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Age-related macular degeneration (AMD), a retinal degenerative disease, is the leading 
cause of central vision loss among the elderly population in developed countries and an 
increasing global burden. The major risk is aging, compounded by other environmental 
factors and association with genetic variants for risk of progression. Although the etiology 
of AMD is not yet clearly understood, several pathogenic pathways have been proposed, 
including dysfunction of the retinal pigment epithelium, inflammation, and oxidative 
stress. The identification of AMD susceptibility genes encoding complement factors and 
the presence of complement and other inflammatory mediators in drusen, the hallmark 
deposits of AMD, support the concept that local inflammation and immune-mediated 
processes play a key role in AMD pathogenesis that may be accelerated through sys-
temic immune activation. In this regard, increased levels of circulating C-reactive protein 
(CRP) have been associated with higher risk of AMD. Besides being a risk marker for 
AMD, CRP may also play a role in the progression of the disease as it has been identified 
in drusen, and we have recently found that its monomeric form (mCRP) induces blood 
retinal barrier disruption in vitro. In this review, we will address recent evidence that links 
CRP and AMD pathogenesis, which may open new therapeutic opportunities to prevent 
the progression of AMD.
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inTRODUCTiOn

Age-related macular degeneration (AMD) is the primary cause of irreversible vision loss among the 
aging population worldwide. The disease affects up to 1.75 million individuals alone in the United 
States, and this number could increase up to 3 million by 2020 (1–3). Worldwide, the projected 
number of people with AMD in 2020 is 196 million (95% CrI 140–261), which increases to 288 
million in 2040 (205–399) (4). AMD is a complex, degenerative, and progressive disease involving 
multiple genetic and environmental factors, which can ultimately result in severe visual loss. The 
disease-causing molecular mechanisms remain unknown, although inflammatory processes have 
been implicated by the identification of AMD susceptibility genes encoding complement factors 
(5, 6) and by the presence of complement proteins in drusen, the hallmark deposits associated with 
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AMD and other features of immune activation, including inflam-
masome activation (7–10).

The pathology of AMD is characterized by vision loss due to 
alterations in the macula, the central zone of the retina. Visual 
dysfunction in AMD is associated with the degeneration of 
the outer portion of the retina, the outer blood retinal barrier 
(oBRB), which includes the retinal pigment epithelium (RPE), 
the Bruch’s membrane, and the choriocapillaris. This is followed 
(or in some cases preceded) by degeneration of the light-sensing 
photoreceptor cells supported by the oBRB. Degeneration of the 
RPE seems to begin with impaired clearance of cellular waste. The 
initial clinical manifestations of AMD are characterized by the 
presence of drusen, deposits of extracellular matrix, and pigment 
that form most commonly within the macula at the choroid–RPE 
interface. Based on the size and number of drusen, the presence 
of atrophy, and/or neovascularization, AMD is classified into 
five stages of increasing severity (11). Early and intermediate 
AMD are characterized by the presence of small or large drusen 
and RPE irregularities. Forms of late AMD include geographic 
atrophy and neovascularization, both of which can lead to severe 
central visual impairment and legal blindness due to degenerative 
and neovascular alterations in the macula, respectively (11, 12). 
Although, currently, neovascular AMD can be controlled with 
antiangiogenic agents that block vascular endothelial growth 
factor, most treated patients still suffer from visual impairment 
as they develop fibrosis and atrophy, and more than one-third of 
them show long-term loss of effect (13). Most concerning is that 
there is still no approved treatment for geographic atrophy.

