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Infection with protozoan parasite Trypanosoma cruzi results in activation of nucleotide- 
binding domain and leucine-rich repeat containing receptors (NLRs). NLR activation leads 
to inflammasome formation, the activation of caspase-1, and the subsequent cleavage 
of IL-1β and IL-18. Considering that inflammasome activation and IL-1β induction by 
macrophages are key players for an appropriate T cell response, we investigated the 
relevance of NLR pyrin domain-containing 3 (NLRP3) and caspase-1/11 to elucidate 
their roles in the induction of different T cell phenotypes and the relationship with par-
asite load and hepatic inflammation during T. cruzi-Tulahuen strain acute infection. We 
demonstrated that infected nlrp3−/− and C57BL/6 wild type (WT) mice exhibited similar 
parasitemia and survival, although the parasite load was higher in the livers of nlrp3−/− 
mice than in those of WT mice. Increased levels of transaminases and pro-inflammatory 
cytokines were found in the plasma of WT and nlrp3−/− mice indicating that NLRP3 is 
dispensable to control the parasitemia but it is required for a better clearance of para-
sites in the liver. Importantly, we have found that NLRP3 and caspase-1/11-deficient 
mice differentially modulate T helper (Th1, Th2, and Th17) and cytotoxic T lymphocyte 
phenotypes. Strikingly, caspase-1/11−/− mice showed the most dramatic reduction in 
the number of IFN-γ- and IL-17-producing CD4+ and CD8+ T  cells associated with 
higher parasitemia and lower survival. Additionally, caspase-1/11−/− mice demonstrated 
significantly reduced liver inflammation with the lowest alanine aminotransferase (ALT) 
levels but the highest hepatic parasitic load. These results unequivocally demonstrate 
that caspase-1/11 pathway plays an important role in the induction of liver adaptive 
immunity against this parasite infection as well as in hepatic inflammation.
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inTrODUcTiOn

Chagas disease is a neglected disease caused by the obligate intracellular protozoan parasite 
Trypanosoma cruzi that affects millions of people in Latin America. As a result of global warming and 
human migration, this disease is now a global public health issue. This has led to an increased risk of 
transmission of the infection, mainly through blood transfusion and organ transplantation (1). Chagas 
disease is characterized by two distinct phases, an acute phase involving a number of parasites detected 
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in the bloodstream as well as in host tissues, and after parasitemia 
is controlled, a chronic phase established and represented by sub-
patent parasitism and positive serology. Approximately 70% of the 
patients in this phase present with an indeterminate form, while 
30% will develop clinically different cardiac, digestive, or cardio-
digestive forms of the disease decades after the infection (2). 
Based on epidemiological findings as well as on animal models, 
it has been proposed that this heterogeneous clinical response is 
linked to host genetic background and the extremely high genetic 
diversity of T. cruzi (3, 4). Parasite strains exhibit different organ 
tropism during acute and chronic infection (5). In this study, we 
used T. cruzi-Tulahuen strain that mainly infects liver and spleen 
and induces liver pathology and splenomegaly during acute phase 
(6). Besides, this parasite strain also infects heart contributing to 
the development of chagasic cardiomyopathy during the chronic 
phase. Our research group previously demonstrated that during 
the acute infection with the Tulahuen strain, the liver of C57BL/6 
mice displayed numerous cellular infiltrates with predominance 
of macrophages, granulocytes, and T lymphocytes associated with 
high expression of TLR9 on these cells and persistent levels of 
pro-inflammatory cytokines. These results were correlated with 
higher transaminase activity (7). Even though macrophages, both 
classically and alternatively activated, represent immune effectors, 
and they are also potential reservoirs for T. cruzi (8, 9).

The simultaneous occurrence of different T helper (Th) cells 
subsets and the outcome of T. cruzi infection could be defined 
as a battle between beneficial Th1 response that fights against 
intracellular parasites and Th2 response that promotes parasite’s 
replication (7, 10). An important protective role of Th17 cells in 
the control of parasitemia and survival of T. cruzi-infected mice 
was recently reported (11). Protective immune responses against 
this parasite are based on the release of IL-12 by infected mac-
rophages, which induce IFN-γ production from natural killer and 
T cells (12). IFN-γ activates nitric oxide synthase and NADPH 
oxidase expression and the production of reactive nitrogen inter-
mediates and reactive oxygen species (ROS) in macrophages, 
which are critical for their trypanocidal activity (13, 14). Tumor 
necrosis factor (TNF) also plays a role in amplifying microbi-
cidal mechanisms of IFN-γ-activated macrophages and thus 
contributes to host protection (15). IFN-γ is also important 
for orchestrating the ongoing adaptive immunity, contributing 
to differentiation of CD4+ Th1 and CD8+ T cells, required for 
the control of the parasite multiplication occurring during the 
acute infection. Among the various CD8+ T  cell subsets, Tc1 
were shown to play a major role in the fight against T. cruzi (16). 
The hallmark of this subset is the production of IFN-γ and TNF. 
In addition to killing and releasing cytokines, recent studies 
have ascribed a novel regulatory role to CD8+ T cells (17, 18).  
Regulatory CD8+ T  cells represent a transient state of effector 
CD8+ T cells which promote the production of the immunosup-
pressive IL-10 cytokine to counteract inflammation (19).

