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Cancer cells evolve in the tumor microenvironment, which is now well established as an 
integral part of the tumor and a determinant player in cancer cell adaptation and resis-
tance to anti-cancer therapies. Despite the remarkable and fairly rapid progress over the 
past two decades regarding our understanding of the role of the tumor microenvironment 
in cancer development, its precise contribution to cancer resistance is still fragmented. 
This is mainly related to the complexity of the “tumor ecosystem” and the diversity of the 
stromal cell types that constitute the tumor microenvironment. Emerging data indicate 
that several factors, such as hypoxic stress, activate a plethora of resistance mechanisms, 
including autophagy, in tumor cells. Hypoxia-induced autophagy in the tumor microenvi-
ronment also activates several tumor escape mechanisms, which effectively counteract 
anti-tumor immune responses mediated by natural killer and cytotoxic T  lymphocytes. 
Therefore, strategies aiming at targeting autophagy in cancer cells in combination with 
other therapeutic strategies have inspired significant interest to overcome immunological 
tolerance and promote tumor regression. However, a number of obstacles still hamper 
the application of autophagy inhibitors in clinics. First, the lack of selectivity of the current 
pharmacological inhibitors of autophagy makes difficult to draw a clear statement about 
its effective contribution in cancer. Second, autophagy has been also described as an 
important mechanism in tumor cells involved in presentation of antigens to T cells. Third, 
there is a circumstantial evidence that autophagy activation in some innate immune cells 
may support the maturation of these cells, and it is required for their anti-tumor activity. 
In this review, we will address these aspects and discuss our current knowledge on the 
benefits and the drawbacks of targeting autophagy in the context of anti-tumor immunity. 
We believe that it is important to resolve these issues to predict the use of autophagy 
inhibitors in combination with immunotherapies in clinical settings.
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iNTRODUCTiON

While initially considered as a disease of cells with deregulated gene expression, cancer progression 
is now considered to be largely influenced by the tumor microenvironment. It is now well estab-
lished that factors in the tumor microenvironment play a key role in cancer progression, metastasis, 
and resistance to the therapies (1). In addition to malignant cells, the tumor microenvironment 
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TAble 1 | The median percentage of O2 in some organs and in their 
corresponding tumors.

Tissue/organ Median % O2 Corresponding cancer Median % O2

Brain 4.6 Brain tumor 1.7
Breast 8.5 Breast cancer 1.5
Kidney cortex 9.5 Renal cancer 1.3
Liver 4.0–7.3 Liver cancer 0.8
Lung 5.6 Non-small cell lung cancer 2.2
Pancreas 7.5 Pancreatic tumor 0.3
Rectal mucosa 3.9 Rectal carcinoma 1.8
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contains different subsets of immune cells, fibroblasts and cancer-
associated fibroblasts, tumor vasculature and lymphatics, as well 
as pericytes and sometimes adipocytes (2). Effector immune cells 
infiltrating tumors, notably T lymphocytes and natural killer (NK)  
cells mediating adaptive and innate immunity, respectively, are 
basically the major immune cells able to kill cancer cells in the 
tumor microenvironment (3). Although these immune effectors 
are recruited to the tumor site, they are exhausted and their anti- 
tumor functions are often downregulated in response to micro-
environmental factor such as hypoxia.

It is now widely accepted that the oxygen consumption of solid 
tumors is increased due to the tumor volume and elevation of the 
respiratory activity of different cell populations within a tumor. 
The increase in the oxygen consumption leads to the establish-
ment of hypoxic tumor microenvironment. The hypoxic tumor 
microenvironment is a characteristic feature of locally advanced 
solid tumors and a major hallmark that contributes to tumor 
resistance to several therapies including chemotherapy, radio-
therapy, and immunotherapy (4). While mounting experimental 
evidences highlight the role of hypoxia at primary tumors, the  
role of hypoxia in the metastatic dissemination and at the meta-
static niches is only being unraveled. Indeed, hypoxia signaling 
pathway is involved in multiple steps of the metastatic cascade, 
including local invasion and migration, intravasation and extra-
vasation, establishment of the pre-metastatic niche, and survival 
and growth at the distant site. The role of hypoxia in metastasis 
control is reviewed in many excellent reviews (5–7).