Age is the primary risk factor for AMD. Physiological changes 
that occur with aging may impair cellular function in those at 
risk of the disease (14). In addition, other genetic and environ-
mental risk factors are associated with AMD, most significantly 
smoking (15). A variety of complement pathway-associated gene 
variants, such as complement factor H (CFH) (16), factor B, and 
the complement components C2 and C3 have associations with 
AMD pathogenesis (17). Smoking increases the risk of the exuda-
tive type of AMD both in females and men (18, 19), and there is 
a direct association between AMD and raised concentration of 
cholesterol (20). In addition, small increases in the plasma levels 
of C-reactive protein (CRP) are an additional associated risk fac-
tor for AMD (21). Dietary interventions with carotenoids, oral 
supplementation with high levels of antioxidants and minerals, 
or high intake of omega-3 fatty acids and fish arguably slow the 
course of the disease and are implemented clinically to various 
degrees worldwide (22, 23). Light and photosensitization reac-  
tions may also play a role in the development of AMD via synthe-
sis of reactive oxygen species, with consequent damage to the RPE 
and Bruch’s membrane (24). Finally, chronic systemic disorders 
such as atherosclerosis (25), diabetes (26), and cardiovascular 
diseases (27) contribute to the risk for AMD development.

Although the etiology of AMD in terms of multifactorial risk 
factors are increasingly well documented, the patho-etiology 
of how oxidative stress, atherosclerotic-like changes, RPE cell 
dysfunction, genetic variants, and inflammation/altered tissue 
immune responses interlink is less well defined (28–30). One 
notion to enquire further is the influence of systemic immunity 
or alarming, acute phase responses in the progression of AMD, 

not dissimilar to dementia (31). In this context, elevated CRP 
levels are found both in the blood of AMD patients and in the 
eyes of carriers of a CFH polymorphism associated to the risk 
for developing the disease, providing a molecular clue to AMD 
pathogenesis and to how genetic risk factors may influence its 
course (21, 32). In this review, we summarize the main findings 
that support the implication of CRP in the pathogenesis of AMD 
and its connection with aging.

inFLAMMATiOn AnD AMD

Chronic inflammation is a prolonged condition in which tissue 
injury and attempts at repair coexist, leading to tissue remod-
eling and dysfunction. It is the common pathological basis for 
age-associated diseases such as cardiovascular disease, diabetes, 
cancer, Alzheimer’s disease, but also AMD. A multitude of bodily 
changes occur with aging that contribute to the initiation and 
development of inflammation. In particular, the immune system 
of elderly individuals is characterized by a basal systemic inflam-
matory state, as increased levels of proinflammatory cytokines 
and acute phase reactants are observed with aging (33). Local 
inflammation and immune-mediated processes play a central 
role in AMD pathogenesis (34–36).

A competent immune system in the eye is necessary to main-
tain intraocular health. The network of macrophages and micro-
glia along with the RPE and choroidal endothelial cells maintain 
tissue homeostasis allowing cellular debris removal and pathogen 
surveillance. Besides the presence of tissue-resident immune 
cells, inflammatory molecules are constitutively expressed in the 
subretinal space, meaning that there is a persistent inflammatory 
state, known as para-inflammation, which deals with danger 
signals and protects the tissue against over-inflammation and 
destruction. Proteomic and histochemical analysis of ocular 
drusen have shown that these deposits contain inflammatory  
proteins and complement components that mediate local inflam-
mation, such as C5, C9, CRP, amyloid A, fibrinogen, and vitronec-
tin (7, 37, 38). The complement system is one of the main effectors 
of the innate immune response. The activation of the complement 
system culminates in the formation of the membrane attack com-
plex and, potentially, cell lysis. Accumulation of membrane attack 
complex in the macula increases with aging and in AMD patients 
compared to age-matched controls (39–42). On the other hand, 
some diseases that are associated with complement activation 
have been independently linked to AMD (43), and a number of 
complement pathway-associated genes have been recognized as 
important driving factors of AMD pathogenesis. Some of these 
genetic variants might cause the complement system to be over-
active, resulting in a chronic inflammatory condition (42, 44). 
This abnormal inflammatory stimulus adversely affects RPE cells 
and promotes drusen formation (45). The strongest genetic risk 
factor for AMD known to date is a common polymorphism in 
the CFH gene (c.1277T > C, p.Tyr402His); the CFH p.Tyr402His 
variant (in following termed CFHH402) increases the risk for AMD 
approximately twofold to fourfold for heterozygous and fivefold 
to sevenfold for homozygous individuals (5, 16, 46).