The innate immune system utilizes different sets of germline-
encoded receptors to detect T. cruzi infection. These include the 
toll-like receptor (TLR) family members that are expressed at 
the plasma membrane and in endosomal compartments  (20). 
Additionally, the intracellular Nod-like receptor (NLR)  family 
comprises several members capable of assembling inflammasomes 

once they get activated. The different types of inflammasomes are 
distinguished by their NLRs, adaptors, and stimuli specificities. 
The NLR pyrin domain-containing 3 (NLRP3) inflammasome, 
which is possibly the most extensively studied platform, is acti-
vated by pathogen-associated molecular patterns and damage-
associated molecular patterns. The central adaptor molecule, 
which is required for the assembly of the NLRP3 inflammasome, 
is the apoptosis-associated speck-like protein containing a cas-
pase recruitment domain (ASC). This pyrin-containing protein 
recruits pro-caspase-1 and allows its interaction with NLRP3 (21). 
The inflammasomes promote the activation of caspase-1 whose 
pro-inflammatory activity consists in catalyzing the maturation 
of pro-IL-1β and pro-IL-18 into its bioactive forms (22). IL-1β 
induces an increase in the number of activated CD4 and CD8 cells 
and augments the differentiation of the antigen-triggered T cells 
(23). IL-1β was also shown to promote IL-17 production high-
lighting the tight link between them (24). In concordance with 
this, CD4+ and CD8+ T cells produce IFN-γ that further activate 
phagocytic cells to promote parasite killing (25). Additionally, it 
was recently demonstrated that IL-1β is relevant for appropriate 
antigen presentation in host defense (26, 27).

Previously, it was reported that NLRP3-deficient mice exhib-
ited higher parasitemia suggesting more susceptibility to infection 
with the T. cruzi-Y strain, whereas another group described that 
NLRP3 participation was not crucial for the resistance to parasite 
using bone marrow macrophages infected with the SilvioX10/4 
strain (28–30). The aim of this work was to investigate the role 
of both NLRP3 and caspase-1/11 in the induction of the adap-
tive immunity, the different T  cell subsets emerged, and their 
relationship with parasite load and hepatic inflammation during 
T. cruzi-Tulahuen strain acute infection.

Our results demonstrate for the first time that NLRP3 is dispen-
sable for controlling parasitemia, though it is relevant for killing 
of parasites in the liver. Our data, also demonstrate that lacking 
caspase-1/11 pathways profoundly alters the hepatic T helper and 
CD8+ T cell phenotypes during T. cruzi infection. Moreover, cas-
pase-1/11 deficiency skews the immune response to a dominant 
Th2 cytokine profile indicating that caspase-1/11 is important for 
both the anti-parasite T cell immunity and liver inflammation.

MaTerials anD MeThODs

ethic statement
All animal experiments were approved by and conducted in 
accordance with guidelines of the committee for Animal Care 
and Use of the Facultad de Ciencias Químicas, Universidad 
Nacional de Córdoba (Approval Number HCD 388/11) in strict 
accordance with the recommendation of the Guide to the Care 
and Use of Experimental Animals published by the Canadian 
Council on Animal Care (OLAW Assurance number A5802-01).

Mice, infection, Parasitemia, and survival
C57BL/6 (B6) mice indicated as wild type (WT) along the 
manuscript, were purchased from National University of La Plata  
(Bs. As., Argentina). Nlrp3−/− and casp-1/11−/− mice were 
obtained from Jackson Laboratory (Bar Harbor, ME, USA). 
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Animals were maintained at the Animal Resource Facility of the 
CIBICI-CONICET (NIH-USA assurance number A5802-01) 
at 22 ±  2°C with a 12 h light–dark cycle, with food and water 
ad  libitum. Six- to eight-week-old male mice were intraperito-
neally injected with 103 blood trypomastigotes-Tulahuen strain. 
Blood and livers were collected at 14 and 21 days post infection 
(dpi). Survival of each mouse was followed every day. Parasitemia 
was measured as previously described (31). Uninfected mice of 
each strain were used as controls. Parasites were maintained by 
serial passages from mouse-to-mouse each 14 days in B6 mice.