Hypoxia within the tumor is characterized by a condition 
where the pressure of oxygen is lower than 5–10 mm Hg. Such 
condition results from an insufficient and/or inadequate oxygen 
supply to the tumor bed. In normal tissues, the oxygen pressure 
is basically higher than that in the corresponding tumors. The 
oxygen pressure within the tumor likely depends on the initial 
oxygenation of the tissue as well as the heterogeneity and the size 
of the tumor. Table 1 shows the percentage of oxygen (reported 
as a median) in some healthy organs or tissues and their corres-
ponding tumors. Adapted from Ref. (8).

Hypoxia is not only resulted from decrease in O2 partial pres-
sure in arterial blood, but also from pathological conditions, such 
as anemia (anemic hypoxia), which restrict the ability of blood 
vessel to carry O2. It can also be generated from dramatic decrease 
in tissue perfusion or defect of cells to use O2. The level of O2 
in tissue is finely tuned by blood flow regulatory mechanism, 
which is adapted according the consumption level of O2 in the 
tissue. Therefore, hypoxia can be generated in a particular tissue 

or organ if the system regulating blood flow fails to meet the level 
of O2 demand, thus impacting the function this tissue or organ. 
It should be noted that the term hypoxia has been used in several 
publications in a somewhat careless manner. Indeed, the in vitro 
experimental conditions described in many papers were rou-
tinely conducted under atmospheric O2 levels ranging from 18 
to 21% O2. However, physiological normoxia comprises between 
1 and 13% O2. Therefore, interpreting results when performing 
research under varying O2 conditions require a comprehensive 
understanding of physiological parameters that define the app-
ropriate in vitro model.

Hypoxia induces disorganized tumor microvasculature and 
such abnormal tumor vascular network often fails to rectify the 
oxygen deficit. While normal tissue is composed of mature and 
well-organized blood vessels, abnormal tumor vasculature is 
largely composed of immature vessels characterized by increased 
permeability, vessel diameter, vessel length, vessel density, tortu-
osity, and interstitial fluid pressure. Such characteristics of tumor 
vasculature compromise the delivery of chemotherapeutic drugs 
and nutrients (9). While the role of hypoxia in tumor resistance 
to chemotherapy and radiotherapy is currently well described 
(10), emerging evidence points to its involvement in tumor 
resistance to immunotherapy. Indeed, experimental and clinical 
evidence suggests that the hypoxic tumor microenvironment is 
responsible for the establishment of large number of mechanisms 
suppressing the anti-tumor immune functions [reviewed in  
Ref. (11)]. We have shown that the anti-tumor immune response is 
dramatically impaired under hypoxic stress (12–17). It has been 
reported that the tumor-killing function of immune cells present 
in the hypoxic tumor microenvironment is largely attenuated 
and the immune cells at the hypoxic area of tumors displayed 
an anergic phenotype induced by malignant cell-derived factors 
(18). In addition, immune cells in the tumor microenvironment 
not only fail to perform their anti-tumor effector functions, but 
also they are co-opted to promote tumor growth (19). Thus, 
a hypoxic tumor microenvironment not only contributes to 
chemotherapy and radiotherapy resistance, but also induces the 
evasion of tumor cells from immunosurveillance. The compelling 
evidence for the involvement of hypoxia in tumor resistance to 
anti-cancer therapies makes it a high priority target for cancer 
therapy. Several preclinical and clinical trials have been initi- 
ated using hypoxia-activated prodrugs that target hypoxic tumor 
compartments or hypoxic bone marrow niches. However, des- 
pite compelling evidence highlighting the role of hypoxia in  
therapy resistance, several hypoxia-activated prodrugs failed to 
show efficacy in clinical trials (20). Such failure could be attri-
buted to the lack of predictive biomarkers for hypoxia-activated 
prodrugs and to some technical challenges of assaying such drugs 
in appropriate clinical settings (20).

