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Cryptococcus neoformans is not usually considered a cytotoxic fungal pathogen but 
there is considerable evidence that this microbe can damage host cells and tissues.  
In this essay, we review the evidence that C. neoformans damages host cells and note 
that the mechanisms involved are diverse. We consider C. neoformans-mediated host 
damage at the molecular, cellular, tissue, and organism level. Direct mechanisms of 
cytotoxicity include lytic exocytosis, organelle dysfunction, phagolysosomal membrane 
damage, and cytoskeletal alterations. Cytotoxicity contributes to pathogenesis by inter-
fering with immune effector cell function and disrupting endothelial barriers thus allowing 
dissemination. When C. neoformans-mediated and immune-mediated host damage is 
sufficient to affect homeostasis, cryptococcosis occurs at the organism level.
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Anyone with expertise in routine laboratory tissue culture knows that fungal contamination rapidly 
kills mammalian cells in vitro. However, Cryptococcus neoformans is unusual among fungi in that it 
has minimal toxicity for animal cells in tissue culture, such that it is possible to maintain yeast cells 
and macrophages for days without major cytotoxicity for the latter. macrophage-like cells that have 
phagocytosed C. neoformans are capable of replicating and divide their yeast cargo among daughter 
cells (1). This implies that C. neoformans does not release major cytotoxic products, at least in vitro. 
Consistent with this notion, cryptococcal infections are not associated with tissue necrosis as seen 
in infections caused by other fungal pathogens, such as those caused by Aspergillus or mucorales 
spp. In fact, cryptococcosis often shows many features of a chronic infection, and host death is 
often due to the effects of physical compression of tissue, and defects in resorption of cerebrospinal 
fluid (CSF) (possibly due to increased viscosity from fungal polysaccharide shedding into CSF) 
and overwhelming brain edema (2). While these observations might lead to the conclusion that  
C. neoformans infections are associated with minimal host damage, a review of available knowledge 
reveals otherwise. In this essay, we survey the available evidence that C. neoformans is capable of 
inflicting direct damage on host cells and tissues. We note that host damage following cryptococcal 
infection can come from microbe and the host (3, 4), with the latter culminating in a dramatic 
pathology known as Immune Reconstitution Inflammatory Syndrome (IRIS).

We consider damage at four levels of scale: molecular, cellular, tissue, and organism level. 
molecular damage is that caused by enzymes or molecules produced by C. neoformans, which 
induces modifications of host molecules and cells and manifests itself at the molecular or organelle 
level. Cellular damages are those causing modifications of the architecture and structure of the host 
cells due to the toxic action of C. neoformans. Tissue damages cause anatomical and functional disor-
ganization beyond cellular injury. Together, these combine to produce the disease of cryptococcosis 
at the organism level. We recognize that these are not independent, since molecular damage leads 
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FiguRe 1 | Schematic representation of the different Cryptococcus neoformans-mediated cell host damages are various scales. Damage at the molecular level results 
from the secretion of various enzyme by C. neoformans (proteases, nuclease, urease, phospholipase) that degrade host molecules such as antibodies and/or modify 
cells membranes. C. neoformans ingestion is also able to trigger autophagy, apoptosis, and cell death in the host (mAb, monoclonal antibodies; Mp, macrophages). 
Damage at the cellular level involves modification of cellular compartments such as accumulation of polysaccharide vacuoles (1), inhibition of phagolysosomal 
maturation (2), phagolysosomal leakage (3), mitochondrial fission and depolarization (4), swelling and cytoskeleton abonomalities (5) or metabolic modification due to 
C. neoformans vesicles secretions (6), C. neoformans engulfment resulted also in non-lytic (7), or lytic (8) exocytosis. Damage at the tissue level consisted typical 
cryptococcal lesions in the brain parenchyma after intravenous inoculation of C. neoformans to outbred mice (sacrifice seven days after inoculation). No granuloma and 
accumulation of yeast masses without inflammatory cells can be observed engendering tissue disorganization. Coloration Alcian Blue (magnification 4×). Damage at 
the organism level combines to produce the clinical signs associated with cryptococcal diseases in humans with dissemination and neurological abnormalities as the 
most severe clinical presentation leading to death. Felines are also naturally susceptible to cryptococcosis with localized to disseminate infections. Mus musculus and 
Galleria mellonella are well established organisms for experimental models of infection that help understanding the pathophysiology  
of the disease and the biology of the yeast in relation to the host.
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to cellular damage, cellular damage leads to tissue damage, and 
all three combine to produce organismal damage. Furthermore, 
we note that a process of C. neoformans can damage the host at 
more than one level. For example, cryptococcal phospholipase 
can cause molecular damage by destroying surfactant molecules 
(5) while also being a potential cause of cellular damage at the 
level of macrophage (6). Despite these important caveats, these 
mechanisms are sufficiently distinct that it is possible to discuss 
them separately. Our goal is integrating them to produce a holistic 
view of C. neoformans-mediated host damage into a new synthesis 
for approaching cryptococcal pathogenesis (Figure 1).