Quantitative Pcr
Trypanosoma cruzi was quantified by detection of parasite’s 
satDNA amplified in triplicate using TaqMan MGB probes and 
the TaqMan Universal PCR Master Mix (Applied Biosystems) on a 
StepOne Plus cycler (Applied Biosystems) as previously described 
(32). Parasite DNA and gene expression by real-time PCR was 
quantified by the comparative threshold cycle (CT) method 
(RQ = 2−ΔΔT), using normalization with the TaqMan Endogenous 
Control (Applied Biosystems) levels of each animal group. Graphs 
were plotted as arbitrary units (a.u.) based on log RQ values.

isolation of hepatic leukocytes
Mice were euthanized and slowly perfused with an intracardiac 
PBS flux. Livers were homogenized through a tissue strainer and 
intrahepatic leukocytes were obtained after a 20 min centrifugation 
(600 g) in a 35 and 70% bilayer Percoll gradient (Sigma). Viable cells 
were counted on a Newbauer’s chamber by trypan blue exclusion.

Flow cytometry
Cell suspensions were washed in ice-cold FACS buffer (PBS-2% 
FBS) and incubated with fluorochrome-labeled Abs for 20 min at 
4°C. Cells were surface-stained with the following Abs properly 
combined: APC-eFluor780-anti-CD4, FITC-anti-CD8, APC-
eFluor780-anti-F4/80, PE-anti-IL-1R, and APC-anti-IL-18R. Intra-
cellular cytokines were detected after stimulating cells for 4 h with 
30 ng/mL PMA and 500 ng/mL ionomycin (Sigma) in the presence 
of GolgiStop and GolgiPlug (BD Biosciences). Cells were then fixed 
and permeabilized with BD Cytofix/Cytoperm and Perm/Wash 
(BD Biosciences) according to the manufacturer’s instructions. Cells 
were incubated with: PerCp-Cy5.5-anti-IFN-γ, PE-anti-IL-17A, 
PeCy7-anti-IL-10, and APC-anti-IL-4, FITC-anti-TLR9 (Abcam). 
Also, goat anti-NLRP3 (Abcam) was used with Alexa-Fluor-633-
anti-goat (Thermo-Fisher). No staining controls were included in 
each experiment in order to set the positive markers.

Oxidation-sensitive dye 10  µM H2DCFDA (Invitrogen) and 
10 µM DAF-FM (Molecular Probes) were used to measure ROS 
and NO production, respectively (33). After washing, the sam-
ples were examined using a BD FACS Canto II flow cytometer 
(BD Biosciences), and then analyzed using the Flow Jo Software. 
Gate strategies are indicated in Figure S1 in Supplementary Material.

Western Blot
Liver samples were lysed (1% Triton X-100, 0.5% sodium deox-
icholate, 9% SDS, 1 mM sodium ortovanadate, and 10 μg PMSF in 
PBS), separated on a 10% SDS-PAGE and transferred to nitrocel-
lulose membranes. After blocking, they were incubated with goat 

polyclonal anti-caspase-1-p20 (Santa Cruz) and rabbit polyclonal 
anti-NLRP3 (Abcam), detected with IRDyes and analyzed on 
an OdysseyCLx Imaging System (Li-cor). Protein loading was 
assessed with a polyclonal anti-actin Ab (Santa Cruz). Bands were 
quantified using Gel-Pro Analyzer software.

Measurement of cytokines
Tumor necrosis factor, IL-6, IL-10, and IFN-γ levels were deter-
mined by ELISA sandwich with antibody pairs purchased from 
eBioscience according to the manufacturer’s protocol in plasma. 
IL-1β and IL-18 were quantified with ELISA kits (eBioscience). 
The absorbance values were determined using a spectrophoto-
metric plate reader (BIO-RAD, Model 680).

histological studies of liver Tissues
Liver tissue was fixed in 10% paraformaldehyde, embedded in 
paraffin, sectioned on slides, and stained with hematoxylin and 
eosin (H&E). Serial liver sections from different hepatic lobules 
were double blind analyzed and inflammatory infiltrate area was 
quantified vs. total area per field from five pictures randomly 
chosen from two mice of each group. Images were analyzed using 
Axiovision 4.8 (Zeiss) software.

