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The first electron microscope was constructed in 1931. Several decades later, techniques 
were developed to allow the first ultrastructural analysis of microglia by transmission 
electron microscopy (EM). In the 50 years that followed, important roles of microglia have 
been identified, specifically due to the ultrastructural resolution currently available only 
with EM. In particular, the addition of electron-dense staining using immunohistochemical 
EM methods has allowed the identification of microglial cell bodies, as well as processes, 
which are difficult to recognize in EM, and to uncover their complex interactions with 
neurons and synapses. The ability to recognize neuronal, astrocytic, and oligodendro-
cytic compartments in the neuropil without any staining is another invaluable advantage 
of EM over light microscopy for studying intimate cell–cell contacts. The technique has 
been essential in defining microglial interactions with neurons and synapses, thus pro-
viding, among other discoveries, important insights into their roles in synaptic stripping 
and pruning via phagocytosis of extraneous synapses. Recent technological advances 
in EM including serial block-face imaging and focused-ion beam scanning EM have 
also facilitated automated acquisition of large tissue volumes required to reconstruct 
neuronal circuits in 3D at nanometer-resolution. These cutting-edge techniques which 
are now becoming increasingly available will further revolutionize the study of microglia 
across stages of the lifespan, brain regions, and contexts of health and disease. In this 
mini-review, we will focus on defining the distinctive ultrastructural features of microglia 
and the unique insights into their function that were provided by EM.

Keywords: microglia, ultrastructure, electron microscopy, correlative light and electron microscopy, 3D ultrastructure

inTRODUCTiOn

Microglia are the only immune cells that permanently reside in the brain. Originally believed to 
mediate inflammatory responses to infection (1), trauma (2), ischemia (3), or neurodegenerative 
disease (4), recent studies identified microglia as crucial actors in the proper development and main-
tenance of neuronal circuits (5). del Río-Hortega provided the original morphological description 

Abbreviations: 2p, two-photon; EM, electron microscopy; TEM, transmission electron microscope; SEM, scanning electron 
microscope; DAB, diaminobenzidine; Iba1, ionized calcium-binding adapter molecule 1; CLEM, correlative light and electron 
microscopy; AD, Alzheimer’s disease; SBEM, serial block-face scanning electron microscope; FIB-SEM, focused-ion beam 
coupled with scanning electron microscope.
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FigURe 1 | Milestones in electron microscopy (EM) engineering and discovery. This timeline highlights the major theoretical and experimental advances in EM, from 
the invention of the first electron microscope to the 2017 Nobel Prize in Chemistry for the discoveries leading to cryoEM. Purple frames contain information about 
the development of technology required for EM, while orange frames contain information about microglial discoveries made possible through the use of EM.
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of microglia at the turn of the twentieth century, having modified 
Golgi’s silver stain to identify microglia (6). His manuscripts have 
recently been translated into English and annotated (7). Early 
research into microglial physiology prompted researchers to posit 
hypotheses that still hold true: microglia are phagocytic; they are 
capable of generating inflammation in response to infection; 
they may be responsible for some aspects of neurodegenerative 
disease; they originate outside of the brain and colonize it early 
in development (8). Between the early twentieth and twenty-first 
centuries microglia remained mainly uninvestigated as a cell 
type [reviewed in Ref. (9)], until Davalos et al. and Nimmerjahn 
et al. uncovered their incredibly dynamic processes in the adult 
brain under physiological conditions using two-photon (2p) 
microscopy (10, 11). Following this discovery and with the 
development of genetic tools to specifically identify microglia 
and their progeny (12–14), high throughput gene-expression 
analysis (15–18), and investigation into expression of cell surface 
receptors (19, 20), researchers have completed a whirlwind of 
studies in an attempt to unravel microglial roles in a myriad 
of healthy and disease processes (21). Recent developments in 
super-resolution and 2p microscopy have provided insight into 
microglial interaction with dendritic spines (22–24). However, 
genetic manipulations required for marker expression in neurons 
and microglia can induce cellular stress and impair normal 
functions (25–27). Electron microscopy (EM) can be used to 
investigate the unique ultrastructure of microglia and their 
relationship with synapses, and identify their phagocytic cargo 
without any immunohistochemical or genetic labeling. While 
super-resolution microscopy has surpassed the diffraction limit 
of light microscopy, its resolution is still insufficient to discern 
samples smaller than 50 nm, especially in the z-dimension, and 
requires specific labeling probes to prevent steric hindrance from 

influencing the resulting image (28). In this review, we will focus 
on the use of EM to unravel structural and functional mysteries 
of microglia and their interaction with healthy and diseased brain 
tissue.