MOLeCuLAR DAMAge

In the section for molecular damage, we consider how cryptococ-
cal products damage host molecules (Figure 1). C. neoformans-
mediated molecular damage enhances its likelihood of survival in 
tissues. As a soil-dwelling organism that obtains its nutrition from 
digesting material in the environment, C. neoformans secretes a 

large suite of enzymes with the potential to degrade host mol-
ecules (7). Among all enzymes produced by the fungus, the major 
candidates as mediators of host toxicity at the molecular level are 
proteases, urease, phospholipase, and nuclease (7). C. neoformans 
can metabolize immunoglobulins and complement proteins for 
growth as these compounds are presumably degraded by released 
proteases (8). Hence, proteases may interfere with host defense 
mechanisms by cleaving immunologically important molecules 
and directly damaging effector cells. Cryptococcal serine pro-
teases promote increased blood–brain barrier (BBB) permeability 
(9), which may help in the process of brain infection. Although 
not directly related to host damage C. neoformans releases a pro-
tease that cleaves a peptide, which functions as quorum-sensing 
molecule to increase virulence (10). Urease is a virulence factor 
for C. neoformans (11), which is important for brain invasion 
(12). The mechanism by which urease promotes brain invasion 
could involve catalyzing the hydrolysis of urea to ammonia to 
locally damage endothelial cells in the brain vasculature. Another 
group of enzymes involved in the pathogenesis of C. neoformans 
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are phospholipases. C. neoformans produces both phospholipase  
B and C (6, 13–17). Phospholipases cleave phospholipids, which in 
turn allow them to damage membranes. Phospholipase-deficient 
C. neoformans manifest delayed intracellular replication, which 
could result in better maintenance of phagosomal membrane 
integrity and subsequent enhanced fungal control (6). In vitro 
phospholipase-mediated cleaves surfactant and promotes the 
attachment of C. neoformans to human lung epithelial cells, a 
process in vivo could promote pulmonary infection (5). Ingestion 
of C. neoformans results in the activation of autophagy initiation 
complex pathways, which results in a global reprogramming of 
host kinase signaling (18).

CeLLuLAR DAMAge

By cellular damage, we consider mechanisms for cytotoxicity.  
C. neoformans-mediated cytotoxicity contributes to establishment 
of disease via at least two major mechanisms. First, damage to 
host immune system in tissue, which inflicts damage to immune 
system, the surrounding tissues and may cause symptoms to the 
host while ultimately allowing persistence of infection. Second, 
damage to the endothelial cells in the brain vasculature (possibly 
in other organs as well), precedes invasion of the central nervous 
system to cause meningoencephalitis, the most common life-
threatening form of cryptococcosis. Interaction of C. neoformans 
with the epithelial barriers is transient, and internalization of 
C. neoformans by epithelial cells is rarely observed. The airway 
epithelium is critical to trigger initial inflammatory response 
to the inhaled spores or yeast (19) and can produce surfactant, 
which agglutinates yeast cells (20). Potentially important to the 
pathogenesis of disease are interactions of C. neoformans with 
neurons or (micro)glial cells and their potential to cause neu-
rological dysfunction but so far this remains an enigma (21). 
Therefore, we focus our discussion on cytotoxic damage primar-
ily on phagocytic cells and endothelial cells and describe several 
forms of damage that can be inflicted on host cells (Figure 1).