Fluorescence Microscopy
Hepatic leukocytes were put on a slide by the citospin technique, 
fixed in 4% paraformaldehyde, blocked with PBS-BSA 1%, 
and labeled with FITC-anti-F4/80, goat-anti-NLRP3 (Abcam), 
rabbit-anti-TLR9 (Abcam) were revealed with A633-anti-rabbit 
and A495-anti-goat (Thermo-Fisher) and visualized using an 
FV1000 confocal microscope (Olympus). Nuclei were stained 
with 2 µg/mL DNA-binding fluorochrome Hoechst 33258.

Measurement of Transaminases and 
lDh enzyme activity
Blood samples were collected and the activity levels of aspartate 
aminotransferase (AST), alanine aminotransaminase (ALT), 
and lactate dehydrogenase (LDH) in plasma were quantified by 
Biocon Laboratory, Córdoba-Argentina.

statistical analysis
Results are expressed as mean ± SEM. Comparisons among groups 
were performed using the parametric analysis of variance (one 
way or two-way ANOVA) followed by a multiple-comparison test 
(Bonferroni test) using Graph Pad Prism Inc., La Jolla, CA, USA. 
A p-value <0.05 was considered significant.

resUlTs

T. cruzi infection Triggers nlrP3 
inflammasome response in the liver and 
increases the number of nlrP3+ hepatic 
Macrophages in WT Mice
Previous works have shown that NLRP3 inflammasome partici-
pate in the innate immune response to T. cruzi infection (28–30). 
However, it is unknown if in the liver immunity the NLRP3 
inflammasome is triggered in the T. cruzi-Tulahuen strain. NLRP3 
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FigUre 1 | Trypanosoma cruzi triggers NLRP3 inflammasome response in the liver of wild type (WT) mice. Male WT mice were intraperitoneally inoculated with  
103 trypomastigotes-Tulahuen strain and livers were collected and perfused at 14 and 21 days post infection (dpi). (a) Hepatic transcript levels of nlrp3 and asc.  
(B) Cropped lanes of protein expression of NLRP3 and caspase-1-p20 active subunit of liver samples assessed by Western blotting (uninfected controls, n = 2; 
14 dpi, n = 3; 21 dpi, and n = 2). (c) Representative dot plots and absolute number of hepatic NLRP3-expressing F4/80+ cells. (D) Representative dot plots 
and absolute number of IL-1β-producing F4/80+ cells. Gate strategies (Figure S1A in Supplementary Material) were performed using anti-F4/80+ and anti-NLRP3 
plus A633-anti-goat fluorochrome-labeled antibodies. Data are shown as mean ± SEM from one of three representative experiments; n = 2–6 mice per group. 
Statistical significance was evaluated by Two-way ANOVA followed by Bonferroni post hoc test. *p < 0.05; **p < 0.01; ***p < 0.001.
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and ASC expression were analyzed in liver tissue of infected B6  
WT by qPCR.

A strong increase of NLRP3 was found at 14 and 21 dpi in com-
parison with uninfected controls (Figure 1A). We also observed 
an increase in the protein levels of NLRP3 and caspase-1-p20  
active enzymatic subunit by Western blot (Figure 1B).

Taking into account that during the acute infection with the 
Tulahuen strain, the liver of B6 mice displays cellular infiltrates 
with predominance of macrophages, we decided to analyze the 
induction of NLRP3 inflammasome and IL-1β within these 
cells. Hepatic macrophages (F4/80+ cells) are represented by 
Kupffer cells or resident macrophages plus inflammatory infil-
trating macrophages/monocytes. Thus, we observed an increased 
absolute number of hepatic NLRP3+F4/80+ cells (Figure 1C). 
Additionally, we also demonstrated the presence of IL-1β in 
hepatic macrophages at 21 dpi by flow cytometry (Figure 1D). 
Analysis of the absolute cell number is fundamental due to the 
hepatomegaly induced during the acute T. cruzi infection.

infected caspase-1/11-Deficient Mice 
exhibit an increased number of 
Macrophages associated With a 
reduction of hepatic cD8+ T cells
In order to elucidate how NLRP3 and caspase-1/11 impact on innate 
and adaptive immune responses, we infected WT, nlrp3−/−, and 