HiSTORY AnD DeveLOPMenT OF eM

Electron microscopy utilizes focused electron beams to illumi-
nate the subject of interest. Since an electron’s wavelength is up to 
100,000 times shorter than a photon’s, EM is capable of resolving 
atomic structures, while most light microscopes are diffraction-
limited to 500 nm resolution.

Hans Busch, a pioneer in the field of electron optics, laid the 
theoretical groundwork for EM by determining the motion of 
electrons in a magnetic field and the potential to focus electron 
beams (29). The first EM was invented by Knoll and Ruska in 
1932, based on the Bush’s published theories (30). The first trans-
mission electron microscope (TEM) functioned by projecting 
electrons through a thin sample and onto film, and investigating 
the regions of the sample that were electron-permissive versus 
electron-dense. Shortly after TEMs were developed, the first 
scanning electron microscope (SEM) was invented in 1940 (31). 
SEM differs from TEM as it visualizes electrons that are scattered 
off the surface of the specimen instead of electrons that pass 
through the specimen.

Over the following three decades, scientists perfected multiple 
ways to process and preserve biological samples in order to garner 
useful images of in situ tissue preparations (Figure 1). Aldehyde 
fixation cross-links proteins in tissues (32, 33), while osmium 
tetroxide fixation mainly preserves lipids and renders membranes 
electron-dense (34). The development of transcardiac perfusions 
provided fast delivery of fixatives to deep regions of the brain and 
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other biological tissues, arresting any possible degradation that 
may have occurred in diffusion-dependent fixation techniques 
(35–37). However, using aldehydes or other fixatives results 
in tissue shrinkage and loss of extracellular space. This can be 
avoided by freeze substitution, a type of cryoEM: flash-freezing 
the tissue of interest followed by fixation performed at very low 
temperatures (38). Fixing the specimen in buffers that match 
the osmolarity of the tissue of interest can preserve extracellular 
space (39). Alternatively, if the specimen and chamber of the EM 
are kept below −140°C, samples can be visualized without any 
fixation (40, 41). Cell viability assays and staining for cell surface 
markers can be performed on live cells in suspension prior to 
deposition onto TEM grids and flash-freezing (42, 43).

Particularly important for TEM imaging was the development 
of ultramicrotomy, which allowed ultrathin (50–80 nm) sections 
to be cut from larger specimens, thus improving resolution and 
focus (44–47). These ultrathin sections allowed researchers to 
visualize ultrastructural images of various biological samples by 
capturing the transmitted electrons after they passed through the 
specimen onto films. The conventional protocol to prepare bio-
logical tissue for TEM is well explained by several groups (48–50).

eM AnD MiCROgLiA

In 1957, the first ultrastructural image of microglia in the rat pari-
etal cortex was published (51), and in 1968, TEM images showed 
microglia physically separating presynaptic terminals from 
postsynaptic dendrites or neuronal cell bodies, a term defined 
as synaptic stripping (52). The first TEM images of microglia 
uncovered clues to the dynamic nature of these cells, decades 
before 2p microscopy discovered their movements to survey the 
brain parenchyma in real-time. Cultured microglia investigated 
using SEM identified many tiny processes projecting directly 
from cell somas, and draw stark attention to the two-dimensional 
stressors placed on cells in culture (53). Pioneering studies in EM 
identified many unique characteristics of microglial cell bodies, 
before any cell-specific immunological studies were developed.

