to spread inside the host, as polyamines are key elements 
of parasite growth (91). The proliferation of amastigotes is trig-
gered by IL-4, IL-10, and transforming growth factor (TGF)-β via 
arginase 1 induction in macrophages leading to the generation of 
the polyamines required for parasite replication. On the contrary, 
the cytokine IL-12 plays an essential role in the initiation of 
adaptive responses and production of IFN-y, which is required to 
eliminate Leishmania parasites. Interestingly, it has been reported 
that L. mexicana promastigotes can activate an MAP kinase 
through a toll-like receptor (TLR)-4-dependent mechanism, to 
induce COX-2 and NOS 2 expression thereby downregulating 
IL-12 production (92). High splenic arginase 1 expression has 

been measured in an experimental model of visceral leishmaniasis 
caused by L. donovani. This detrimental activation pathway 
depended on the parasite-induced activation of the transcrip-
tion factor STAT6, but in contrast to the previously accepted 
paradigm, did not require (but was amplified by) the presence of 
polarized Th2 cells or type 2 cytokines (93). Inhibition of arginase 
reduced the number of parasites and delayed disease outcome 
in BALB/c mice, while treatment with l-ornithine increased the 
susceptibility of C57BL/6 mice (94). The treatment of L. major-
infected macrophages with Th2 cytokines (IL-4 and IL-10) or with 
TGF-β, which are all inducers of arginase 1, led to a proportional 
increase in the number of intracellular amastigotes, supporting 
the hypothesis that host arginase activity favors the spread of the 
parasite. Cell division of the parasite depends crucially on the 
level of l-ornithine available in the host (95).

T. cruzi killing by classically activated macrophages is 
counteracted by alternative activation, which enhances B7.2 
expression, IL-10 and TGF-β production, and arginase induc-
tion (96). Macrophages are insufficiently activated in an inflam-
matory phenotype in response to T. cruzi infection, because  
T. cruzi inhibits the activation of the glycolytic pathway and the 
oxidative/nitrosative response in macrophage. Both arginase  
1 and 2 were induced in heart tissues from T. cruzi-infected mice, 
and NOS 2 and arginase 2 were expressed by cardiomyocytes. 
Interestingly, heart-infiltrated CD68+ macrophages were the 
main cell type that expressed arginase 1 (97). Cruzipain, a major 
parasite antigen, was shown to induce arginase 1 expression in 
J774 cells, and the pretreatment of cruzipain-treated cells with 
N-omega-hydroxy-l-arginine (an arginase inhibitor) led to a 
dramatic reduction in amastigote growth. Macrophages with 
elevated arginase 1 activity, induced by either IL-4 or the T. cruzi 
component cruzipain, favored parasite replication and blocking 
arginase 1 restricted parasite growth (98).

Trypanosomatid Parasites ES Factors in Arginase 
Induction
T. b. brucei parasites were found to induce arginase activity in 
myeloid cells from non-infected mice, and activity was main-
tained when myeloid cells and trypanosomes were separated by 
a cell-retaining insert, indicating that soluble components from 
trypanosomes were involved. Tbb ES, prepared under conditions 
leading to no detectable trypanosome death, triggered argi-
nase activity, but the effect was stopped by ES heat treatment. 
Monoclonal antibodies were raised against Tbb secretome and, 
interestingly, inhibited arginase activity induced by ES. The 
ES fraction, eluted after affinity chromatography, retained full 
arginase-inducing activity, confirming that this activity was 
directly targeted by an ES-specific antibody. The antibody was 
used to screen a cDNA expression library and identified the 
Tbb arginase-inducing protein: a kinesin heavy chain isoform 
(TbKHC1) (99). The secretome from TbKHC1 KO parasites did 
not trigger arginase activity in myeloid cells from non-infected 
mice, but the recombinant (r)TbKHC1 mimicked the arginase-
inducing effect of secretome. Coincident with the induction of 
arginase activity, the secretome caused myeloid cells to express 
the regulatory cytokine IL-10. The arginase activity induced by 
ES was inhibited by a neutralizing anti-IL-10 antibody. The first 
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peak of parasitemia in mice infected by TbKHC1 KO trypano-
somes was reduced by >70% compared to wild-type parasites. 
A  reduced TbKHC1 KO parasite load has also been observed 
under natural infection conditions in which infected tsetse flies 
were allowed to feed on mice (99).