caspase-1/11−/− mice and analyzed the hepatic leukocyte infiltra-
tion at 14 and 21 dpi. A reduced number of inflammatory foci and 
total infiltrating cells were found in both deficient strains compared 
with WT mice at 21 dpi (Figures 2A,B). When we analyzed the 
absolute number of hepatic T cell populations (Figures 2C,D), we 
found a significant decrease of CD8+ T cells in caspase-1/11−/−  
compared with those of WT mice at 21 dpi. Furthermore, we 
observed a higher increase in the number of F4/80+ cells in both 
deficient compared with those of WT mice (Figure 2E). Taking into 
account that TLR9 was strongly upregulated in the liver of infected 
WT mice and that this is linked to an exacerbated inflammatory 
response with hepatic damage (31), we first evaluated the intracel-
lular expression of TLR9 and NLRP3 in hepatic macrophages of WT 
mice. We found a co-expression of both innate receptors in isolated 
macrophages of WT mice by confocal microscopy (Figure S2A 
in Supplementary Material). Additionally, we observed a higher 
number of TLR9+F4/80+ cells in infected nlrp3−/− compared 
with that of WT and caspase-1/11−/− mice as measured by flow 
cytometry (Figure S2B in Supplementary Material). Considering 
that macrophages may exert their microbicidal activity through 
production and release of oxidative stress mediators, we next 
examined the ability of the liver isolated macrophages of each 
mouse strain to produce ROS and NO intracellularly. As shown in 
Figure 3, we observed that the infection increased the recruitment 
of ROS- (Figures 3A,B) and NO-producing macrophages from all 
analyzed groups (Figures 3C,D).
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FigUre 2 | Infected caspase-1/11-deficient mice exhibit a marked reduction of hepatic CD8+ T cell number associated with increased number of macrophages. 
(a) Representative liver sections from uninfected control and Trypanosoma cruzi infected wild type (WT) and KO mice at 21 days post infection were stained with 
hematoxylin and eosin. Micrographs are shown at 100× and bar scales depict 50 µm. Insets are magnifications of inflammatory infiltrates. Bars depict percentages 
of inflammatory foci. (B) Absolute number of hepatic leukocytes from WT, nlrp3−/−, and caspase-1/11−/− mice determined by flow cytometry. (c) Absolute number 
of purified hepatic CD4+ and (D) CD8+ T cells. (e) Representative dot plots and absolute cell number of F4/80+CD11b+and F4/80+CD11b− leukocytes. Gate 
strategy is depicted in Figure S1 in Supplementary Material. Data are shown as mean ± SEM from one of three representative experiments; n = 3–6 mice per group. 
Statistical significance was evaluated by two-way ANOVA followed by Bonferroni post hoc test. *p < 0.05; **p < 0.01; ***p < 0.001.
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FigUre 3 | Hepatic macrophages from NLRP3- and caspase-1/11-deficient mice exhibit increased intracellular production of reactive oxygen species (ROS) and 
nitric oxide. Intrahepatic leukocytes from infected and uninfected controls from wild type (WT), nlrp3−/−, and caspase-1/11−/− mice were stimulated with PMA  
and ionomycin. ROS were detected within cells by labeling with the oxidation-sensitive dye H2DCFDA and NO was measured using DAF-FM as described in 
Section “Materials and Methods.” Then, cells were stained with anti-F4/80. (a) Representative dot plots and (B) absolute number of ROS+F4/80+ intrahepatic  
cells from WT, nlrp3−/−, and caspase-1/11−/− mice. (c) Representative dot plots and (D) absolute number of hepatic NO+F4/80+ cells from WT, nlrp3−/−, and 
caspase-1/11−/− mice measured by flow cytometry. Gate strategy is depicted in Figure S1 in Supplementary Material. Data are shown as mean ± SEM from one  
of three representative experiments; n = 3–6 mice per group. Statistical significance was evaluated by two-way ANOVA followed by Bonferroni post hoc test. 
*p < 0.05; **p < 0.01; ***p < 0.001.
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infected nlrP3 and caspase-1/11-
Deficient Mice Differentially Modulate 
helper and cytotoxic T lymphocyte 
Phenotypes During T. cruzi infection
Besides innate immune cells, T cells of adaptive immunity play an 
important role in the protection against T. cruzi infection. Activated 
CD4+ and CD8+ T cells produce IFN-γ which further enhance the 
activation of phagocytic cells to promote parasite killing (23, 34). 
Consequently, we analyzed different subsets of liver CD4+ T lym-
phocytes elicited during T. cruzi infection and measured the char-
acteristic intracellular cytokines for each subtype: IFN-γ+CD4+ 
(Figure 4A), IL-4+CD4+ (Figure 4B), IL-17+CD4+ (Figure 4C), 
and IL-10+CD4+ (Figure 4D). Interestingly, we found a mixed 
Th1/Th2/Th17 phenotype in nlrp3−/− similar to infected WT mice, 
whereas caspase-1/11−/− animals displayed a predominant Th2 

phenotype at 21 dpi. Furthermore, WT and nlrp3−/− groups were 
also able to recruit IFN-γ+CD8+ (Figure 4E) and IL-10+CD8+ 
cells (Figure  4F), whereas caspase-1/11−/− animals exhibited 
scarce numbers of these CD8 T cell subsets. The only subset of 
CD8 T  cell affected in both NLRP3 and caspase-1/11-deficient 
mice was IL-17+CD8+ (Figure 4G). Altogether, our results clearly 
demonstrate that the deficiency in caspase-1/11−/− worsens the 
induction of the cytotoxic response during the infection with this 
parasite.