FH is a major inhibitor of the alternate complement pathway 
that regulates complement activation in plasma, host cells, and 
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tissue, in particular, at sites of tissue inflammation, following 
injury or during degeneration (47). The protein is essentially 
comprised of 20 tandem Sushi domains, also known as short 
consensus repeat (SCR) or complement control protein modules. 
The exchanged residue in the FHH402 variant is located in domain 
SCR7, which mediates the binding to CRP, malondialdehyde 
(MDA), and to cell surfaces through interactions with heparan 
sulfate (HS) chains (48, 49). The “at risk” variant of FH shows an 
impaired binding to these ligands, which could result in increased 
complement activation and chronic local inflammation. MDA 
is a toxic by-product of lipid peroxidation and Weismann et al. 
showed that FH binds MDA through SCR7 and protects from 
oxidative stress. Notably, the “at risk” variant resulted in severely 
reduced factor-I-mediated C3 cleavage when bound to MDA 
(50). Regarding HS, the “non-risk” variant of FH can bind to 
multiple sites on HS chains in BM due to its wide specificity. 
Instead, the 402H variant only binds to highly sulphated motifs 
within HS (51, 52). Thus, if insufficient FH is present in BM, as is 
the case for the 402H variant, there will be increased activation 
of the complement cascade and the release of pro-inflammatory 
mediators. However, increased inflammation could be also due to 
the impaired binding of CRP to the FH from the “at risk” variant.

STRUCTURe AnD FUnCTiOn OF CRP

CRP is the prototypical acute-phase reactant and an active regu-
lator of the innate immune system; CRP levels increase rapidly 
in response to infection, inflammation, and tissue injury (53). 
It is a highly conserved protein of the pentraxin family, mainly 
produced in the liver. Among the multiple functions ascribed 
to CRP are activation of the classical complement pathway and 
inactivation of the alternative pathway (53). In plasma, CRP 
exists as a cyclic, noncovalent pentamer of 125 kDa composed 
of five identical subunits (pCRP), and which is stabilized 
by numerous electrostatic and Van-der-Waals interactions  
(54, 55). Native pCRP binds in a Ca2+-dependent manner to 
phosphocholine (PCh)-containing ligands such as pneumococ-
cal cell wall C-polysaccharide, but also to the surface of necrotic 
cells and parasites (55–58). Oxidative stress, low pH, and bioac-
tive lipids from activated or damaged cells can dissociate the 
CRP pentamer into its 23-kDa subunits (59–62). This poorly 
soluble, tissue-based monomeric form (mCRP) possesses distinct 
biological functions compared to pCRP (60, 63–67). The disso-
ciation mechanism of CRP requires, first, a reversible structural 
transition within pCRP subunits, but without disrupting the 
pentameric symmetry (60, 68, 69). This rapid conversion to the 
modified form (pCRP*) may contribute to acute phase amplifica-
tion of the inflammatory response. Then, the pCRP* → mCRP 
irreversible transition is likely to occur at sites of persistent chronic 
inflammation, where the inflammatory microenvironment— 
characterized by acidic conditions, oxidative stress, and presence 
of bioactive phospholipids—continuously favors dissociation of 
the pentameric arrangement. mCRP would then effectively trig-
ger proinflammatory responses and regulate complement (68). 
Indeed, the dissociation of circulating pCRP to mCRP in areas of 
inflammation has been observed in vivo in a rat model of acute 
inflammation. Mechanistically, this process is dependent on 

exposure of lysophosphatidylcholine (LysoPCh), a bioactive lipid 
that is generated after phospholipase A2 activation on activated 
cell membranes (62, 70).

The crystal structure of native pCRP in complex with PCh 
shows how large PCh-containing ligands may be specifically 
bound by CRP and offers clues to the mechanism of mCRP for-
mation (54). The PCh ligand-binding site is located in a groove 
of a β-sheet on the so-called “B face” of the pentamer (Figure 1). 
Multipoint attachment of this planar face of the CRP molecule 
to a PCh-bearing surface would leave available, on the opposite 
A face, the recognition sites for complement C1q. In the absence 
of Ca2+, residues 140–150 form a loop that projects away from 
the body of each CRP subunit exposing a normally hidden 
proteolysis site. Cleavage at this site facilitates that individual 
CRP subunits move apart, thus exposing a neoepitope (residues 
199–206, colored yellow in Figure 1C) that is recognized by anti-
mCRP-specific antibodies (9C9 or 3H12) (68, 71). The globular 
head of C1q is then able to insert itself into the inner annular 
void of pCRP* (the relaxed conformation) forcing the subunits 
further apart (noteworthy, C1q is unable to bind to the “strained” 
pCRP conformation) (68). Finally, the CRP subunits might dis-
sociate, likely accompanied by partial unfolding to generate the 
mCRP form (72, 73). This process would enable CRP to target 
physiologically and/or pathologically significant complement 
activation.