Host mammalian macrophages are not only the main host 
cells but are also the main effector cells for Leishmania parasite 
killing and can be activated via two major pathways resulting 
in classical and alternative activated macrophages. Leishmania 
parasites partly activate arginase and inactivate the NO produc-
tion by the host cells and enhance parasite survival via depletion 
of the NOS 2 substrate (l-arginine) and reduce NO levels. LPG, 
the main promastigote glycoconjugate, plays an essential role 
in promastigote adhesion to macrophages, rapidly fusing with 
lysosomes, transiently inhibiting phagosome maturation and 
generating a parasitophorous vacuole that maintains an acidic pH 
and hydrolytic activity, what provides enough time for promas-
tigotes to differentiate into more hydrolase-resistant amastigotes 
(100). The replicating amastigotes produce glycoconjugates that 
are secreted or linked to the cell surface, such as GIPLS and 
proteophosphoglycan (PPG), and protect parasites from proteo-
lytic damage (101). In parallel, it was reported that Leishmania 
parasites release increased amounts of exosomes following a shift 
in temperature, which strongly affect macrophage cell signaling 
and functions in a pro-inflammatory way to recruit neutrophils 
that exacerbate the pathology (42). PPG and lipophosphoglycan 
can facilitate the parasite survival inside the macrophages by 
inhibiting NOS 2 and enhancing arginase expression. During the 
infection, cathepsin B exported in L. donovani exosomes could 
activate TGF-β1, leading to macrophage alternative activation 
and enhanced parasite survival, in an arginase 1-mediated way. 
To regulate parasite population, L. infantum eukaryotic initiation 
factor, an exosomal protein, inhibits parasite growth through the 
production of TNF-α, which induces microbicidal activity by 
stimulating NO and reactive oxygen species (ROS) production 
(102). Infected sand flies regurgitate a proteophosphoglycan gel 
(PSG) synthesized by the parasites in the sand fly midgut, which 
can exacerbate cutaneous leishmaniasis. PSG was shown to 
rapidly recruit macrophages to the dermal site of infection and to 
enhance alternative activation and arginase activity of recruited 
macrophages, thereby increasing l-arginine catabolism and the 
synthesis of polyamines essential for the parasite (103).

In Chagas disease, an induction of the arginase pathway could 
be used by T. cruzi to spread inside the host (104). Interestingly, 
different proteins related to similar functions have been evidenced 
in the exoproteome of T. cruzi, suggesting that the invasive strat-
egy of the parasite is based on enhanced mechanisms dedicated 
to interaction, invasion, and dysregulation of host target cells, 
especially macrophages (105). Among the proteins secreted, 
cruzipain, the primary secreted lysosomal peptidase in T. cruzi, 
has been shown to induce a Th2 response and to stimulate activa-
tion of the macrophage arginase metabolic pathway, associated 
with a decrease in macrophage NO production (98, 106). P21 is 
a secreted protein expressed in all the developmental stages in 
the T. cruzi lifecycle and may play an important role in parasite 
internalization (107). Interestingly, recombinant P21 upregulated 
phagocytosis of different trypanosomatids in macrophages in a 

CXCR4-binding-dependent manner (108) and triggered the 
PI3K-AKT-mTORC1 signaling pathway that has been shown to 
mediate polarization into M2 macrophages (109). Actually, all 
factors ES by T. cruzi appear to have convergent effects toward 
arginase activation to prevent aggression and promote parasite 
growth (110).