Microglial cell bodies can be discerned from those of other cell 
types by their small size (3–6 µm), electron-dense cytoplasm, and 
characteristically bean-shaped nuclei. They also display a distinct 
heterochromatin pattern. A thick, dark band of electron-dense 
heterochromatin is located near the nuclear envelope, with pockets 
of compact heterochromatin nets throughout the nucleus. These 
nets are often visualized as small islands of dark heterochromatin 
within a sea of more loosely packed, lighter euchromatin within 
the central part of the nucleus (54, 55). Microglial cell bodies have 
a very thin ring of cytoplasm separating their nuclei from their cell 
membranes, and contain few organelles within a single ultrathin 
section, but those visible are mostly mitochondria, long stretches 
of endoplasmic reticulum, Golgi saccules, and lysosomes (54, 
56, 57). They are often phagocytic and contain lipidic inclusions, 
especially in older animals (58) (Figures 2A,D).

The development of microglial-specific stains compatible with 
EM has been a major aid in determining their functions in situ. 
Labeling microglial membranes and cytoplasm, originally with 
enzymatic reactions and more recently with immunoEM, allowed 
researchers to investigate microglial processes in animal models 

and human postmortem tissue (57, 59, 60). Current immunoEM 
studies utilize either diaminobenzidine or gold-conjugated 
antibodies (or colabeling using both) to deposit electron-dense 
precipitate and identify proteins of interest (22, 61). Ionized cal-
cium-binding adapter molecule 1 (Iba1) is often used to identify 
microglia/macrophages within the brain (62). After much study 
using immunoEM to identify their main characteristics (22), 
trained researchers can identify microglial processes based solely 
on their unique ultrastructure. Microglia’s ramified projections 
are long, thin, and almost never contiguous with their cell bodies 
in ultrathin sections examined by TEM (Figures  2B,C). They 
are often in close, direct contact with neuronal cell bodies, or 
separated only by a very thin astrocytic process (22, 57, 59, 63). A 
single microglial process can contact multiple synaptic elements, 
and interacts with axon terminals, dendritic spines, perisynaptic 
astrocytic processes, and encircles parts of synaptic clefts (22, 63). 
Their processes often perform extracellular degradation, visible 
as pockets of extracellular space sometimes containing pinpoints 
of membrane degradation. They frequently contain vacuoles or 
multivesicular bodies, long stretches of endoplasmic reticulum, 
and phagocytic inclusions (Figure 2C).

Microglia promote proper neuronal wiring and activity, and 
EM studies were vital for discovering their role in development 
and maintenance of functional neuronal connections (21). 
Elegant EM studies demonstrated that glia (performing the 
functions of microglia) in Drosophila (64), macrophages and 
microglia in zebrafish (65), as well as microglia in rodents (66–68) 
phagocytose degenerating axonal tracts, axon terminal frag-
ments, and dendritic spines during development of the thalamus, 
cerebral cortex, and hippocampus. Interestingly, no phagocytic 
interactions between microglia and synapses were identified in 
TEM studies of a mouse model of prion disease (69), although 
immunoEM was not performed and microglial processes may 
have been overlooked. Microglia also phagocytose putative neu-
ronal debris following saponin-induced cholinergic cell death in 
rats (70). Sequential EM images are required to verify phagocytic 
cargo is fully enclosed within a microglial process and has been 
demonstrated for phagocytosis of synaptic elements by both 
microglia and astrocytes (22, 67, 71). Automation of sequential 
EM using knives or focused-ion beams inside SEM chambers can 
provide nanometer-scale resolution images of microglia in 3D.