HYPOXiA iNDUCible FACTOR-1α (HiF-1α) 
iS THe MAJOR HYPOXiA SeNSOR

Hypoxic is sensed to a large extent by the HIF-1α. Briefly, the 
structure of HIF-1α composed of two oxygen-dependent degra-
dation domains (ODDD) at the N-terminal (N-ODDD) and the  
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C-terminal (C-ODDD) parts. In addition, HIF-1α displayed two 
transactivation domains (TADs), one N-terminal, which overlaps 
with the C-ODDD, and another C-terminal (21). HIF-1α is con-
stantly synthesized in an O2-independent manner under norm- 
oxia, however, it is rapidly degraded by the ubiquitin proteasome 
system (UPS) in O2-dependent mechanism (22). Thus, under 
hypoxic stress, the decrease in the O2 pressure prevents the deg-
radation of HIF-1α leading to its accumulation in the cytoplasm. 
It should be noted that, under normoxic conditions, the half-life 
of HIF-1α is very short, which is less than 5 min (23). The deg-
radation of HIF-1α under normoxic conditions is related to its 
ability to be hydroxylated on proline residue 402 and/or 564 in  
the ODDD by prolyl hydroxylase domain protein 2 (PHD2) and 
its subsequent binding to the von Hippel–Lindau tumor supp-
ressor protein (pVHL). pVHL is a component of an E3 ubiquitin-
protein ligase complex that targets HIF-1α for proteolysis by  
the ubiquitin proteasome pathway (24).

Three prolyl hydroxylase domain (PHD) enzymes (PHD-1, 
PHD-2, and PHD-3) regulating HIF-1α proteasomal degradation 
have been identified (25, 26). Under hypoxia, the low O2 level 
inhibits the activity of PHD2, and HIF-1α is no longer hydro- 
xylated and its proteasomal degradation event is blocked (26). 
Therefore, HIF-1α is accumulated in the cytoplasm and then trans-
location to the nucleus. In the nucleus, HIF-1α dimerizes with 
HIF-1β and the HIF-1α/HIF-1β heteromer binds to the hypoxia 
responsive element in target genes before recruiting coactivators 
and inducing the transcription of several downstream target 
genes (27). More than 800 genes involved in several pathways and 
biological processes are reported to be transcriptionally activated 
by HIF-1α (21) since they contain in their promoter the core 
sequence 5′-[A/G]CGT-3′, which in most cases is ACGTG (28). 
Two other isoforms of HIFs family HIF-2α and HIF-3α have been 
identified; but only HIF-2α is stabilized by oxygen-dependent 
hydroxylation similar to HIF-1α (29). HIF-1α and HIF-2α share 
similar structure of their DNA binding and dimerization domains 
but differ in their TADs (30). HIF-3α functions as an inhibitor  
of HIF-1α and HIF-2α.

AUTOPHAGY ACTivATiON bY HYPOXiC 
STReSS iN THe TUMOR 
MiCROeNviRONMeNT

Macroautophagy (hereafter referred as autophagy) is an evolu-
tionarily conserved cellular catabolic process responsible for the 
degradation of damaged proteins and organelles to produce alter-
native energy source necessary for maintaining cell homeostasis 
and viability. Although autophagy is executed at basal level in all 
cells, it is frequently increased in established tumors (31).

Basically, autophagy process contains three major steps: (i) the 
induction and phagophore formation; (ii) phagophore elongation 
and autophagosome formation; and (iii) fusion, degradation, and  
recycling. Briefly, the first step is initiated by a nucleation step  
or the formation of phagophore that involves two protein com-
plexes: the class-III PI3K/Vps34, Atg6/Beclin1, and Atg14 and 
Vps15/p150 complex and the serine/threonine kinase Atg1/
ULK1, which is a positive regulator of autophagosome formation. 

The maturation of the phagophore requires several autophagy-
related proteins (ATG). During this step, portions of the cyto-
plasm are engulfed and the microtubule-associated protein 1 light 
chain 3 (LC3)-I is lipidated to LC3-II. During the maturation, 
the phagophore is closed by the action of LC3-II and BECN1 
proteins, and this step is required for the formation of autopha-
gosome. Materials intended to be degraded are finally seques- 
tered in the autophagic vacuole that will be fused with lysosomes 
and subjected to degradation by lysosomal hydrolases (32).

Several studies reported that advanced tumors could be 
addicted to autophagy to maintain their energy balance (33, 34). 
Indeed, in cancer patients’ high autophagic index is correlated 
with less responsive to cancer therapy and worse survival com-
pared with those with a low autophagic index (35). Therefore, 
autophagy has been recently considered as a major process in 
regulating the progression of hypoxic tumors.