Trypanosomatid Parasites’ Own l-Arginine 
Metabolism enzymes
Interestingly, in addition to ES that influence the host’s NOS/
arginase balance, trypanosomatids also have several enzymes 
related to l-arginine metabolism, including arginase. However, 
Leishmania arginase alone is insufficient for parasite growth 
(111), despite it has been shown to be active in parasites isolated 
from patients (112) and seems to be associated with pathogenicity 
of the species (113). These enzymes have been shown to consume 
host l-arginine thereby directing host metabolism to the argi-
nase pathway, which favors parasite development (Figure  4). 
Curiously, the role played by trypanosomatids’ arginase has only 
recently been considered to be involved in the establishment of 
infection in macrophages and in the immune response of the 
host (114). l-Arginine is an essential amino acid for Leishmania 
(115), as l-arginine deprivation or uptake determines parasite 
death or survival (116, 117). Induction of l-arginine transport 
is crucial, and to respond to l-arginine depletion in macrophage, 
among other transporters, L. donovani upregulates the expression 
and activity of a high affinity arginase specific transporter (118). 
Furthermore, in L. amazonensis-infected macrophages, parasite 
arginase downregulates NOS expression and favors Leishmania 
growth (119). Moreover, Leishmania parasites can modulate their 
own NOS-like/arginase balance (120), for instance by sensing 
available l-arginine and regulating its uptake (121). In T. cruzi, 
formiminoglutamase has been characterized as an arginase-like 
enzyme (122), and in Leishmania the crucial role of arginase 
depends on the developmental stage of the parasite (123), which 
adds to the complexity of modulating l-arginine metabolism 
by trypanosomatids. In African trypanosomes, arginase has 
only been identified in proteome, whereas arginine kinase has 
been detected as soluble and constitutive isoforms (29, 124). In 
addition, an arginine N-methyl transferase has been detected 
and reported to play an important biological role as it is involved 
in the methylation of over 800 proteins in Tbb (125, 126). 
Interestingly, arginine kinase and arginine N-methyl transferase 
genes were overexpressed in Tbg isolated from tsetse flies (127), as 
if targeting l-arginine were a metabolic key in the developmental 
life cycle of African trypanosomes. l-Arginine transporters were 
also defined as essential for trypanosomes (128). Differences in 
arginase subcellular locations between Tbb and in T. cruzi have 
been reported (129, 130), but their biological significance remains 
to be determined. Finally, besides arginase, two other enzymes 
from trypanosomatids compete with host enzymes for the same 
substrate, l-arginine.

Another crucial pathway deserves to be mentioned: the 
polyamine–trypanothione pathway, which is also connected to 
l-arginine metabolism and is unique to trypanosomatids (131).  
The biosynthetic sequence includes the following major 
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catalyzing steps: arginase (l-arginine ⇒ urea + l-ornithine), ODC  
(l- ornithine ⇒ putrescine), spermidine synthase [decarboxylated 
S-adenosyl methionine (produced by the S-adenosylmethionine 
decarboxylase)  +  putrescine  ⇒  spermidine], and as a final 
step, the trypanothione synthase catalyzes the biosynthesis of 
trypanothione from glutathione and spermidine (131–134). 
Trypanothione is of crucial importance as this compound, which 
is specific of trypanosomatids, is mainly involved in detoxifying 
ROS, free radicals, and, more generally, in combating various 
kinds of stress that occur during the parasite’s lifespan. Thus, for 
example, parasites lacking trypanothione reductase were shown 
to be avirulent and susceptible to oxidative stress (135). Of inter-
est is the fact that most of the enzymes involved in trypanothione 
metabolism were identified in ES of Tbg: S-adenosyl-methionine 
synthase, spermidine synthase, trypanothione synthase-amidase, 
trypanothione reductase, and tryparedoxin peroxidase. The total 
proteome was shown to contain, in addition to the enzymes cited 
above, ornithine carboxylase that together with the arginase also 
identified in the total proteome insures the connection between 
the strict arginine pathway and the trypanothione pathway (29). 
In T. cruzi, some of the enzymes involved in trypanothione 
metabolism were also identified in the secretome (36). In 
Leishmania, enzymes secreted in the trypanothione pathways 
were shown to directly participate in parasite virulence and in 
modulating macrophage response (136).