Taking into account that inflammasomes are key signaling 
platforms to detect intracellular pathogens and release bioactive 
IL-1β and IL-18, which exert their biological effects through 
their specific receptors, we analyzed the expression of IL-1R and 
IL-18R on hepatic T lymphocytes. Thus, we found that nlrp3−/− 
animals had a higher number of IL-1R+CD4+ (Figure  4H) 
and IL-18R+CD4+ (Figure  4I) lymphocytes, whereas 
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FigUre 4 | Infected NLRP3 and caspase-1/11-deficient mice differentially modulate T helper and T cytotoxic lymphocyte phenotypes during Trypanosoma cruzi 
infection. Intracellular cytokines were determined in hepatic leukocytes obtained at 14 and 21 days post infection by flow cytometry. Absolute number of hepatic 
(a) IFNγ+, (B) IL-4+, (c) IL-17+, and (D) IL-10+ in CD4+ T lymphocytes are shown. Absolute number of hepatic (e) IFNγ+, (F) IL-10+, and (g) IL-17+ in CD8+ 
T lymphocytes are shown. Absolute number of (h) IL-1R+ and (i) IL-18R+ on CD4+ T lymphocytes. Absolute number of hepatic (J) IL-1R+ and (K) IL-18R+ on 
CD8+ T lymphocytes. Data are shown as mean ± SEM from one of three representative experiments; n = 3–6 mice per group. Statistical significance was evaluated 
by two-way ANOVA followed by Bonferroni post hoc test. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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caspase-1/11−/− mice showed the lowest numbers of these cells 
when compared to infected WT mice. Additionally, the number 
of IL-1R+CD8+ (Figure  4J) and IL-18R+CD8+ (Figure  4K) 
dramatically decreased in caspase-1/11−/− animals compared to 
infected nlrp3−/− and WT group.

Differential systemic levels of cytokines 
in WT, Nlrp3−/−, and Caspase-1/11−/− 
Mice During T. cruzi infection
Recognition of T. cruzi by the innate and adaptive immune cells 
trigger the production of cytokines, such as IL-1β, IL-18, IL-6, 
TNF, and IL-10 during the acute phase of infection which exert 
profound effects in the killing of parasites and in the modulation 
of inflammation. Thus, we found that the infection increased the 
plasma levels of IL-1β (Figure 5A) and IL-18 (Figure 5B) in WT 
and nlrp3−/− mice but not in caspase-1/11-deficient animals. 
Surprisingly, IL-18 concentration was strongly augmented in 
plasma from infected nlrp3−/− compared to WT mice at 14 dpi.

When we analyzed pro-inflammatory cytokines such as IL-6 
in the plasma of both deficient mice, we noted that only nlrp3−/− 
mice produced an increase in this cytokine in a manner similar to 
WT mice at 14 dpi (Figure 5C). Additionally, high TNF concen-
trations were also detected in both WT and nlrp3−/− mice at 14 
and 21 dpi, whereas in the caspase-1/11−/− group this cytokine 
was only increased at 21 dpi (Figure 5D).

Last, the anti-inflammatory cytokine IL-10 was strongly 
increased in WT mice at 21  dpi, whereas nlrp3−/− and 

caspase-1/11−/− animals did not show significant changes along 
the infection. It is worth noting that uninfected NLRP3 and 
caspase-1/11-deficient mice showed higher baseline levels of 
IL-10 than WT mice did (Figure 5E).

caspase-1/11 signaling is required for 
controlling T. cruzi infection but 
contributes to liver inflammation
In order to evaluate the role of NLRP3 and caspase-1/11 in the 
control of the parasite infection in  vivo, we analyzed the para-
sitemia and survival curves in the three mouse strains. These para-
meters were similar in WT and nlrp3−/− animals (Figure 6A). 
Remarkably, caspase-1/11−/− mice reached a parasitemia peak at 
21 dpi with 50% of survival at 28 dpi compared to the nlrp3−/− 
and WT groups (Figure 6B). Surprisingly, even though nlrp3−/− 
mice did not show differences in parasitemia and survival, the 
parasitic load was higher in the liver of nlrp3−/− compared to 
WT animals. However, the highest parasite burden was detected 
in caspase-1/11−/− group at 21 dpi (Figure 6C).