 1. Interference with phagolysosomal maturation: after ingestion of 
C. neoformans by macrophage, yeasts resides in an acidic phago-
some that has maturation markers such as Lamp1 (22). Initially,  
C. neoformans was thought to not interfere with phagosome 
maturation similar to other intracellular pathogens such as 
Mycobacterium tuberculosis. However, recent studies indicate 
that ingestion of live but not dead C. neoformans cells is 
associated with the early removal of phagosome maturation 
markers Rab5 and Rab11 and interference with proteolytic 
activity and calcium fluxes (23). Interference with phagolyso-
some maturation would have the effect of interfering with its 
microbicidal activity, which in turn would promote fungal 
intracellular replication.

 2. Phagolysosomal leakage: electron microscopic studies revealed 
damaged membranes in phagosomes containing C. neoformans  
(24). Phagolysosomal leakage was confirmed with fluores- 
cence labeled microscopy (25). Leakage of phagosome compo-
nents into the cytoplasm interferes with microbicidal activity 
of this organelle but may also trigger the inflammasome (26). 
The amount of phagosomal leakage is modulated by IFN 

gamma (27), and likely other cytokines, with consequences to 
the amount of host cell damage and death.

 3. Accumulation of polysaccharide-containing vesicles in mac-
rophage: C. neoformans infection in macrophage is accompanied 
by the accumulation of vesicles, which contain fungal polysac-
charide (24). The presence of large numbers of vesicles in the 
macrophage cytoplasm can give the impression of “holes” and 
these cells were named “hueco cells” after the Spanish term for 
hole (24). These intracytoplasmic vesicles appear to bud from the 
cryptococcal phagolysosome (24). Whether vesicle accumula-
tion causes direct damage to the host cell is not known but their 
presence crowds out the cytoplasm and could impair cellular 
function. In addition, the generation of such large number of 
vesicles must tax lipid reserves (as composed of lipid bilayer), 
which could put a stress on membrane generation and repair.

 4. Interference with organelle function: upon detection of intruder 
pathogenic microbes, macrophage undergo a series of concerted 
metabolic changes ranging from shift to a glycolytic metabolism 
to adaptation of the rate of protein synthesis or autophagy. 
Cellular quality control is a method to detect pathogen inter-
ference with organelle and cellular function and, therefore, is 
a mechanism of immune surveillance. When C. neoformans 
infects murine macrophage mitochondria potential is decreased 
and protein synthesis is impaired (28, 29). The presence of extra-
cellular yeast could also lead to chromosomal aberrations and 
cell cycle impairment in murine macrophage (28).

 5. Host cell swelling and cytoskeleton alterations: several decades 
ago, cryptococcal polysaccharide was reported to produce 
direct swelling effects on host cells (30–32). Although the 
biochemical pathway is still unknown, there is evidence that 
C. neoformans can induce changes in the cellular cytoskel-
eton. Human brain microvascular endothelial cells exposed 
to C. neoformans manifested changes in membrane ruffling, 
morphological changes in the nucleus, and swelling of the 
mitochondria and endoplasmic reticulum (33). These changes 
were associated with dephosphorylation of cofilin and actin 
changes (33). Similarly, changes to the cell cytoskeleton are 
apparent after C. neoformans infection of Drosophila cells (34). 
Another example of close interaction, and possible manipula-
tion of host cytoskeleton, is that in human endothelial cells 
transcytosis requires CD44 receptor, which triggers the move-
ment of actin to membrane lipid rafts that presumably aid in 
cellular entry (35). Changes to the cytoskeleton are apparent 
before non-lytic exocytosis in the form of actin flashes (36).