MOLeCULAR CHAnGeS in THe OBRB  
in AMD: inTeRACTiOn BeTween  
CRP AnD FH

The fact that patients with AMD and individuals with the CFHH402 
variant show increased systemic and local levels of CRP, respec-
tively, provides a molecular hint on the pathogenesis of AMD. 
AMD lesion formation has been proposed to share mechanisms 
with atherosclerotic plaque formation, which is initiated with 
low-density lipoprotein retention within the arterial wall (74). 
Although a thorough discussion of the cross-connections 
between CRP and cardiovascular diseases is beyond the scope of 
this review, it is noteworthy that patients with clinical evidence of 
atherosclerosis (stroke, coronary, and peripheral artery disease) 
show modestly but significantly increased CRP levels (25, 75, 76).

Seddon and coworkers were the first to address the relationship 
between elevated CRP concentrations and AMD progression. 
They found a significant increase in circulating CRP levels as the 
disease progressed, and showed that low-, medium-, and high-
risk AMD groups are associated with serum CRP concentrations 
below 0.5, between 0.5 and 10.0, and over 10.0 mg/L, respectively 
(21, 77, 78). However, this association has not been universally 
confirmed (79). A more recent study by the Seddon group shows 
that high levels of circulating CRP are associated with a higher 
risk of AMD, regardless of the CFH genotype (80).

Other authors have recently attempted to triangulate the asso-
ciation between plasma concentrations of CRP, four CRP genetic 
variants reported to influence CRP circulating levels, and the risk 
of advanced AMD (81). They found that two of the genetic vari-
ants do share some association with plasma CRP concentrations. 
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FiGURe 1 | Proposed model of the conversion from the strained to the relaxed conformations of pentameric C-reactive protein (CRP). (A) Solid surface 
representation of the crystal structure of human CRP in its “strained” conformation (pCRP) bound to phosphocholine (PCh) (PDB entry 1B09) (54). The view  
shown is from the membrane binding “B face” of pCRP. The individual subunits are represented color-coded, with PCh (cream spheres) and Ca2+ ions (black 
spheres) occupying the ligand binding site on each subunit. (B) Modeled interaction of pCRP with a phospholipid bilayer. View is from “above,” looking down onto 
the pCRP “A face.” Each pCRP subunit can independently bind to a PCh head group of the bilayer. Exposure to lysoPCh triggers reversible conversion of pCRP  
to pCRP*. (C) Pentameric pCRP*, same view as in (B). As the individual CRP subunits move apart, a neoepitope (colored yellow) is exposed. (D) The globular  
head of C1q inserts itself into the inner annular void of pCRP* forcing the subunits further apart [adapted from Braig et al. (68)].
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However, none of the four variants was significantly associated 
with the risk of AMD. Their findings have important implica-
tions for our understanding of the pathophysiology of AMD, 
in particular, for the distinct roles played by local and systemic 
inflammation in this regard. However, it must be considered that 
other factors such as C3 genotype and smoking strongly affect 
circulating CRP levels. Thus, these results do not preclude a direct 
link between AMD pathophysiology through complement activa-
tion and chronic inflammation, and plasma CRP concentrations 
might still be useful as an AMD biomarker. Important differences 
exist between systemic inflammation and the local inflammatory 
macular tissue microenvironment.