Recent TEM studies have uncovered a new microglial pheno-
type, named dark microglia. These dark microglia share many 
ultrastructural characteristics (including cell size, immunohis-
tochemical markers, and phagocytic phenotype) with healthy 
microglia, yet appear strikingly different under TEM. Their cell 
bodies can be quickly identified by their condensed, electron-dense 
cytoplasm that makes them appear as dark as mitochondria. Dark 
microglia display many signs of cellular stress, including nuclear 
and chromatin condensation and dilation of their endoplasmic 
reticulum (Figure 2F). Additionally, they are present in greater 
numbers in pathological contexts often associated with neuronal 
dystrophy and distress. They have been identified in the APP-PS1 
mouse model of Alzheimer’s disease (AD), aged mice, animals 
subjected to social defeat stress, fractalkine receptor-deficient 
mice, and mouse models of schizophrenia (72, 73). They show 
reduced expression levels of some microglial markers, including 
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FigURe 2 | Ultrastructural features of murine brain microglia in health and disease. Example of microglia imaged using a focused-ion beam coupled with scanning 
electron microscope without any immunostaining (A), containing lipofuscin granules (Ly) and a lipid body (Lb). Diaminobenzidine staining against ionized calcium-
binding adapter molecule 1 (Iba1) creates a dark immunoprecipitate in the cytoplasm as shown by transmission electron microscopy (TEM) (B–e). Iba1 staining 
allows identification of microglial processes in fractalkine receptor-knockout mice, for instance, allowing researchers to investigate their contacts with synaptic 
terminals and study phagocytic inclusions. (B) A microglial cell body in an APP-PS1 mouse is contacting a synapse between two axon terminals and a dendritic 
spine, as well as juxtaposing cellular debris. (C) A microglial process in a C57Bl/6 mouse contains several inclusions, notably an axon terminal making a synaptic 
contact on a dendritic spine. (D) A microglial cell body in a mouse model of Werner syndrome juxtaposes myelin debris and contains lipofuscin granules. (e)  
A microglial cell body in an APP-PS1 mouse is found in intimate contact with an amyloid beta plaque. (F) Example of dark microglia observed by TEM in a stressed 
fractalkine receptor-deficient mouse, characterized by its dark cytoplasm and thin processes projecting from the cell body (black arrowheads). Symbols and 
abbreviations: m, microglia; n, neuron; dc, dark microglia; t, axon terminal; s, dendritic spine; bv, blood vessel; Ly, lipofuscin; Da, degenerated axon; ma, myelinated 
axon; AB, amyloid-beta plaque. Asterisk (*) denotes evidence of cellular debris undergoing digestion in the extracellular space. Pseudocolor code: phagocytic 
inclusions = purple, examples of dilated endoplasmic reticulum = blue, examples of mitochondria = orange, amyloid-beta plaque = green, lipid bodies = red.
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Iba1, but are strongly immunopositive for others, including 
complement receptor subunit CD11b and microglia-specific 
antibody 4D4. Most dark microglia located near amyloid plaques 
in APP-PS1 mouse model express TREM2, though dark microglia 

in other disease models do not. While normal microglia rarely 
have contiguous processes attached to their somas in ultrathin 
sections, dark microglia show many long, thin processes encir-
cling dystrophic neurons, wrapping around synaptic structures, 
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investing themselves deep into amyloid beta plaques, and inter-
acting with synapses in regions of high synaptic turnover (72). 
Although they display many signs of cellular stress, they have 
never been found expressing apoptotic or necrotic cell markers. 
Dark microglia are often located near blood vessels, which could 
imply a possible peripheral origin or perhaps a route of egress 
for the stressed cell to leave the brain parenchyma (Figure 2F). 
As there is not yet a definitive marker of dark microglia, they 
can only be investigated with EM, highlighting its relevance in 
modern microglial biology studies.

CORReLATive LigHT AnD eLeCTROn 
MiCROSCOPY (CLeM)

The combination of both light microscopy and EM can be used 
to uncover more information than either technique individually. 
CLEM was first used in 1969. Silver staining originally described 
by Río-Hortega was used to identify and investigate microglia 
in light microscopy. After confirming microglial-specific stain-
ing, researchers investigated ultrathin sections under TEM and 
published the first description of microglial ultrastructure (54).