Under hypoxia, autophagy is basically activated by three major 
pathways (36): low O2 pressure; unfolded protein response; and 
energy depletion. In this review, we will describe how autophagy 
is activated by low O2 level in tumors and summarize recent data 
describing how autophagy activation under low O2 pressure 
operating in tumor cells as a major resistance mechanism to anti-
tumor immune response.

Hypoxia is a major characteristic of almost 50–60% of tumors 
(37), and that increased autophagy induces tumor cell survival 
(38). The stabilization of HIF-1α under hypoxia leads to its 
translocation to the nucleus. In the nucleus, HIF-1α induces the 
expression of downstream target genes, the BH3-only protein 
Bcl-2/adenovirus E1B 19 kDa-interacting protein 3 (BNIP3) and 
the related protein, BNIP3L (39). The upregulated expression  
of BNIP3 and BNIP3L dissociates Beclin1 from Bcl-2 and acti-
vates autophagy.

HYPOXiC TUMOR CellS ACTivATe 
AUTOPHAGY TO eSCAPe CYTOTOXiC 
T-lYMPHOCYTeS (CTl)-MeDiATeD 
KilliNG

Several mechanisms have been described to induce hypoxic tumor 
cell escape from CTL-mediated killing. Bellow, we will briefly  
describe those involving autophagy activations.

Hypoxia-induced Autophagy Regulates 
Phospho-Signal Transducer and Activator 
of Transcription 3 (STAT3) Degradation
Signal transducer and activator of transcription 3 is a transcrip-
tion factor that can be activated through phosphorylation by cyto- 
kine and growth factor signaling pathways including interleukin 
(IL)-6 (40), epidermal growth factor, and vascular endothelial 
growth factor (41). Following phosphorylation, STAT3 promotes 
tumor cell survival, proliferation, angiogenesis/metastasis, and 
immune escape (42–44). It has been reported that the immune 
escape properties of phospho-STAT3 relies on its ability to induce 
several genes responsible for immunosuppression (45–48). We 
have previously reported for the first time that hypoxic lung 
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FiGURe 1 | Targeting autophagy in hypoxic tumor cells restores natural killer 
(NK)-mediated tumor cell killing by preventing the degradation of granzyme 
B. The recognition of tumor cells by NK leads to the release of cytolytic 
granules containing perforin and granzyme B from NK cells. These cytotoxic 
granules enter to the tumor cells through endocytosis and traffic to enlarged 
endosomes called “gigantosomes.” Following the formation of pores in the 
“gigantosome” membrane, granzyme B is released in the cytoplasm and 
initiates cell death. Under hypoxia, excessive autophagy leads to the fusion of 
“gigantosomes” with autophagosomes and the subsequent degradation of 
granzyme B. Degraded granzyme B is no longer able to induce tumor cell 
death, therefore, targeting autophagy prevents the degradation of granzyme 
B and restores NK-mediated lysis.
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carcinoma cells can evade CTL-mediated killing by activating 
autophagy and that targeting autophagy by silencing ATG5,  
and Beclin1 was sufficient to restore their CTL-mediated kill-
ing (16, 49). We provided evidence that targeting autophagy 
in hypoxic cancer cells led to the accumulation of the adaptor 
protein sequestosome1 (SQSTM1/p62). Accumulated SQSTM1/
p62 bound selectively to pSTAT3 and induced its selective deg-
radation by the UPS. These data highlight targeting autophagy as 
a valuable strategy to improve CTL-mediated killing of hypoxic 
cancer cells. This statement was further supported by in  vivo 
data using hydroxychloroquine (HCQ) as autophagy inhibitor in 
B16-F10 tumor-bearing mice (16). Thus, the effect of HCQ on 
the tumor growth of B16-F10 melanoma was assessed alone or in 
combination with a tyrosinase-related protein-2 (TRP2) peptide-
based vaccination strategy. A synergistic effect on the inhibition 
of tumor growth was observed by combining HCQ with TRP2 
vaccination, indicating that targeting autophagy represents an 
innovative strategy to improve the anti-tumor effect of TRP2-
based vaccine.