 6. Non-lytic exocytosis and vacuolation: non-lytic exocytosis is 
generally considered a relatively benign process on the host 
cell given that cells from which C. neoformans has exited can 
replicate (37, 38). However, it is likely that any interference in 
the process of non-lytic exocytosis will trigger lytic exocytosis 
(discussed below). In this regard, macrophage deficient in 
annexin A2, a protein that is involved in a myriad of cellular 
functions including membrane fusion and plasma membrane 
repair, manifested increased lytic exocytosis, possibly due to 
problems in membrane fusion during the process of exocy-
tosis (39). Non-lytic exocytosis results in the formation of 
large vacuoles in the cytoplasm of macrophage from which 
C. neoformans exited (40). Although the mechanism and 
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etiology of the formation of these large vacuoles is not known 
they represent an anatomic cellular abnormality that could 
interfere with cell homeostasis.

 7. Lytic exocytosis: unchecked replication of C. neoformans inside 
macrophage can lead to rupture of the host cell with the release 
of fungal cells. This process, known as lytic exocytosis results 
in the death of the host cell. Host cell lysis by C. neoformans is 
also triggered by a mechanism that is dependent on cell wall 
mannosylation of cell wall and does not require the viability 
of the fungal cell (41).

 8. Activation of cell death pathways: the toxic presence of  
C. neoformans may culminate in host cellular death. However, a 
study of death pathways activated in murine macrophage upon  
C. neoformans infection did not find a specific pathway predom-
inantly activated. In contrast, in dendritic cells C. neoformans  
caused robust inflammasome activation and cell death, which 
was critically dependent of caspase-1, or caspase-8 in the 
absence of caspase-1 (28, 29). C. neoformans polysaccharides 
glucuronoxylomannan and galactoxylomannan can mediate 
direct cytoxicity to macrophage by activation of Fas ligand 
and triggering apoptosis (42, 43). Galatoxylomannan trigger 
B cell death leading to lymphocyte depletion and abrogating 
effective antibody responses (44).

 9. Extracellular vesicle (EV) effects. C. neoformans like all other 
fungi that have been examined produces EVs (45). In the case 
of C. neoformans, these vesicles contain many fungal products 
associated with virulence, including fungal secreted polysaccha-
rides and laccase (46). EVs are not directly toxic to host cells but 
they can have powerful stimulatory effects on host macrophage 
(47). In fact, incubation of macrophage with C. neoformans EVs 
led to activation changes that increased the antifungal activity 
(47). Although at this time EVs are not linked directly to cryp-
tococcal pathogenesis there is considerable indirect evidence 
for an important role in virulence. For example, capsular poly-
saccharides have been implicated in negative effects on immune 
function, and this material is exported across the cryptococcal 
cell wall in EVs (5, 48). In addition to capsular polysaccharides, 
EVs have been shown to carry numerous short RNA molecules 
raising the possibility that these microbial RNAs are involved in 
modulating host cell function (49).

TiSSue AND ORgAN DAMAge

immune System Damage
The immune system is damaged during C. neoformans infection 
by direct injury to its effector cells and by interference with effec-
tive immunity. The outcome of the C. neoformans–macrophage 
interaction is a critical determinant for the fate of the microbe 
and host during infection. The ability of C. neoformans to replicate 
inside macrophage correlated with mice and rat susceptibility 
to infection (50, 51). In humans, the capacity of C. neoformans 
strains to replicate in macrophage to higher intracellular burden 
correlated with worse clinical outcomes (52, 53). Hence, the 
available evidence suggests that factors and interventions that 
modulate macrophage function, in particular when T-cell func-
tion is impaired, could control cryptococcal disease, whereas 

the capacity of the yeast to efficiently replicate intracellularly is 
associated with progression of infection. In this light, it is appar-
ent that mechanisms that damage macrophage are likely to impair 
the antifungal capacity of these cells, which in turn facilitates 
intracellular growth. Hence, mitochondrial damage, phagosomal 
damage, and induction of programmed cellular pathways can be 
expected to directly aid in fungal survival in vivo through impair-
ment of monocyte mononuclear macrophage as well as other 
innate immune cells. Damage to other immune cells has been 
less studied, but for example direct effects of shed polysaccharides 
on adaptive cellular responses (54) will magnify the impairment 
to macrophage function by providing inadequate activation of 
microbicidal capacity. A last point is that shear physical force of 
capsule and cell body growth, to dimensions surpassing 10 µm, 
may exhaust intracellular membranes of the host and that this 
fungal gigantism could physically damage host cell (55, 56), as 
seen with capsule growth and titan cell formation.