Electron microscopy is currently used to unravel details and 
variations in ultrastructure that cannot be investigated with light 
microscopy (Table  1). Light microscopy is often used to detect 
changes in microglial density and morphology in health and 
disease (74), and to identify particular regions of interest. After 
identifying a region of interest, such as one affected by hypoxia in 
stroke or amyloid-beta positive plaque-containing tissue in AD, EM 
can delve further into specific changes in microglial ultrastructure, 
cellular viability and stress, all without requiring further immu-
nostaining markers (75, 76). EM can also reveal structures which 
are not otherwise visible, and discern subcellular localization of 
proteins and mRNA using immunostaining, in situ hybridization, 
or in  situ RT-PCR (57, 77, 78). EM was recently used to clarify 
microglial process fragmentation observed with light microscopy 
in postmortem human tissue from an individual suffering from 
AD. Unexpectedly, EM studies revealed no fragmentation as the 
two parts of the microglial process were linked by a cytoplasmic 
bridge, thus invalidating the original hypothesis (79).

Light microscopy can also be performed on living cells prior to 
investigation with EM to tie temporal information to ultrastruc-
tural resolution. The technique used is a specific type of CLEM. 
Live imaging using 2p microscopy studies cellular relationships, 
interactions with the surrounding environment, and intracellular 
dynamics in real-time; but lacks complex ultrastructural infor-
mation. These imaging techniques are also limited to genetically 
encoded or virally introduced cell-specific fluorescent markers, 
which may introduce phenotypic changes on their own (26). EM 
can uncover structural information, but the specimen must be 
fixed (or flash-frozen for cryoEM), and can only be investigated 
as a snapshot moment in time. CLEM integrates imaging of fluo-
rescent proteins in live cells with the ultrastructural resolution 
of EM. After live-cell imaging is performed, various fixation and 
staining techniques can be employed to investigate ultrastructure 
in the same tissues. van Rijnsoever and colleagues used CLEM 
to study the endolysosomal system by confocal microscopy 

followed by cryoEM to image protein structures with nanometer 
resolution (85). This technique could be used to obtain insight 
into microglial proteins, phagocytic machinery, and organelle 
biogenesis.

It is also possible to combine EM with 2p microscopy. While 
2p studies allow investigation of live microglial interactions 
with nearby neurons, EM performed afterward can study the 
intimate contacts between microglia and synaptic elements, 
and their changes in response to various behavioral experiences 
and pathologies (22, 63, 86–88). Light microscopy also informs 
EM studies, making it much easier to solve needle-in-haystack 
problems and identify rare events within the neuropil. For 
example, an Alzheimer’s study injected animals with methoxy-
X04, a blood–brain barrier permeable amyloid-beta fluorescent 
marker. Researchers then selected sections containing the region 
of interest known to contain amyloid-beta, thus increasing the 
likelihood of finding plaque-associated microglia in ultrathin 
sections (Figure 2E) (50). Similarly, fluorescent microscopy can 
be used to target a specific microglial population to be analyzed 
in EM. Bechmann and Nitsch fluorescently labeled axons prior to 
performing entorhinal lesions and traced the clearance of degen-
erating tissue by identifying the fluorescent compound within 
nearby microglia. By focusing EM studies on regions containing 
fluorescently labeled microglia, they were able to investigate 
the subpopulation of microglial cells which had phagocytosed 
degenerating axons (89).

Another CLEM technique is the use of light microscopy in 
correlation with cryoEM. A study utilizing both techniques 
recently discovered the native folding of herpes simplex virus as 
it moved throughout axons. 3D visualization permits analysis of 
vesicle fusion and actin bond formation (90). CryoEM was also 
recently used to image Golgi apparati in two different confor-
mations within neurons (91) and investigate minor changes in 
ultrastructure following intracerebral injections (a common 
technique used to introduce vectors into mouse models) (92). 
Cryo-fixation preserves extracellular space, especially notable at 
synapses and blood vessels (93). This method could be used to 
determine native folding and unfolding of proteins within micro-
glia, to better understand their morphological and functional 
changes in various disease conditions.