Hypoxia-induced NANOG expression 
Activates Autophagy by Regulating 
bNiP3l
In addition to the mechanism described above, other studies 
showed that hypoxia impaired CTL-mediated lysis by transcrip-
tionally upregulating the stem cell self-renewal transcription 
factor NANOG (50, 51). It has been reported that targeting 
NANOG in hypoxic cells restored CTL-mediated tumor cell 
killing. In this regards, a link between NANOG expression and 
the phosphorylation of STAT3 has been proposed, since NANOG 
depletion results in the inhibition of STAT3 phosphorylation and 
its nuclear translocation. More recently, a direct regulation of 
autophagy inducer gene BNIP3L by NANOG has been reported 
by chromatin immunoprecipitation and luciferase reporter assays 
showing that NANOG binds directly to the enhancer sequence  
of BNIP3L and activates its transcription. These data strongly 
argue that the pluripotency factor NANOG and autophagy coop-
erate to induce resistance to CTL under hypoxia (52).

HYPOXiA-iNDUCeD AUTOPHAGY leADS 
TO TUMOR CellS eSCAPe FROM  
NK-MeDiATeD KilliNG

Similar to CTL, NK cells of the innate immune system able to 
recognize and kill tumor cells (53). The recognition and the 
killing of tumor cells by NK depend on the balance between the 
expression of activating and inhibitory receptors on the surface of 
NK cells and their corresponding ligands on the surface of tumor 
cells (54). Similar to CTL, NK cells kill their target following the 
establishment of immunological synapse (55) and the secretion of 
cytotoxic granules containing perforin and granzymes. In tumor 
cells, the secreted granules induce cell death by apoptosis (56). 
NK cells are also able to kill their target by tumor necrosis factor 
superfamily dependent mechanism (57). Below, we will briefly 
describe the major autophagy-related mechanisms responsible 
from tumor escape form NK-mediated killing.

Hypoxia-induced Autophagy in Tumor 
Cells Degrades NK-Derived Granzyme b
We have reported that autophagy activation in tumor cells 
impaired NK-mediated killing by selective degradation of 
NK-derived granzyme B in the lysosome compartment. Using 
GFP granzyme B-expressing NK cells, we provided evidence that 
the level of granzyme B is significantly lower in hypoxic tumor 
cells compared with normoxic tumor cells. Targeting autophagy 
by knocking down Beclin1 in hypoxic tumor cells was sufficient 
to rescue the granzyme B level in hypoxic cells and restore 
NK-mediated lysis (12, 58, 59). These data clearly suggest that 
during its intracellular trafficking in hypoxic tumor cells, gran-
zyme B is exposed to a high risk of being targeted to autophago-
somes and subsequently to the lysosome compartment to be 
degraded (Figure 1). While autophagy has long been considered 
as a process of non-selective bulk degradation, new evidence 
suggested that it can be a selective degradation process under 
stress conditions. The selectivity of autophagy to degrade specific 
proteins depends on several cargo protein including SQSTM1/
p62. In keeping with this, no data are available so far describing 
whether granzyme B is selectively degraded by autophagy or it is 
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FiGURe 2 | Targeting autophagy leads to tumor regression by inducing the 
infiltration of natural killer (NK) cells into the tumor bed. Targeting autophagy 
in tumor cells induces the expression of CCL5 cytokine. Through paracrine 
mechanism, CCL5 binds its receptors expressed on the surface of NK cells 
and induces the recruitment of functional NK cells to the tumor bed. 
Functional NK cells recruited to the tumor kill cancer cells leading to tumor 
regression. The lower part describes the molecular mechanism underlying the 
expression of the chemotactic cytokine CCL5. Briefly, targeting Beclin1 leads 
to a decrease in the activity of the protein phosphatase 2A by a mechanism 
not yet understood. Such a decrease enhances the phosphorylation of JNK 
that subsequently phosphorylates c-JUN. Phosphorylated c-JUN binds to the 
promoter of Ccl5 and induces its transcription. CCL5 released by Beclin1-
defective tumor cells binds to CCL5 receptor on the surface of NK cells, and 
induces their infiltration. Functional NK cells recruited to the tumor site kill 
cancer cells and thereby reduce the tumor volume.
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just an “innocent victim” subjected to non-specific degradation 
under hypoxia in tumor cells.