All the abovementioned enzymes have already been described 
in a very large panel of reports, but only a few reported they could 
be ES by the parasites. Some of them, including arginase and 

ODC, seem to be only intracellular, but their reaction products 
(as well as those possible secreted by the parasite hosts—either 
insects or mammals) could be excreted and become the substrate 
of the excreted enzymes (Figure 4). How they work and their real 
effectiveness in vivo presents a large field for further investigations.

Host Receptors in Arginase Signaling
Current research has focused on modification of host cell signal-
ing by pathogens. For instance, C-type lectin receptors (CLRs), 
expressed in large quantities by DCs and macrophages, play 
important roles in various aspects of the immune response to 
pathogens (137). Upon infection, a plethora of host macrophage 
receptors actively respond to the invading trypanosomatids by 
activating several signal cascades (Figure 5).

The in vitro induction of arginase activity by Tbb, ES, and rTb-
KHC1 was inhibited by d-mannose (99). Parasite load and argin-
ase activity decreased in specific intercellular adhesion molecule 
grabbing non-integrin receptor 1 (SIGN-R1) (CD209) KO but not 
in macrophage mannose receptor (MMR) KO (CD206)-infected 
mice. In myeloid cells from SIGN-R1 KO mice rTbKHC1 did 
not stimulate IL-10 and arginase 1 activity, contrary to myeloid 
cells from MMR KO mice. Treatment with mannose also reduced 
parasitemia in mice infected by T. musculi. However, whereas 
TbKHC1 facilitates Tbb parasitemia via the SIGN-R1 receptor, 
the MMR receptor was apparently the main target of T. musculi 
ES (138). This suggests that kinesin heavy chain-related proteins 
play similar roles in promoting infection in two genetically 
distant trypanosomes, via macrophage arginase induction, 
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following distinct CLR targeting. Kinesins with close structures 
might act on distinct membrane receptors by recognizing related 
carbohydrate structures.

The initial binding and internalization of Leishmania promas-
tigotes implicate the receptor-mediated classical endocytic path-
way (139). This pathway involves a wide diversity of opsonic or 
pattern-recognition receptors, such as CR3, CR1, Fc receptors, or 
lectin receptors, such as the mannose fucose receptor (mannan-
binding protein) and the integrin family (140, 141). The mac-
rophage response against L. infantum in vivo is characterized by 
an M2b-like phenotype and CLR signature composed of dectin-1, 
MMR, and the DC-SIGN homolog SIGNR3 expression. Signals 
downstream from SIGNR3 shift macrophages toward a permissive 
state best reflected by the lower rate of parasitic proliferation in 
SIGNR3-deficient macrophages, suggesting that SIGNR3 modu-
lates inflammasome activation for the benefit of the parasite (142). 
An important step in this immune evasion process is activation 
of the host protein tyrosine phosphatase SHP-1 by Leishmania, 
which directly inactivates JAK2 and Erk1/2 and contributes to 
the inactivation of critical macrophage inflammatory functions  
(e.g., NO, IL-12, and TNF-α production). SHP-1 is also involved 
in the inhibition of TLR-induced macrophage activation by bind-
ing to and inactivating IL-1-receptor-associated kinase 1 (143).

Toll-like receptors have been shown to impair macrophage effec-
tive immunity against intracellular pathogens through arginase 1 

induction (144). TLRs were identified as determining the outcome 
of L. major (145, 146) and L. braziliensis (147) infections, with 
TLR-2 ligation and myeloid differentiation primary response 88 
play an important role in infection control. Additionally, TLR-4 was 
demonstrated to be important in L. major (148, 149) and L. pifanoi 
(150) infections; TLR-9 in L. donovani, L. major, and L. braziliensis 
infections (151, 152), but knowledge concerning subsequent intra-
cellular signaling is lacking. TLRs are involved in initial interactions 
and in downstream activation of NOS 2 and COX-2, making them 
key players in subsequent macrophage activation, all the more so, 
since TLR4 may be involved in  arginase 1 induction (92).

In T. cruzi infection, MMR expression was upregulated in 
macrophages and cruzipain enhanced mannose receptor recy-
cling, thereby favoring arginase induction and parasite survival. 
Moreover, receptor blockade decreased arginase activity and 
parasite growth in T. cruzi-infected mice (153).