Since CFH risk haplotypes are associated with increased com-
plement activation in human macular tissue (82) but not in the 
circulation (83, 84), it is important to determine the localization 
and abundance of both CRP and FH in the extra-macular choroid 
of individuals homozygous for the high-risk CFHH402 genotype, as 
compared to those homozygous for the low-risk CFHY402 variant. 
This investigation, reported by Johnson and colleagues, showed 
that the localization and abundance of FH do not differ between 
CFH genotypes (32). However, choroidal immuno-staining of 
CRP was significantly higher in the CFHH402 eyes compared to 
the CFHY402 eyes. Interestingly, these differences between the 
CFH homozygotes were independent of AMD status. Because the 

high-risk allele affects binding of FH to CRP (85), deficient FH 
binding could potentially increase the pro-inflammatory activity 
of CRP in choroidal tissue, contributing to AMD pathogenesis. 
Also along these lines, Bhutto and colleagues have reported 
distinct patterns of localization for FH and CRP in the aging 
eye. Most notably, these authors found an inverse relationship 
between CRP and FH levels in macular tissue from patients with 
advanced AMD as compared to age-matched control individuals 
(86). In AMD patients, Bruch’s membrane, drusen, and choroidal 
vessel walls all showed increased labeling of CRP and decreased 
labeling of FH compared to controls. These findings support the 
idea that the macula of AMD patients has an increased inflamma-
tory microenvironment with decreased capacity for complement 
inhibition.

Although FH is known to bind CRP, there was certain contro-
versy regarding the relevance of the monomeric and pentameric 
forms in this regard. For instance, two separate binding sites for 
pCRP were located on domains SCR4-6 and SCR16-20, respec-
tively (49). On the other hand, FH showed strong binding to 
denatured, monomeric CRP, rather than to the native multimeric 
form (87, 88). We have recently shown that mCRP, but not the 
pentameric form, contributes to oBRB disruption in vitro (89). 
The functional integrity of the RPE, critical for the maintenance 
of the specialized environment of the neural retina, is dependent 
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FiGURe 2 | A unified mechanism of mCRP-induced proinflammatory responses and the role of the CFH p.Tyr402His polymorphism in age-related macular 
degeneration (AMD). Generation of mCRP is accelerated in vivo under inflammatory conditions by bioactive lipids such as lysophosphatidylcholine (lysoPC)  
exposed on the surface of microparticles, activated or damaged cells. mCRP is recognized on the cell surface, leading to activation of MAPK pathways and 
ultimately enhances expression of proinflammatory cytokines and disrupts the outer blood retinal barrier. Binding of FH to mCRP attenuates this inflammatory 
response, but the FHH402 variant is less effective in this regard, both because of its altered binding to glycosaminoglycans (52), but, in particular, due to its markedly 
lower affinity for mCRP. The unchecked inflammatory response leads eventually to progression of AMD and vision loss [figure adapted from Molins et al. (90)].
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on the structures of tight junctions. Exposure to mCRP, but 
not pCRP, significantly increased the paracellular permeability 
of the RPE compared with that of untreated cells, suggesting 
that mCRP could compromise the barrier function of the RPE 
monolayer. Notably, mCRP was also able to disturb the expres-
sion and distribution of the TJ proteins, ZO-1, and occludin. In 
another study, we also showed that mCRP confers a proinflam-
matory phenotype to RPE cells as it increases production of 
the proinflammatory cytokines IL-8 and CCL2 (Figure 2) (90). 
The mCRP-induced pro-inflammatory phenotype was further 
demonstrated by the significantly increased rates of peripheral 
blood mononuclear cells migration treated with conditioned 
medium from RPE cells after being exposed to mCRP, but not 
with conditioned media from either untreated cells or from cells 
exposed to pCRP. The oBRB disruption induced by mCRP could 
conceivably permit passage of inflammatory cells into the retina, 
further contributing to chronic inflammation and accelerating 
tissue damage.

Moreover, we also showed that the “non-risk” FH variant 
(CFHY402) can effectively bind to mCRP to dampen mCRP pro-
inflammatory activity. Notably, FH from AMD patients carrying 

the risk polymorphism for AMD shows an impaired binding 
to mCRP and, therefore, its proinflammatory effects remain 
unrestrained (Figure 2) (90). In line with and highlighting our 
findings, Chirco et al. have recently shown that mCRP is the more 
abundant form of CRP in human RPE-choroid, and that mCRP 
levels are elevated in individuals with the high-risk CFH geno - 
type (91), which could thus sustain chronic inflammation 
contributing to the progression of AMD in CFHH402 individuals. 
Moreover, pro-inflammatory mCRP significantly affects endothe-
lial cell phenotypes, suggesting a role for mCRP in choroidal 
vascular dysfunction in AMD as well.