Targeting Autophagy induces a Massive 
infiltration of NK Cells into the Tumor bed
Based on our data showing that targeting autophagy restores 
tumor cell susceptibility to NK-mediated lysis in vitro, we inves-
tigated whether blocking autophagy reduces tumor growth in 
an NK-dependent manner. We used BALB/c and C57BL/6 mice 
transplanted with syngeneic murine 4T1 breast adenocarcinoma 
and B16-F10 melanoma tumor cells, respectively. We first showed 
that the tumor growth of these two syngeneic mouse models is 
primarily controlled by NK cells as the depletion of host NK cells 
significantly increases tumor growth. We next assessed the impact 
of targeting Beclin1 on the tumor growth. Our data showed that 
targeting Beclin1 resulted in a significant decrease in the tumor 
growth presumably as a consequence of potentiation of tumor cell 
killing by NK cells. The decrease in the tumor growth was no longer 
observed when NK cells were depleted. In keeping with this, we 
showed a massive infiltration of NK cells into Beclin1-defective 
compared with control B16-F10 tumors. Mechanistically, we 
showed that the infiltration of NK cells is related to the ability 
of Beclin1-defective tumor cells to overexpress CCL5 cytokine 
responsible for the trafficking of NK cells to the tumor (Figure 2). 
The infiltration of NK  cells was completely abrogated when  
CCL5 was silenced in Beclin1-defective tumor. Furthermore, we 
showed that the overexpression of CCL5 involved the activation 
of the transcription factor c-Jun by JNK (60).

TARGeTiNG AUTOPHAGY iN THe 
CONTeXT OF CANCeR THeRAPY:  
FRieND OR FOe?

Several lines of evidence supports the concept that autophagy  
activation is associated with cancer cell resistance to chemotherapy 
(61, 62), radiotherapy (63, 64) and immunotherapy (12, 16, 58)  
either by supporting cell metabolism directly (65) or through 
the impairment of cell death pathway (66). Therefore, several 
preclinical and clinical studies have been undertaken to develop 
drugs able to inhibit autophagy (67). Basically, pharmacological  
inhibitors of autophagy pathway can be classified into three classes:  
(i) inhibitors of the initiation step of autophagy; (ii) inhibitors of 
the nucleation of phagophore; and (iii) inhibitors of the fusion 
of autophagosomes with lysosomes [reviewed in Ref. (67, 68)]. 
In this review, we will not describe all drugs inhibiting each step 
of autophagy but briefly describe the action of those displaying 
potent anti-tumor activities.

Chloroquine (CQ) has been approved for decades in the treat-
ment of malaria and arthritis, and currently used as autophagy 
inhibitors. CQ blocks the last step of autophagy process before 
the fusion of autophagosomes with lysosomes (69). Therefore, 
several clinical trials are currently evaluating CQ or its derivative 
HCQ alone or in combination with chemotherapy or radio-
therapy in patients with several types of cancers (70). Briefly, a 
significantly prolonged median survival of glioblastoma (GBM) 
patients (33 months compared with 11 months) was observed 

using CQ combination with temozolomide and radiotherapy 
(40). The combination of CQ with radiotherapy also reported 
in a pilot and phase II clinical trials to improve the survival of 
non-small cell lung carcinoma, squamous cell lung carcinoma, 
and breast and ovarian cancer patient with brain metastasis (71). 
Another phase I/II clinical trial using CQ in combination with 
radiotherapy in GBM showed no significant improvement in 
the survival (72) due to an inconsistent inhibition of autophagy 
between patients and dose-limiting toxicities that prevented 
the use of high CQ doses. In some trials, CQ was also used as 
monotherapy, notably in patients with metastatic pancreatic 
cancer, but no clinical benefit was observed. This failure to pro-
vide clinical benefit could be related to inconsistent autophagy 
inhibition was reported (72) and the limited potential for CQ as 
single agent to improve end-stage disease outcomes. However, 
in PDX precli nical model, the single treatment with HCQ was 
effective (73). The combination of HCQ and gemcitabine in 
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preoperating setting of patients with pancreatic adenocarcinoma 
induced a decrease in the serum tumor marker cancer antigen 
19-9 in 61% (74). In the context of cancer immunotherapy, the 
effect of CQ has been evaluated in combination with high-dose 
interleukin-2 (HDIL-2) in preclinical murine hepatic metastasis 
model. Combining CQ with HDIL-2 enhanced IL-2 immuno-
therapeutic efficacy and limit toxicity by increasing long-term 
survival, decreased toxicity associated with vascular leakage, and 
enhanced immune cell proliferation and infiltration in the liver 
and spleen (75).