We also measured plasma ALT (Figure  6D) and AST 
(Figure 6E) transaminases as well as LDH (Figure 6F) activities 
as biomarkers of tissue damage. We observed increased levels of 
these markers in both WT and nlrp3−/− mice at 14 and 21 dpi. 
It is worth noting that caspase-deficient mice showed a delayed 
increase in ALT and AST transaminases and LDH activities at 
21 dpi likely due to the high parasitic load in the liver and other 
tissues.
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****p < 0.0001.

8

Paroli et al. Caspase-1/11 in the Outcome of T. cruzi Infection

Frontiers in Immunology | www.frontiersin.org May 2018 | Volume 9 | Article 913

DiscUssiOn

In this study, we investigated the role of the inflammasome 
components in the protective and pathogenic adaptive immune 
responses induced in hepatic tissue, a key tissue during the acute 
infection with the Tulahuen strain. We demonstrated that para-
site infection triggered NLRP3 inflammasome activation in the 
liver and increased the number of hepatic NLRP3+ and IL-1β+ 
macrophages in WT mice as observed in a viral hepatitis model 
(35). Liver resident macrophages together with those recruited 
by proinflammatory cytokines and chemokines are the major 
drivers of hepatic inflammation during acute and chronic T. cruzi 
infection (36, 37). In this study, livers of infected WT mice showed 
an increased number of inflammatory cell infiltrates compared 
to NLRP3 and caspase-1/11-deficient mice, suggesting that the 
inflammasome pathway is important for cell recruitment and 
hepatic inflammation (38). Furthermore, our results clearly show 
that NLRP3 inflammasome is dispensable for controlling para-
sitemia, host survival, and the onset of adaptive immune response. 
In this sense, other researchers focusing on heart tissue reported 

that inflammasome activation was partially dependent on NLRP3 
and fully dependent on caspase-1 and/or ASC molecule to control 
cardiac inflammation, parasitism, and the survival of B6 mice 
infected with T. cruzi-Y strain (29). Indeed, host immune response 
against T. cruzi is an intricate phenomenon that may play different 
roles in dissimilar models depending on different parasite strains, 
the infected tissues and on the point in time at which the infec-
tion occurs among other factors. Strikingly, hepatic macrophages 
from nlrp3−/− mice showed an increased expression of TLR9 
suggesting that this innate receptor is associated with NLRP3 
signaling (Figure S2B in Supplementary Material). Supporting 
this idea, a recent report described how TLR9 negatively regulates 
the NLRP3–IL-1β pathway in an infection model (39). Moreover, 
the absence of NLRP3 could be inducing a positive feedback on 
TLR9 expression as has been proposed (40–42). Interestingly, the 
higher number of hepatic ROS+ and NO+ macrophages from 
infected nlrp3−/− and caspase-1/11−/− mice, prompted us to 
suggest that these anti-parasitic mechanisms would be relevant 
for an early control of infection (43). The trypanocidal activity 
attributed to NO is actually mediated by peroxynitrites (44) 

https://www.frontiersin.org/Immunology/
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FigUre 6 | Caspase-1/11 signaling is required for controlling Trypanosoma cruzi infection but contributes to liver inflammation. Wild type (WT), nlrp3−/−, and 
caspase-1/11−/− mice were i.p. inoculated with 103 trypomastigotes-Tulahuen strain. (a) Parasitemia levels were examined microscopically at the indicated time 
points. (B) Survival percentages from infected WT and KO mice up to 42 days post infection (dpi). (c) Hepatic parasitic load was determined by qPCR of satDNA  
of T. cruzi relative to TaqMan endogenous control and expressed as arbitrary units (a.u.) from infected WT, nlrp3−/−, and caspase-1/11−/− mice at 21 dpi. Activity 
levels of (D) ALT, (e) AST transaminases, and (F) LDH in plasma are obtained at 14 and 21 dpi. Data are shown as mean ± SEM from one of three representative 
experiments; n = 3–6 mice per group. Statistical significance was evaluated by two-way ANOVA followed by Bonferroni post hoc test. *p < 0.05; **p < 0.01; 
***p < 0.001; ****p < 0.0001.
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and IFN-γ and TNF pro-inflammatory cytokines may enhance 
the innate effector mechanisms against the pathogen (45–48). 
Furthermore, it was recently reported that, independently of 
caspase-1/11, TNF and ROS may activate macrophages to kill 
pathogens by recruiting lysosomes and acidifying pathogen-con-
taining vacuoles (46). Interestingly, IL-17A cytokine also acts on 
macrophages enhancing the killing of intracellular parasites (12). 
Interestingly, a caspase-1 dependent and IL-1β and IL-18 inde-
pendent pathway for NO production was described as an impor-
tant effector mechanism played by NLRP3 to control T. cruzi-Y  
strain infection in vitro (28). Further investigation of this group 
demonstrated that lysosomal cathepsin B was required for 
NLRP3 activation, since its inhibition abrogates IL-1β release 
by macrophages (28). The molecular mechanisms of inflamma-
some activation that promote killing parasite inside macrophages 
infected by T. cruzi-Tulahuen strain in vitro remain unexplored 
and they are an interesting aspect of future studies.