CONCLUDiNG ReMARKS

Trypanosomatids insure their survival and propagation within 
their host by altering the signaling pathways involved in the abil-
ity of macrophages to kill pathogens or to activate the adaptive 
immune system. All the data presented here underline the impor-
tance of arginase induction for extra- and intracellular trypano-
somatids and confirm the identity of the parasite molecules and 
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host receptors involved. The advance in our understanding of the 
evasion mechanisms used by trypanosomatids enabled by these 
data should help to develop more efficient anti-trypanosomatids 
therapies in the near future. A illustrated here, the dysregulation 
of host l-arginine inducible metabolism by trypanosomatids ES 
is an effective mechanism used by the parasite to hamper host 
immune response and to modify host molecule production to 
favor parasite invasion and growth. Therefore, preventing this 
host metabolism dysregulation through drugs or immuniza-
tion against ES active components or by blocking partner host 
molecules is a promising way to tackle trypanosomatid-mediated 
diseases.

Nevertheless, arginase triggering should be addressed with 
caution, as the urea cycle is essential in hosts. NOHA, a stable 
intermediate in NO synthesis and also an arginase inhibitor, 
has been shown to limit both lesion size and the parasite load in 
L. major-infected mice (94). New arginase inhibitors targeting 
macrophage arginase is a promising approach (154). Likewise, 
siRNA systems have been developed to knock down arginase 
1-specific gene expression (155). Signaling is also a potential 
target, as inhibition of STAT3 signaling reduced arginase activity 
in myeloid derived suppressor cells from cancer patients (156). 
Blocking arginase induction, for instance by CLR-specific target-
ing, is another possible strategy (157, 158). On the other hand, 
more specific inhibition of the parasite molecules that induce host 
arginase activity could be an effective strategy with no side effects.

Interestingly, ES from L. infantum elicited a protective immune 
response in dogs, their natural hosts, by triggering a Th1-dominant 
immune response and an appropriate specific antibody response, 
thereby countering the parasite-induced arginase metabolism 
early on, and leading to the first anti-Leishmania vaccine com-
mercially available in Europe (159–161). More recently, a secreted 
promastigote surface antigen, one of the main constituents and 
the highly immunogenic antigen of Leishmania, was shown to 
confer high levels of protection in naive dogs (162).

Trypanosoma cruzi secretes proteins that promote host cell 
invasion, and several studies have focused on the characteriza-
tion of T. cruzi excretory–secretory antigens that are possible 
candidates for a vaccine. The most promising candidate appears 
to be the primary secreted lysosomal peptidase cruzipain, which 
plays vital roles in the T. cruzi life cycle, including triggering host 
arginase (163). Deleting a C-terminal domain in cruzipain led 

to an efficient immune response against N-terminal domain, 
which reduced the parasite load after a T. cruzi challenge (164). 
In addition, a new trans-sialidase-based immunogen was able 
to confer protection in a later T. cruzi challenge, by influencing 
populations of cells related to immune control, particularly in 
reducing splenic myeloid suppressor cells (165).

Like for T. cruzi, a sialidase-based vaccine provided  partial 
protection in T. b. brucei-infected mice (107). Various approaches 
to vaccination against African trypanosomiasis have been 
investigated [reviewed in the study by LaGreca and Magez 
(166)]. A monoclonal antibody directed to TbKHC1 reduced 
arginase activity and parasite load in T. musculi-infected mice, 
and bioinformatics analysis revealed TbKHC1 homologs in 
other trypanosomes, including human pathogens (138). This 
trypanosome-specific invariant antigen is a promising candidate 
for a pan-trypanosome vaccine, by helping the host immune sys-
tem to efficiently counter the parasite-induced arginase pathway.

The biological knowledge on how trypanosomatids and 
their ES factors modulate the inducible macrophage l-arginine 
metabolism deserves further sustained investigations to keep on 
prospecting for new strategies of interference in the infectious 
processes, whether through vaccine development or immuno-
therapeutic treatments.
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