Based on studies described above, it appears that the clinical 
response to autophagy inhibitors varied widely. The major diffi-
culties were the identification of appropriate pharmaco-dynamic 
biomarkers to evaluate the change in autophagy (70). Therefore, 
none of them formally confirmed that inhibiting autophagy in 
cancer cells provides therapeutic benefits to cancer patients (76). 
It remains to be defined whether the lack of therapeutic benefits 
is related to the lack of the specificity of CQ to inhibit autophagy. 
Indeed, it should be highlighted that CQ and HCQ are non-
selective autophagy inhibitors since they lead to the reduction 
of nutrient scavenging (77, 78). They could also alter tumor pH, 
thus affecting other drugs bioavailability when combined with 
conventional cytotoxic chemotherapies (79). Currently, there 
is a major interest in developing selective new drugs inhibiting 
autophagy as an important survival mechanism of tumors.

Lys05 is dimeric form of CQ displaying more potent autophagy 
inhibitor than CQ, which displays more potent accumulation 
properties in the lysosome. Lys05 is, therefore, a new lysosomal 
autophagy inhibitor with a strong potential to be developed into 
a drug for cancer. It has been reported that Lys05 is a potent 
anti-tumor drug in vitro and in several preclinical mouse model. 
The potent autophagy inhibition property of Lys05 relied to the 
bivalent aminoquinoline rings, C7-Chlorine, and a short tria-
mine linker. Since Lys05 is a potent inhibitor of autophagy it can 
be used at low doses, which are well tolerated and associated with 
strong anti-tumor activity (80).

Another druggable autophagy target proteins have been 
recently proposed, which include Beclin-1 and Vps34 (or PI3K 
class-III) (81). Both of them are involved in the early step of 
autophagy initiation (82, 83). SAR405 is a kinase inhibitor of 
Vps18 and Vps34. The inhibition of Vps34 leads to an impair-
ment in the lysosomal function, thus affecting vesicle trafficking 
between late endosome and the lysosome. The Vps34i (SAR405) 
has been developed following chemical optimization with highly 
potent and selective inhibitor of vesicle trafficking from late 
endosomes to lysosomes. SAR405 inhibits also starvation- and 
mTOR-dependent induction of autophagy (84, 85).

Another autophagy druggable protein is the serine/threonine 
kinase ULK1/Atg1 involved in the core autophagy pathway. 
Cell-based screen allowed identification of a potent ULK1 small 
molecule inhibitor SBI-0206965. This drug is highly selective 
ULK1 kinase inhibitor in vitro and suppressed ULK1-mediated 
phosphorylation events in cells. The anti-tumor activity of SBI-
0206965 has been proved in vivo, thus providing a strong ration-
ale for it use in the clinic (86). NSC185058 has been identified 
as an effective inhibitor of ATG4B activity. NSC185058 showed 
a negative impact on the development of Saos-2 osteosarcoma 

tumors in vivo (87). Inhibition of ATG4B using NSC185058 was 
reported to reduce autophagy and tumorigenicity of GBM cells 
and to improve the impact of radiotherapy on GBM growth in 
mice (88). These results suggest that ATG4B is another suitable 
anti-autophagy target and a promising therapeutic target to treat 
osteosarcoma.

Beside its role in supporting tumor growth and resistance 
to therapies, preclinical results suggest that intact autophagic 
responses in cancer cells are dispensable for the initiation of an 
appropriate danger signaling and thus for the initiation appropri-
ate anti-cancer immune responses in syngeneic tumor models 
treated with immunogenic chemotherapy or radiotherapy (89, 90).  
Indeed, by contrast to autophagy-defective tumors, autophagy-
competent tumors attracted dendritic cells and T  lymphocytes 
into the tumor bed. Inhibiting autophagy impaired the immu- 
nogenic release of adenosine triphosphate (ATP) from dying 
tumor cells and subsequently blocked the ATP-dependent rec-
ruitment of immune cells (89).