The second form of damage to the immune system is interfer-
ence with its ability to organize an effective response. Here, the 
damage is multifaceted and originates from the cellular damage 
described above as well direct effects of cryptococcal components 
that affect the response of immune cells, which in turn interfere 
with effective immunity. The major cryptococcal polysaccharides 
have protean effects on the function of immune cells, which 
contribute to dysregulated process [reviewed in Ref. (57)].  
In addition, to polysaccharide-mediated effects, the presence of 
the C. neoformans urease in the lung promotes the accumulation 
of immature dendritic cells and the emergence of a non-protective 
T2 polarized inflammatory response (58). C. neoformans produces 
a variety of prostaglandins and leukotrienes, which have direct 
effects on inflammatory cells and thus may have a major effect in 
altering the local immune response to infection (3, 41). Synthesis 
of eicosanoids is dependent on phospholipase activity thus 
implicating this enzyme in several different possible mechanism 
of virulence (47). Cryptococcal polysaccharides interfere with 
leukocyte migration toward chemoattractants (59). The mecha-
nism for this effect includes induction of L-selectin shedding 
from neutrophils (60). Interference with leukocyte migration 
could account for the notoriously poor inflammatory responses 
observed in many individuals (61).

The immune response to C. neoformans can also mediate host 
damage. This phenomenon was first when HIV-infected individu-
als successfully treated for cryptococcosis manifested a worsening 
of symptoms after the initiation of antiretroviral therapy (62, 63). 
What came to be known as “immune reconstitution inflammatory 
syndrome” was the result of immune system recovery reacting to 
residual cryptococcal antigens in tissue, which resulted in inflam-
mation and local organ damage (63). Recently, T cells have been 
associated with immune injury in experimental murine crypto-
coccosis establishing a mechanism by which immune dysregula-
tion in response to infection can produce host damage (3). The 
contribution of immune-mediated damage to the pathogenesis 
of cryptococcosis could help explain the paradoxical observation 
that the prognosis of cryptococcal meningitis if more favorable in 
patients with HIV infection and severe immunodeficiency than 
in those without obvious immune impairment (4). There is also 
some evidence that cryptococcal infection in the lung predisposes 
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the host to develop allergic inflammation that could progress to 
hyperreactive airway diseases, such as asthma (64–66).

Damage to BBB
The major cause of mortality and morbidity during cryptococcosis 
is meningoencephalitis. For C. neoformans to invade the central 
nervous system yeast cells must cross the BBB. C. neoformans 
crosses the BBB by two mechanisms: transcytosis, whereby yeast 
cells transit directly through endothelial cells and a Trojan Horse-
like mechanism involving carriage inside an infected macrophage 
(67–69). The former mechanism involves undermining the integrity 
of the BBB (70) and is enhanced by brain inositol (71). The yeasts 
are trapped in the brain capillaries because of their size, allowing 
for active transcytosis (12). For the efficient Trojan horse crossing,  
C. neoformans must survive inside macrophage and, as noted 
above, fungal-mediated damage to the phagocytic cell enhances 
intracellularly cryptococcal survival. However, it is still poorly 
understood if the crossing of the BBB merely causes a transient 
disruption in integrity of the BBB or whether it has more perni-
cious consequences. One could hypothesize that entrapment of 
yeast in brain capillaries cause ischemia to surrounding tissues 
but this issue has not been formally addressed.

Tissue Masses
A distinctive feature of many cases of cryptococcal meningoen-
cephalitis is the formation of masses of yeast cells in the brain with 
little or no inflammation (Figure 1). This feature distinctively dis-
tinguishes these structures from granuloma where inflammation 
and immune response are well organized. These structures are so 
distinctive that they have been referred as “soap bubbles” as they 
are composed of gelatinous pseudocysts composed of packed 
C. neoformans cells with a particular appearance in magnetic 
resonance imaging (72). For masses of C. neoformans to form in 
the brain, they must grow in a manner that displaces or destroys 
brain tissue to create the space for the fungal mass. Given the pro-
pensity of C. neoformans to replicate inside cells and trigger host 
cell death such soap bubble anatomic lesions could be the result 
of progressive lysis of host cells at the fungal–brain interface. In 
this regard, C. neoformans can replicate inside microglial cells, 
the brain resident macrophage population (73). Alternatively, it is 
possible that such lesions represent fungal replication that creates 
spaces in the brain through compression of brain tissue through 
the force generated by fungal replication. Hence, irrespective of 
the mechanism of formation, soap bubble lesions represent prima 
facie evidence of direct fungal damage to brain tissue.