THe FUTURe OF eM AnD MiCROgLiA

The past 15  years have seen a whirlwind in EM development. 
Previously, when investigating 3D ultrastructure, serial ultrathin 
sections were manually cut and collected at the ultramicrotome, 
imaged individually onto film under a TEM, and painstakingly 
reoriented and collated prior to analysis (94). As digital imaging 
improved, TEMs were outfitted with digital cameras allowing 
for faster imaging, but the electron beam of the TEM could still 
deform ultrathin sections, making perfect alignment of sequential 
sections almost impossible. Developments in SEM opened the 
door for array tomography studies on ribbons of serial ultrathin 
sections, allowing CLEM on the same tissue, and solving the 
problem of deformation introduced when using TEM (81).

The first major revolution in 3D ultrastructure imaging came 
when Denk and Horstmann engineered a working diamond knife 
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TABLe 1 | Types of EM.

Type of eM Typical sample preparation Maximal resolution Advantages Disadvantages

Transmission electron 
microscopy (TEM) (49)

 – Fixation with aldehydes and plastic 
resin embedding

 – Manually cut ultramicrotomy (thin 
sections of 50–80 nm stored on 
metal grids)

Nanometer resolution in x, y
Resolution in z limited by 
section thickness

 – Tissue can be archived and  
reimaged

 – Block of tissue may be saved and 
recut

 – Highest resolution and  
magnification

 – Osmium fixation is not required

 – Biological specimens must be 
fixed with gluteraldehyde or 
acrolein

 – Low throughput
 – Electron beam can cause 

deformation of ultrathin tissue 
sections

 – Smaller magnification range 
(680× to greater than 30,000×)

Scanning transmission 
electron microscopy 
(STEM) (49)

 – Fixation with aldehydes, strong 
post-fixation with osmium (OTO), 
and plastic resin embedding

 – Manually cut ultramicrotomy (thin 
sections of 50–80 nm stored on 
metal grids)

Nanometer resolution in x, y
Resolution in z limited by 
section thickness

 – Tissue can be archived and  
reimaged

 – Block of tissue may be saved and 
recut

 – Faster imaging throughput than 
traditional TEM

 – Large magnification range (20× to 
greater than 30,000×)

 – Biological specimens must be 
fixed with gluteraldehyde or 
acrolein

 – Stronger osmium fixation 
required than traditional TEM

 – Electron beam can cause 
deformation of ultrathin tissue 
sections

 – Risk of tissue destruction is 
higher than with traditional TEM

Scanning electron 
microscopy (SEM) (80)

 – Dehydration
 – Strong post-fixation with osmium 

(OTO) if material contrast  
imaging is desired

 – Entire specimen (entire insect, 
dissected organ, etc.) mounted  
on a stub of metal with adhesive

 – Coated with a conductive metal

Nanometer resolution in x, y, 
and z for surface topography

 – Tissue can be archived and  
reimaged

 – Large magnification range (20× to 
greater than 30,000×)

 – Can create images of up to several 
cm3, which provides a good 
representation of the 3D shape of the 
specimen

 – Secondary electron detector 
measures surface topography

 – Backscatter electron detector 
measures material contrast  
(i.e., cell membrane versus 
cytoplasm)

 – Biological specimens must be 
fixed with gluteraldehyde or 
acrolein

 – Image is created using 
scattered electrons and limited 
to the surface of the specimen

Scanning electron 
microscopy with array 
tomography (81)

 – Fixation with aldehydes, strong 
post-fixation with osmium (OTO), 
and plastic resin embedding

 – Manually or automatically cut  
serial sections ultramicrotomy  
(thin sections of 50–80 nm  
stored on silicon chips or  
magnetic tape)

Nanometer resolution in x, y
Resolution in z limited by 
section thickness

 – Tissue can be archived and  
reimaged

 – Image large and serial sections
 – Large magnification range (20× to 

greater than 30,000×)
 – Compatible with correlative  

light-EM imaging
 – No deformation of tissue, making 

serial reconstruction simpler

 – Serial section cutting and 
collecting is technically 
challenging

 – Stronger fixation required for 
proper material contrast

Focused-ion beam–
scanning electron 
microscopy  
(FIB–SEM) (82)

 – Fixation with aldehydes, strong 
post-fixation with osmium (OTO), 
and plastic resin embedding

 – Prepared tissue specimen 
(3–10 mm2 wide × 3–10 mm2 
tall × 50–75 µm thick) mounted  
on a stub of metal with adhesive