In addition its impact on tumor cells, it has been observed 
that autophagy actively participates in the intracellular antigen 
processing for major histocompatibility complex (MHC) class-II 
and I presentation as well as in extracellular antigen processing 
for MHC class-II presentation. It has been also reported that 
autophagy is involved in the cross-presentation of antigens for 
MHC class-I presentation and in MHC class-I internalization 
[reviewed in Ref. (91)]. In keeping with this, it appears that the 
autophagic machinery plays an important role in many aspects 
of the antigen presentation and therefore raises the question 
about the net outcome of inhibiting autophagy on the adaptive 
immunity.

In addition to the role of autophagy in antigens processing, 
autophagy plays a functional role in different immune cell type. 
Briefly, in macrophages autophagy plays a crucial role in macro-
phage homeostasis by different mechanisms [reviewed in Ref. (59)].  
The autophagic activity is increased in DCs compared with other 
cell types. Such autophagic activity is related to intensive proces-
sing of extra- and intra-cellular antigens for the MHC class-I  
and -II presentation (92).

The role of autophagy in T  cells was also addressed. In the 
context of naive T cells, it has been reported that tumor-derived 
metabolite lactate selectively inhibits FAK family–interacting 
protein of 200  kDa (FIP200; also known as RB1CC1) in naive 
T cell leading to autophagy deficiency, apoptosis and poor anti-
tumor immunity in ovarian cancer patients, and tumor-bearing 
mice (93).

In tumor cells, suppression of FIP200 suppresses the initiation 
and progression of mammary tumor breast cancer driven by the 
PyMT oncogene. In addition, FIP200 conditional knockout mice 
display elevated expression level of interferon (IFN)-responsive 
genes associated with increased infiltration of effector T  cells 
in the tumor microenvironment triggered by the production of 
CXCL10 chemokine (94). In regulatory T (Treg) cells, autophagy 
plays a major role in their lineage stability and survival fitness. 
Specific ablation of autophagy-related genes Atg7 or Atg5 in 
Treg induces apoptosis and loss of Foxp3 transcription factor 
(95). In KRasG12D-driven lung cancer mouse model, it has been 
reported that ablation of Atg5 favors adenosinergic signaling via 
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a HIF-1α pathway, as well as the infiltration of tumors by Tregs, 
thus influencing inflammatory and immunosurveillance mecha-
nisms that can stimulate and control carcinogenesis, respectively 
(96). Pharmacological blocking of autophagy by CQ enhances 
IL-2 immunotherapeutic efficacy and limit toxicity. Combining 
CQ with IL-2 increases long-term survival, decreases toxicity 
associated with vascular leakage, and enhances immune cell 
proliferation and infiltration in the liver and spleen (75). These 
results support the use of autophagy inhibitors as a novel clinical 
strategy to enhance the efficacy of IL-2-based immunotherapy for 
cancer patients. Similarly, the ablation of autophagy-related gene 
GABARAP, inhibits the tumor formation incidence in mice and 
by enhancing the immune response through increased secretion 
of IL-1β, IL-6, IL-2, and IFN-γ from stimulated macrophages and 
lymphocytes (97).

Furthermore, autophagy seems to be an important mecha- 
nism for the development, maintenance, and survival of T lym-
phocytes (98–100). Moreover, the interaction of B  cells with 
CD4+ T cells requires autophagy that promotes the presentation 
of antigens by MHC class-II molecules through a mechanism 
reminiscent to that described for DCs (101, 102).

CONClUDiNG ReMARKS

Given the impressive impact of targeting autophagy on tumor 
immunity is the ultimate question that arises whether targeting 

autophagy would improve or impair the efficacy of cancer immu-
notherapy. Based on our current knowledge available so far, it 
is difficult to draw a clear statement about this question. In this 
review, we provided some clues to argue that blocking autophagy 
for therapeutic purposes requires careful consideration. Although 
targeting autophagy appears to improve the anti-tumor immune 
response, it should be highlighted that such strategies must con-
sider the potential negative or positive impact on immune cells. 
Therefore, it is important to evaluate the net outcome of targeting 
autophagy in the context of the TME rather than analyzing the 
impact of targeting autophagy at the cellular level. Moreover, 
considering this complex role of autophagy in the tumor micro-
environment it is still difficult to draw a clear statement whether, 
when, and how autophagy has to blocked or enhanced for the 
benefit of cancer patients.
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