ORgANiSM DAMAge

At the organism level the combination of molecular, cellular, and 
tissue damage leads to cryptococcosis (Figure 1). The damage–
response framework of microbial pathogenesis posits that disease 
occurs when host damage is sufficient to affect hemostasis, which 
in turn produces clinical symptoms (74). For C. neoformans 
infections, host damage can come from both the microbe, as 
reviewed in this essay, and from the immune response (3, 4, 75). 
Although a discussion of how tissue damage results in clinical 

signs and symptoms that can ultimately lead to death is beyond 
the scope of this review, there is a clear connection between the 
types of damage discussed here and the disease.

ReLATiON OF CYTOTOXiCiTY  
TO eNviRONMeNTAL SeLeCTiON 
PReSSuReS—AMOeBA

Evolution of C. neoformans virulence, virulence being defined as 
capacity to survive or to cause disease in mammalian hosts, was 
proposed to arise from selection pressures in the environment by 
phagocytic predators such as amoeba (76, 77). According to this 
view, C. neoformans virulence factors needed for animal patho-
genicity function emerged as characteristics that protect fungal 
cells against phagocytic predators. For example, the capsule, 
melanin, and phospholipase each contribute to fungal cell survival 
when preyed upon by amoeba (76). The outcome of amoeba– 
C. neoformans interactions is highly dependent on the conditions 
of the experiment. In conditions where there are minimal nutri-
ents such as phosphate-buffered saline, C. neoformans is ascend-
ant but the reverse occurs when there are nutrients for amoeba 
(48). The presence of extracellular Ca2+ and mg2+ is enough to 
tilt the balance of the host–C. neoformans and allow amoeba to 
kill a significant portion of C. neoformans (78). Although far less 
is known about how C. neoformans damages amoeba than for 
mammalian cells, it is likely to have parallels in the mechanisms 
for cytotoxicity. In this regard, accumulation of polysaccharide-
containing vesicles was observed in the cytoplasm of amoeba that 
ingested C. neoformans (76).

A SYNTHeSiS FOR C. neoformans-
MeDiATeD HOST DAMAge

For the purposes of this essay, we have considered host damage as 
a function of size scales but it is important to stress that damage 
is continuous from the molecular to organism level (Figure  1). 
Disseminated cryptococcosis is a rare disease in hosts with intact 
immunity, which means that host defense mechanisms are highly 
effective at confiding damage form inhaled C. neoformans to the 
molecular and cellular level in the lungs, such that damage does not 
rise to the level where homeostasis is affected and clinical symptoms 
ensue. Since cryptococcal infection is common and diseases is rare, 
and C. neoformans are common in the environment, it is likely 
that repeated cycles of macrophage infection occur in the lives of 
human hosts. Although we do not know the sequence of events 
that follow these interactions, the fact that these are asymptomatic 
suggests fungal control in the lung with minimal tissue damage. 
However, once there is impairment to the immune system, com-
monly following immunosuppression, HIV infection or iatrogenic, 
cryptococcal infection transforms from silent or latent, to a slow 
but inexorable progressive condition that invariably kills the host 
without aggressive therapy. However, more than a half century 
after the introduction of the first antifungal agent in the form of 
amphotericin B, the mortality and morbidity of cryptococcosis 
remains stubbornly high. Improvements in therapy may require a 
better understanding of the mechanisms of host damage that will 
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allow the development of new therapeutic interventions. A critical 
synthesis of how the various types of host damage synergize to 
impair tissue function is an important next step for understanding 
the pathogenesis of cryptococcosis.
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