It is also interesting to note that, in our cohort of AMD patients, 
those carrying the risk variant of CFH had significantly higher 
levels of systemic IL-8 and CRP than healthy subjects carrying 
the non-risk allele (90). Further, the levels of these proteins were 
positively correlated in AMD patients homozygous for the risk 
CFHH402 variant. These results are in conflict with previous stud-
ies showing that CRP levels and the CFHH402 polymorphism were 
independent risk factors for AMD (80). We observed differences 
in circulating CRP concentrations between subjects carrying the 
different CFH variants, albeit in a smaller population. Our results 
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might explain the previously reported higher risk of AMD within 
genetically susceptible individuals when CRP concentrations are 
high (80). We hypothesize that higher levels of circulating CRP 
could derive in higher mCRP concentrations in microenviron-
ments that favor dissociation, such as inflammatory or apoptotic 
conditions, which in the case of patients carrying the CFHH402 risk 
variant would further cause unchecked inflammation. However, 
it is unclear where, when, and how mCRP dissociates within 
the oBRB. mCRP could either dissociate distantly in activated 
endothelium or locally within the RPE. Unchecked mCRP 
activity may sustain chronic inflammation thus favoring AMD 
progression. Whether this provokes disease or not requires vali-
dation, but this process alone may not be sufficient to explain all 
the immune-related changes we observe in AMD and, therefore, 
further research is warranted.

TARGeTinG MOnOMeRiC CRP in AMD

The recent findings from us and others discussed above reinforce 
the importance of mCRP in chronic inflammation and point to 
the pCRP dissociation process and/or mCRP itself as novel thera-
peutic targets for AMD. Indeed, therapies associated with a reduc-
tion in systemic CRP levels are successfully used in other chronic 
inflammatory diseases such as atherosclerosis, where CRP is an 
important player (76). However, given that CRP may have a more 
important role in the macular tissue, it might be more appropriate 
to target local CRP for AMD treatment. Blocking the dissociation 
of pCRP with 1,6-bis-PCh, a compound that stabilizes CRP in a 
decameric form, abolished the proinflammatory effects of mCRP 
in  vivo (62). Restrictively, 1,6-bis PCh is not suitable for clini-
cal purposes due to its pharmacokinetics and its low affinity for 
pCRP (150 nM) (62). Thus, a more potent drug with higher oral 
bioavailability, higher affinity for pCRP, and prolonged half-time 
needs to be designed to efficiently target the pCRP dissociation 
process as an innovative therapeutic strategy. Blocking LysoPCh 
formation with PLA2 inhibitors may be another interesting 

approach to inhibit pCRP dissociation. Alternatively, therapeutic 
approaches aimed to enhance FH-mCRP binding could be devel-
oped to block mCRP proinflammatory activities, thus preventing 
the progression of AMD.

COnCLUSiOn

The reduced ability to control the balance between pro- and 
anti-inflammatory signals associated with aging might promote 
a switch to chronic inflammation in the macular tissue. This 
scenario could then favor CRP dissociation and mCRP accumu-
lation further fueling chronic inflammation and tissue damage, 
especially in those patients with the “risk” FH variant, CFHH402, 
where FH is unable to dampen mCRP proinflammatory activity 
and to localize to HS in Bruch’s membrane. A combination of 
poor binding of the FH H402 variant to Bruch’s membrane and 
mCRP, combined with aging associated processes such HS loss 
and an increased proinflammatory environment, may eventu-
ally result in complement activation, persistent mCRP-induced 
inflammation, and thereby contribute to AMD progression. 
Future research is warranted to confirm the contribution of 
mCRP to disease etiology and progression, and eventually to test 
the therapeutic potential of compounds that either prevent CRP 
dissociation or stimulate FH binding to mCRP.
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