On the other hand, IL-17A cytokine may also act on macro-
phages enhancing the killing of intracellular parasites (12). 
Interestingly, this cytokine was detected by us in hepatic CD4+ 
T cells from infected WT and NLRP3-deficient mice. The inter-
play between innate and adaptive immunity is very important in 
the progression and outcome of T. cruzi infection.

Our results showed that infected WT and nlrp3−/− animals 
displayed a mixed Th1, Th2, and Th17 phenotypes and exhibited 
similar systemic levels of IL-1β at 21 dpi. This  proinflammatory 
cytokine promotes the activation and differentiation of lympho-
cytes, regulates the infiltration of inflammatory cells, induces 
chemotaxis and activation of other inflammatory factors, regulates 
the function of epithelial cells, and might produce tissue damage 

by mediating inflammation (49). In this study, we demonstrated 
that the induction of IFN-γ+CD4+ T cells (Th1) was predominant 
over IL-17+CD4+ T cells (Th17) in infected nlrp3−/− compared 
to WT mice. Conversely, the defect in caspase-1/11 signaling led 
to the lack of IL-1β induction and to a profound reduction of  
IFN-γ- and IL-17-producing T cells, which is in line with other 
reports (50, 51). Consequently, we observed a predominant 
Th2 phenotype on hepatic CD4+ lymphocytes from infected 
 caspase-1/11 KO mice. Additionally, high levels of IL-18 were 
found in the plasma of infected NLRP3-deficient mice support-
ing the idea that IL-18 is a potent inducer of IFN-γ in Th1 (40). 
The bioactivity of this cytokine depends on its concentration, the 
level of its natural inhibitor, IL-18 binding protein, and the surface 
expression of IL-18R on the responding cells (52). In agreement 
with the above-described results, the high number of hepatic 
IL-18R+ and IL-1R+CD4+ T  cells was detected in infected 
nlrp3−/− mice suggesting that different inflammasomes other 
than NLRP3 may be activated upon infection. As expected, the 
number of hepatic IL-18R- and IL-1R-expressing CD4+ T cells in 
caspase-1/11−/− mice did not suffer any change.

It is well known that production of IFN-γ by Th1 and Tc-1 
cells is involved in the protection against T. cruzi (53). Moreover, 
cytotoxic T cells are essential for the control of infection in adap-
tive immunity since mice lacking CD8+ T  cell compartment 
succumb to acute phase and display high systemic and tissue 
parasite loads (25). Besides, pre-clinical models of Chagas disease 
have demonstrated that antigen-specific IFNγ+CD8+ T  cells 
are essential for reducing parasite burden, increasing survival, 
and decreasing pathology in both the acute and chronic phases 
of disease (54). In this study, we also observed the presence of 
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IL-17-producing CD8+ T cells (Tc-17 subset) (55, 56) only in 
infected WT mice, suggesting the relevance of NLRP3 in the 
induction of this T cell sub-population. Interestingly, systemic 
IL-1β, IL-6, and TNF cytokines were associated with increased 
ALT and AST transaminases and LDH activities in infected 
WT and nlrp3−/− mice. The increase of AST may reflect the 
damage exerted by the parasite and inflammatory response in 
the different tissues as liver, spleen, heart, skeletal muscle, and 
kidneys, whereas ALT represent an hepatic injury biomarker. 
It is noteworthy that caspase-1/11−/− group exhibited a light 
increase of ALT though a strong increase in AST and LDH at 
21 dpi probably due to the reduced infiltrated inflammatory 
foci in liver but increased and disseminated parasitemia. In line 
with our results, deficiency in caspase-1 resulted in high levels 
of parasitemia and increased number of amastigotes within 
macrophages isolated from caspase-1 KO mice and infected with 
T. cruzi-Y strain (28).

To sum up, our results provide the first evidence for the in vivo 
requirement of caspase-1/11 as an important player not only for 
mounting an appropriate type-1 adaptive immune response for 
the control of parasite burden in the liver, but also in promot-
ing its inflammation and hence the progression of this parasite 
infection. We believe that these findings contribute to a better 
understanding of the inflammasomes in innate and adaptive 
responses as well as the mechanisms enabling parasite persistence 
within the host cells.
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