 – Coated with a conductive metal

Nanometer resolution in x, y
Up to 5 nm resolution in z (83)

 – Nanometer resolution (less  
than 5 nm per pixel) in all three 
dimensions

 – Simplest serial image  
reconstruction

 – The entire tissue block must 
be mounted and cannot be 
resectioned

 – Limited to a very small 
area, usually less than 
15 µm × 15 µm

 – Smaller magnification range 
(400× to greater than 30,000×)

 – The sample is destroyed as it is 
imaged and cannot be reimaged

CryoTEM (84)
CryoSEM (84)

 – High-pressure freezing
 – Manually or automatically cut 

sections using cryo- 
ultramicrotomy (40–100 nm thick)

Nanometer resolution in x, y
Resolution in z limited to 
section thickness

 – No fixation required
 – Allows imaging of specimens in a 

native-like state

 – Technically challenging
 – The sample must be flash-

frozen to preserve native protein 
folding

 – The sample must remain frozen 
through entire process

Table of the major types of electron microscopy (EM) described in this mini-review, highlighting sample preparation, maximal resolution, magnification power, and advantages and 
disadvantages to each technique. Typical sample preparation is provided for each method, but fixation with aldehydes can be avoided if the researchers instead flash-freeze samples 
and perform freeze-substitution following sample collection.
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into the chamber of a SEM to perform serial block-face scanning 
electron microscope (SBEM) (95). With this approach, the block 
face is imaged, a 50-nm section is cut away, followed by another 
image. Peddie and Collinson recently reviewed the many types 
of 3D EM and its applications to biological tissues (96). A decade 
after SBEM was invented, it allowed researchers to confirm 
microglial synaptic stripping (97). Research in a mouse model of 
multiple sclerosis used SBEM to unravel different roles of micro-
glia versus infiltrating monocytes very early in the disease. The 
authors performed SBEM and differentiated resident microglia 
from invading myeloid cells by their ultrastructural differences 
(changes in mitochondrial makeup, nuclear shape, and presence 
of osmiophilic granules) in order to determine that demyelina-
tion in experimental autoimmune encephalitis is initially per-
formed by invading monocytes, while resident microglia did not 
contribute to the early stages of inflammation (98). More recently, 
focused-ion beam coupled with SEM (FIB-SEM) has improved 
resolution from 50  nm to less than 10  nm in the z-dimension 
(99). By employing a focused-ion beam to atomize a very thin 
layer from a small (usually less than 500 μm2) area, researchers 
may image at 5 nm resolution in x, y, and z (82).

Both SBEM and FIB-SEM are capable of investigating neuronal 
ultrastructure, and can follow a single process through several 
microns of neuropil, but FIB-SEM is also capable of resolving 
synaptic vesicles, lysosomes, and phagosomes in three dimen-
sions. If the FIB-SEM process began within a microglial cell body, 
researchers could trace fine microglial processes through several 
microns of neuropil, without having to perform immunoEM. 
This offers a better chance to investigate lipidic inclusions and 
other pathological changes in organelles obscured by electron-
dense precipitates used in immunoEM.

In addition to technological advances in both SEM and 
TEM, the rapid development of cryoEM techniques described 
here could uncover native protein structures within microglia. 
It could additionally pave the way for discoveries into the 
snapshot of microglial–neuron and microglia–glia interactions 

without requiring fixatives, and without the corresponding tissue 
deformation that occurs with rapid fixation currently required 
to preserve ultrastructure. While fixatives and ultrathin sections 
required for EM are not compatible with post-imaging analysis of 
RNA or proteins, future iterations of CLEM (perhaps cryoCLEM) 
and advances in single-cell mRNA isolation may be able to isolate 
subcellular tissue fractions for further analysis. Armed with these 
new tools, biologists may investigate the complex interactions 
between glia and neurons in a number of diseases. The unique 
nature of EM allows researchers to characterize unique ultras-
tructural characteristics of microglia and other immune cells, and 
uncover possible paths for therapeutic intervention.
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